summaryrefslogtreecommitdiffstats
path: root/src/math/geometry.h
diff options
context:
space:
mode:
authorPiotr Dziwinski <piotrdz@gmail.com>2012-06-07 13:35:23 +0200
committerPiotr Dziwinski <piotrdz@gmail.com>2012-06-07 13:35:23 +0200
commit5dee2731e6fb3deb2c44e269d12c2b7db62c74cb (patch)
tree276a8356b693e8b12e9f69196c7a95cc995e13bb /src/math/geometry.h
parentf67a62fb28c882b1650b827730bac72f404e2c47 (diff)
downloadcolobot-5dee2731e6fb3deb2c44e269d12c2b7db62c74cb.tar.gz
colobot-5dee2731e6fb3deb2c44e269d12c2b7db62c74cb.tar.bz2
colobot-5dee2731e6fb3deb2c44e269d12c2b7db62c74cb.zip
Finished implementation of math functions
Diffstat (limited to 'src/math/geometry.h')
-rw-r--r--src/math/geometry.h600
1 files changed, 600 insertions, 0 deletions
diff --git a/src/math/geometry.h b/src/math/geometry.h
new file mode 100644
index 0000000..2d79d8a
--- /dev/null
+++ b/src/math/geometry.h
@@ -0,0 +1,600 @@
+// * This file is part of the COLOBOT source code
+// * Copyright (C) 2001-2008, Daniel ROUX & EPSITEC SA, www.epsitec.ch
+// * Copyright (C) 2012, Polish Portal of Colobot (PPC)
+// *
+// * This program is free software: you can redistribute it and/or modify
+// * it under the terms of the GNU General Public License as published by
+// * the Free Software Foundation, either version 3 of the License, or
+// * (at your option) any later version.
+// *
+// * This program is distributed in the hope that it will be useful,
+// * but WITHOUT ANY WARRANTY; without even the implied warranty of
+// * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// * GNU General Public License for more details.
+// *
+// * You should have received a copy of the GNU General Public License
+// * along with this program. If not, see http://www.gnu.org/licenses/.
+
+/** @defgroup MathGeometryModule math/geometry.h
+ Contains math functions related to 3D geometry calculations,
+ transformations, etc.
+ */
+
+#pragma once
+
+#include "const.h"
+#include "func.h"
+#include "point.h"
+#include "vector.h"
+#include "matrix.h"
+
+#include <cmath>
+#include <cstdlib>
+
+
+// Math module namespace
+namespace Math
+{
+
+/* @{ */ // start of group
+
+
+//! Returns py up on the line \a a - \a b
+inline float MidPoint(const Point &a, const Point &b, float px)
+{
+ if (IsEqual(a.x, b.x))
+ {
+ if (a.y < b.y)
+ return HUGE;
+ else
+ return -HUGE;
+ }
+ return (b.y-a.y) * (px-a.x) / (b.x-a.x) + a.y;
+}
+
+//! Calculates the parameters a and b of the linear function passing through \a p1 and \a p2
+/** Returns \c false if the line is vertical.
+ \param p1,p2 points
+ \param a,b linear function parameters */
+inline bool LinearFunction(const Point &p1, const Point &p2, float &a, float &b)
+{
+ if ( IsZero(p1.x-p2.x) )
+ {
+ a = HUGE;
+ b = p2.x;
+ return false;
+ }
+
+ a = (p2.y-p1.y) / (p2.x-p1.x);
+ b = p2.y - p2.x*a;
+
+ return true;
+}
+
+//! Tests whether the point \a p is inside the triangle (\a a,\a b,\a c)
+inline bool IsInsideTriangle(Point a, Point b, Point c, Point p)
+{
+ float n, m;
+
+ if ( p.x < a.x && p.x < b.x && p.x < c.x ) return false;
+ if ( p.x > a.x && p.x > b.x && p.x > c.x ) return false;
+ if ( p.y < a.y && p.y < b.y && p.y < c.y ) return false;
+ if ( p.y > a.y && p.y > b.y && p.y > c.y ) return false;
+
+ if ( a.x > b.x ) Swap(a,b);
+ if ( a.x > c.x ) Swap(a,c);
+ if ( c.x < a.x ) Swap(c,a);
+ if ( c.x < b.x ) Swap(c,b);
+
+ n = MidPoint(a, b, p.x);
+ m = MidPoint(a, c, p.x);
+ if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) ) return false;
+
+ n = MidPoint(c, b, p.x);
+ m = MidPoint(c, a, p.x);
+ if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) ) return false;
+
+ return true;
+}
+
+//! Rotates a point around a center
+/** \a center center of rotation
+ \a angle angle is in radians (positive is counterclockwise (CCW) )
+ \a p the point */
+inline Point RotatePoint(const Point &center, float angle, const Point &p)
+{
+ Point a;
+ a.x = p.x-center.x;
+ a.y = p.y-center.y;
+
+ Point b;
+ b.x = a.x*cosf(angle) - a.y*sinf(angle);
+ b.y = a.x*sinf(angle) + a.y*cosf(angle);
+
+ b.x += center.x;
+ b.y += center.y;
+
+ return b;
+}
+
+//! Rotates a point around the origin (0,0)
+/** \a angle angle in radians (positive is counterclockwise (CCW) )
+ \a p the point */
+inline Point RotatePoint(float angle, const Point &p)
+{
+ float x = p.x*cosf(angle) - p.y*sinf(angle);
+ float y = p.x*sinf(angle) + p.y*cosf(angle);
+
+ return Point(x, y);
+}
+
+//! Rotates a vector (dist, 0).
+/** \a angle angle is in radians (positive is counterclockwise (CCW) )
+ \a dist distance to origin */
+inline Point RotatePoint(float angle, float dist)
+{
+ float x = dist*cosf(angle);
+ float y = dist*sinf(angle);
+
+ return Point(x, y);
+}
+
+//! TODO documentation
+inline void RotatePoint(float cx, float cy, float angle, float &px, float &py)
+{
+ float ax, ay;
+
+ px -= cx;
+ py -= cy;
+
+ ax = px*cosf(angle) - py*sinf(angle);
+ ay = px*sinf(angle) + py*cosf(angle);
+
+ px = cx+ax;
+ py = cy+ay;
+}
+
+//! Rotates a point around a center in space.
+/** \a center center of rotation
+ \a angleH,angleV rotation angles in radians (positive is counterclockwise (CCW) ) )
+ \a p the point
+ \returns the rotated point */
+inline Vector RotatePoint(const Vector &center, float angleH, float angleV, Vector p)
+{
+ p.x -= center.x;
+ p.y -= center.y;
+ p.z -= center.z;
+
+ Vector b;
+ b.x = p.x*cosf(angleH) - p.z*sinf(angleH);
+ b.y = p.z*sinf(angleV) + p.y*cosf(angleV);
+ b.z = p.x*sinf(angleH) + p.z*cosf(angleH);
+
+ return center + b;
+}
+
+//! Rotates a point around a center in space.
+/** \a center center of rotation
+ \a angleH,angleV rotation angles in radians (positive is counterclockwise (CCW) ) )
+ \a p the point
+ \returns the rotated point */
+inline Vector RotatePoint2(const Vector center, float angleH, float angleV, Vector p)
+{
+ p.x -= center.x;
+ p.y -= center.y;
+ p.z -= center.z;
+
+ Vector a;
+ a.x = p.x*cosf(angleH) - p.z*sinf(angleH);
+ a.y = p.y;
+ a.z = p.x*sinf(angleH) + p.z*cosf(angleH);
+
+ Vector b;
+ b.x = a.x;
+ b.y = a.z*sinf(angleV) + a.y*cosf(angleV);
+ b.z = a.z*cosf(angleV) - a.y*sinf(angleV);
+
+ return center + b;
+}
+
+//! Returns the angle between point (x,y) and (0,0)
+float RotateAngle(float x, float y)
+{
+ float result = std::atan2(x, y);
+ if (result < 0)
+ result = PI_MUL_2 + result;
+
+ return result;
+}
+
+/*inline float RotateAngle(float x, float y)
+{
+ if ( x == 0.0f && y == 0.0f ) return 0.0f;
+
+ if ( x >= 0.0f )
+ {
+ if ( y >= 0.0f )
+ {
+ if ( x > y ) return atanf(y/x);
+ else return Math::PI*0.5f - atanf(x/y);
+ }
+ else
+ {
+ if ( x > -y ) return Math::PI*2.0f + atanf(y/x);
+ else return Math::PI*1.5f - atanf(x/y);
+ }
+ }
+ else
+ {
+ if ( y >= 0.0f )
+ {
+ if ( -x > y ) return Math::PI*1.0f + atanf(y/x);
+ else return Math::PI*0.5f - atanf(x/y);
+ }
+ else
+ {
+ if ( -x > -y ) return Math::PI*1.0f + atanf(y/x);
+ else return Math::PI*1.5f - atanf(x/y);
+ }
+ }
+}*/
+
+//! Calculates the angle between two points and one center
+/** \a center the center point
+ \a p1,p2 the two points
+ \returns The angle in radians (positive is counterclockwise (CCW) ) */
+inline float RotateAngle(const Point &center, const Point &p1, const Point &p2)
+{
+ if (PointsEqual(p1, center))
+ return 0;
+
+ if (PointsEqual(p2, center))
+ return 0;
+
+ float a1 = asinf((p1.y - center.y) / Distance(p1, center));
+ float a2 = asinf((p2.y - center.y) / Distance(p2, center));
+
+ if (p1.x < center.x) a1 = PI - a1;
+ if (p2.x < center.x) a2 = PI - a2;
+
+ float a = a2 - a1;
+ if (a < 0)
+ a += PI_MUL_2;
+
+ return a;
+}
+
+//! Loads view matrix from the given vectors
+/** \a from origin
+ \a at view direction
+ \a worldUp up vector */
+inline void LoadViewMatrix(Matrix &mat, const Vector &from, const Vector &at, const Vector &worldUp)
+{
+ // Get the z basis vector, which points straight ahead. This is the
+ // difference from the eyepoint to the lookat point.
+ Vector view = at - from;
+
+ float length = view.Length();
+ assert(! Math::IsZero(length) );
+
+ // Normalize the z basis vector
+ view /= length;
+
+ // Get the dot product, and calculate the projection of the z basis
+ // vector onto the up vector. The projection is the y basis vector.
+ float dotProduct = DotProduct(worldUp, view);
+
+ Vector up = worldUp - dotProduct * view;
+
+ // If this vector has near-zero length because the input specified a
+ // bogus up vector, let's try a default up vector
+ if ( IsZero(length = up.Length()) )
+ {
+ up = Vector(0.0f, 1.0f, 0.0f) - view.y * view;
+
+ // If we still have near-zero length, resort to a different axis.
+ if ( IsZero(length = up.Length()) )
+ {
+ up = Vector(0.0f, 0.0f, 1.0f) - view.z * view;
+
+ assert(! IsZero(up.Length()) );
+ }
+ }
+
+ // Normalize the y basis vector
+ up /= length;
+
+ // The x basis vector is found simply with the cross product of the y
+ // and z basis vectors
+ Vector right = CrossProduct(up, view);
+
+ // Start building the matrix. The first three rows contains the basis
+ // vectors used to rotate the view to point at the lookat point
+ mat.LoadIdentity();
+
+ /* (1,1) */ mat.m[0 ] = right.x;
+ /* (2,1) */ mat.m[1 ] = up.x;
+ /* (3,1) */ mat.m[2 ] = view.x;
+ /* (1,2) */ mat.m[4 ] = right.y;
+ /* (2,2) */ mat.m[5 ] = up.y;
+ /* (3,2) */ mat.m[6 ] = view.y;
+ /* (1,3) */ mat.m[8 ] = right.z;
+ /* (2,3) */ mat.m[9 ] = up.z;
+ /* (3,3) */ mat.m[10] = view.z;
+
+ // Do the translation values (rotations are still about the eyepoint)
+ /* (1,4) */ mat.m[12] = -DotProduct(from, right);
+ /* (2,4) */ mat.m[13] = -DotProduct(from, up);
+ /* (3,4) */ mat.m[14] = -DotProduct(from, view);
+}
+
+//! Loads a perspective projection matrix
+/** \a fov field of view in radians
+ \a aspect aspect ratio (width / height)
+ \a nearPlane distance to near cut plane
+ \a farPlane distance to far cut plane */
+inline void LoadProjectionMatrix(Matrix &mat, float fov = 1.570795f, float aspect = 1.0f,
+ float nearPlane = 1.0f, float farPlane = 1000.0f)
+{
+ assert(fabs(farPlane - nearPlane) >= 0.01f);
+ assert(fabs(sin(fov / 2)) >= 0.01f);
+
+ float w = aspect * (cosf(fov / 2) / sinf(fov / 2));
+ float h = 1.0f * (cosf(fov / 2) / sinf(fov / 2));
+ float q = farPlane / (farPlane - nearPlane);
+
+ mat.LoadZero();
+
+ /* (1,1) */ mat.m[0 ] = w;
+ /* (2,2) */ mat.m[5 ] = h;
+ /* (3,3) */ mat.m[10] = q;
+ /* (3,4) */ mat.m[14] = 1.0f;
+ /* (4,3) */ mat.m[11] = -q * nearPlane;
+}
+
+//! Loads a translation matrix from given vector
+/** \a trans vector of translation*/
+inline void LoadTranslationMatrix(Matrix &mat, const Vector &trans)
+{
+ mat.LoadIdentity();
+ /* (1,4) */ mat.m[12] = trans.x;
+ /* (2,4) */ mat.m[13] = trans.y;
+ /* (3,4) */ mat.m[14] = trans.z;
+}
+
+//! Loads a scaling matrix fom given vector
+/** \a scale vector with scaling factors for X, Y, Z */
+inline void LoadScaleMatix(Matrix &mat, const Vector &scale)
+{
+ mat.LoadIdentity();
+ /* (1,1) */ mat.m[0 ] = scale.x;
+ /* (2,2) */ mat.m[5 ] = scale.y;
+ /* (3,3) */ mat.m[10] = scale.z;
+}
+
+//! Loads a rotation matrix along the X axis
+/** \a angle angle in radians */
+inline void LoadRotationXMatrix(Matrix &mat, float angle)
+{
+ mat.LoadIdentity();
+ /* (2,2) */ mat.m[5 ] = cosf(angle);
+ /* (3,2) */ mat.m[6 ] = sinf(angle);
+ /* (2,3) */ mat.m[9 ] = -sinf(angle);
+ /* (3,3) */ mat.m[10] = cosf(angle);
+}
+
+//! Loads a rotation matrix along the Y axis
+/** \a angle angle in radians */
+inline void LoadRotationYMatrix(Matrix &mat, float angle)
+{
+ mat.LoadIdentity();
+ /* (1,1) */ mat.m[0 ] = cosf(angle);
+ /* (3,1) */ mat.m[2 ] = -sinf(angle);
+ /* (1,3) */ mat.m[8 ] = sinf(angle);
+ /* (3,3) */ mat.m[10] = cosf(angle);
+}
+
+//! Loads a rotation matrix along the Z axis
+/** \a angle angle in radians */
+inline void LoadRotationZMatrix(Matrix &mat, float angle)
+{
+ mat.LoadIdentity();
+ /* (1,1) */ mat.m[0 ] = cosf(angle);
+ /* (2,1) */ mat.m[1 ] = sinf(angle);
+ /* (1,2) */ mat.m[4 ] = -sinf(angle);
+ /* (2,2) */ mat.m[5 ] = cosf(angle);
+}
+
+//! Loads a rotation matrix along the given axis
+/** \a dir axis of rotation
+ \a angle angle in radians */
+inline void LoadRotationMatrix(Matrix &mat, const Vector &dir, float angle)
+{
+ float cos = cosf(angle);
+ float sin = sinf(angle);
+ Vector v = Math::Normalize(dir);
+
+ mat.LoadIdentity();
+
+ /* (1,1) */ mat.m[0 ] = (v.x * v.x) * (1.0f - cos) + cos;
+ /* (2,1) */ mat.m[1 ] = (v.x * v.y) * (1.0f - cos) - (v.z * sin);
+ /* (3,1) */ mat.m[2 ] = (v.x * v.z) * (1.0f - cos) + (v.y * sin);
+
+ /* (1,2) */ mat.m[4 ] = (v.y * v.x) * (1.0f - cos) + (v.z * sin);
+ /* (2,2) */ mat.m[5 ] = (v.y * v.y) * (1.0f - cos) + cos ;
+ /* (3,2) */ mat.m[6 ] = (v.y * v.z) * (1.0f - cos) - (v.x * sin);
+
+ /* (1,3) */ mat.m[8 ] = (v.z * v.x) * (1.0f - cos) - (v.y * sin);
+ /* (2,3) */ mat.m[9 ] = (v.z * v.y) * (1.0f - cos) + (v.x * sin);
+ /* (3,3) */ mat.m[10] = (v.z * v.z) * (1.0f - cos) + cos;
+}
+
+//! Calculates the matrix to make three rotations in the order X, Z and Y
+inline void LoadRotationXZYMatrix(Matrix &mat, const Vector &angle)
+{
+ LoadRotationXMatrix(mat, angle.x);
+
+ Matrix temp;
+ LoadRotationZMatrix(temp, angle.z);
+ mat.Multiply(temp);
+
+ LoadRotationYMatrix(temp, angle.y);
+ mat.Multiply(temp);
+}
+
+//! Calculates the matrix to make three rotations in the order Z, X and Y
+inline void LoadRotationZXYMatrix(Matrix &mat, const Vector &angle)
+{
+ LoadRotationZMatrix(mat, angle.z);
+
+ Matrix temp;
+ LoadRotationXMatrix(temp, angle.x);
+ mat.Multiply(temp);
+
+ LoadRotationYMatrix(temp, angle.y);
+ mat.Multiply(temp);
+}
+
+//! Returns the distance between projections on XZ plane of two vectors
+inline float DistanceProjected(const Vector &a, const Vector &b)
+{
+ return sqrtf( (a.x-b.x)*(a.x-b.x) +
+ (a.z-b.z)*(a.z-b.z) );
+}
+
+//! Returns the normal vector to a plane
+/** \param p1,p2,p3 points defining the plane */
+inline Vector NormalToPlane(const Vector &p1, const Vector &p2, const Vector &p3)
+{
+ Vector u = p3 - p1;
+ Vector v = p2 - p1;
+
+ return Normalize(CrossProduct(u, v));
+}
+
+//! Returns a point on the line \a p1 - \a p2, in \a dist distance from \a p1
+/** \a p1,p2 line start and end
+ \a dist scaling factor from \a p1, relative to distance between \a p1 and \a p2 */
+inline Vector SegmentPoint(const Vector &p1, const Vector &p2, float dist)
+{
+ return p1 + (p2 - p1) * dist;
+}
+
+//! Returns the distance between given point and a plane
+/** \param p the point
+ \param a,b,c points defining the plane */
+inline float DistanceToPlane(const Vector &a, const Vector &b, const Vector &c, const Vector &p)
+{
+ Vector n = NormalToPlane(a, b, c);
+ float d = -(n.x*a.x + n.y*a.y + n.z*a.z);
+
+ return fabs(n.x*p.x + n.y*p.y + n.z*p.z + d);
+}
+
+//! Checks if two planes defined by three points are the same
+/** \a plane1 array of three vectors defining the first plane
+ \a plane2 array of three vectors defining the second plane */
+inline bool IsSamePlane(const Vector (&plane1)[3], const Vector (&plane2)[3])
+{
+ Vector n1 = NormalToPlane(plane1[0], plane1[1], plane1[2]);
+ Vector n2 = NormalToPlane(plane2[0], plane2[1], plane2[2]);
+
+ if ( fabs(n1.x-n2.x) > 0.1f ||
+ fabs(n1.y-n2.y) > 0.1f ||
+ fabs(n1.z-n2.z) > 0.1f )
+ return false;
+
+ float dist = DistanceToPlane(plane1[0], plane1[1], plane1[2], plane2[0]);
+ if ( dist > 0.1f )
+ return false;
+
+ return true;
+}
+
+//! Calculates the intersection "i" right "of" the plane "abc".
+inline bool Intersect(const Vector &a, const Vector &b, const Vector &c, const Vector &d, const Vector &e, Vector &i)
+{
+ float d1 = (d.x-a.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
+ (d.y-a.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
+ (d.z-a.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));
+
+ float d2 = (d.x-e.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
+ (d.y-e.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
+ (d.z-e.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));
+
+ if (d2 == 0)
+ return false;
+
+ i.x = d.x + d1/d2*(e.x-d.x);
+ i.y = d.y + d1/d2*(e.y-d.y);
+ i.z = d.z + d1/d2*(e.z-d.z);
+
+ return true;
+}
+
+//! Calculates the intersection of the straight line passing through p (x, z)
+/** Line is parallel to the y axis, with the plane abc. Returns p.y. */
+inline bool IntersectY(const Vector &a, const Vector &b, const Vector &c, Vector &p)
+{
+ float d = (b.x-a.x)*(c.z-a.z) - (c.x-a.x)*(b.z-a.z);
+ float d1 = (p.x-a.x)*(c.z-a.z) - (c.x-a.x)*(p.z-a.z);
+ float d2 = (b.x-a.x)*(p.z-a.z) - (p.x-a.x)*(b.z-a.z);
+
+ if (d == 0.0f)
+ return false;
+
+ p.y = a.y + d1/d*(b.y-a.y) + d2/d*(c.y-a.y);
+
+ return true;
+}
+
+//! Calculates the end point
+inline Vector LookatPoint(const Vector &eye, float angleH, float angleV, float length)
+{
+
+ Vector lookat = eye;
+ lookat.z += length;
+
+ RotatePoint(eye, angleH, angleV, lookat);
+
+ return lookat;
+}
+
+//! TODO documentation
+inline Vector Transform(const Matrix &m, const Vector &p)
+{
+ return MatrixVectorMultiply(m, p);
+}
+
+//! Calculates the projection of the point \a p on a straight line \a a to \a b.
+/** \a p point to project
+ \a a,b two ends of the line */
+inline Vector Projection(const Vector &a, const Vector &b, const Vector &p)
+{
+ float k = DotProduct(b - a, p - a);
+ k /= DotProduct(b - a, b - a);
+
+ return a + k*(b-a);
+}
+
+//! Calculates point of view to look at a center two angles and a distance
+inline Vector RotateView(Vector center, float angleH, float angleV, float dist)
+{
+ Matrix mat1, mat2;
+ LoadRotationZMatrix(mat1, -angleV);
+ LoadRotationYMatrix(mat2, -angleH);
+
+ Matrix mat = MultiplyMatrices(mat1, mat2);
+
+ Vector eye;
+ eye.x = 0.0f+dist;
+ eye.y = 0.0f;
+ eye.z = 0.0f;
+ eye = Transform(mat, eye);
+
+ return eye+center;
+}
+
+/* @} */ // end of group
+
+}; // namespace Math