summaryrefslogtreecommitdiffstats
path: root/src/math/math3d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/math3d.cpp')
-rw-r--r--src/math/math3d.cpp1035
1 files changed, 1035 insertions, 0 deletions
diff --git a/src/math/math3d.cpp b/src/math/math3d.cpp
new file mode 100644
index 0000000..9aa5f89
--- /dev/null
+++ b/src/math/math3d.cpp
@@ -0,0 +1,1035 @@
+// * This file is part of the COLOBOT source code
+// * Copyright (C) 2001-2008, Daniel ROUX & EPSITEC SA, www.epsitec.ch
+// *
+// * This program is free software: you can redistribute it and/or modify
+// * it under the terms of the GNU General Public License as published by
+// * the Free Software Foundation, either version 3 of the License, or
+// * (at your option) any later version.
+// *
+// * This program is distributed in the hope that it will be useful,
+// * but WITHOUT ANY WARRANTY; without even the implied warranty of
+// * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// * GNU General Public License for more details.
+// *
+// * You should have received a copy of the GNU General Public License
+// * along with this program. If not, see http://www.gnu.org/licenses/.
+
+// math3d.cpp
+
+#define STRICT
+#define D3D_OVERLOADS
+
+#include <math.h>
+#include <stdio.h>
+#include <d3d.h>
+
+#include "struct.h"
+#include "d3dengine.h"
+#include "d3dmath.h"
+#include "d3dutil.h"
+#include "math3d.h"
+
+
+
+// Returns TRUE if two numbers are nearly equal.
+
+BOOL IsEqual(float a, float b)
+{
+ return Abs(a-b) < CHOUIA;
+}
+
+
+// Returns the minimum value.
+
+float Min(float a, float b)
+{
+ if ( a <= b ) return a;
+ else return b;
+}
+
+float Min(float a, float b, float c)
+{
+ return Min( Min(a,b), c );
+}
+
+float Min(float a, float b, float c, float d)
+{
+ return Min( Min(a,b), Min(c,d) );
+}
+
+float Min(float a, float b, float c, float d, float e)
+{
+ return Min( Min(a,b), Min(c,d), e );
+}
+
+
+// Returns the maximum value.
+
+float Max(float a, float b)
+{
+ if ( a >= b ) return a;
+ else return b;
+}
+
+float Max(float a, float b, float c)
+{
+ return Max( Max(a,b), c );
+}
+
+float Max(float a, float b, float c, float d)
+{
+ return Max( Max(a,b), Max(c,d) );
+}
+
+float Max(float a, float b, float c, float d, float e)
+{
+ return Max( Max(a,b), Max(c,d), e );
+}
+
+
+// Returns the normalized value (0 .. 1).
+
+float Norm(float a)
+{
+ if ( a < 0.0f ) return 0.0f;
+ if ( a > 1.0f ) return 1.0f;
+ return a;
+}
+
+
+// Returns the absolute value of a number.
+
+float Abs(float a)
+{
+ return (float)fabs(a);
+}
+
+
+// Swaps two integers.
+
+void Swap(int &a, int &b)
+{
+ int c;
+
+ c = a;
+ a = b;
+ b = c;
+}
+
+// Swaps two real numbers.
+
+void Swap(float &a, float &b)
+{
+ float c;
+
+ c = a;
+ a = b;
+ b = c;
+}
+
+// Permutes two points.
+
+void Swap(FPOINT &a, FPOINT &b)
+{
+ FPOINT c;
+
+ c = a;
+ a = b;
+ b = c;
+}
+
+// Returns the modulo of a floating point number.
+// Mod(8.1, 4) = 0.1
+// Mod(n, 1) = fractional part of n
+
+float Mod(float a, float m)
+{
+ return a - ((int)(a/m))*m;
+}
+
+// Returns a normalized angle, that is in other words between 0 and 2 * PI.
+
+float NormAngle(float angle)
+{
+ angle = Mod(angle, PI*2.0f);
+ if ( angle < 0.0f )
+ {
+ return PI*2.0f + angle;
+ }
+ else
+ {
+ return angle;
+ }
+}
+
+// Test if a angle is between two terminals.
+
+BOOL TestAngle(float angle, float min, float max)
+{
+ angle = NormAngle(angle);
+ min = NormAngle(min);
+ max = NormAngle(max);
+
+ if ( min > max )
+ {
+ return ( angle <= max || angle >= min );
+ }
+ else
+ {
+ return ( angle >= min && angle <= max );
+ }
+}
+
+
+// Calculates the angle to rotate the angle a to the angle g.
+// A positive angle is counterclockwise (CCW).
+
+float Direction(float a, float g)
+{
+ a = NormAngle(a);
+ g = NormAngle(g);
+
+ if ( a < g )
+ {
+ if ( a+PI*2.0f-g < g-a ) a += PI*2.0f;
+ }
+ else
+ {
+ if ( g+PI*2.0f-a < a-g ) g += PI*2.0f;
+ }
+ return (g-a);
+}
+
+
+// Rotates a point around a center.
+// The angle is in radians.
+// A positive angle is counterclockwise (CCW).
+
+FPOINT RotatePoint(FPOINT center, float angle, FPOINT p)
+{
+ FPOINT a, b;
+
+ a.x = p.x-center.x;
+ a.y = p.y-center.y;
+
+ b.x = a.x*cosf(angle) - a.y*sinf(angle);
+ b.y = a.x*sinf(angle) + a.y*cosf(angle);
+
+ b.x += center.x;
+ b.y += center.y;
+ return b;
+}
+
+// Rotates a point around the origin.
+// The angle is in radians.
+// A positive angle is counterclockwise (CCW).
+
+FPOINT RotatePoint(float angle, FPOINT p)
+{
+ FPOINT a;
+
+ a.x = p.x*cosf(angle) - p.y*sinf(angle);
+ a.y = p.x*sinf(angle) + p.y*cosf(angle);
+
+ return a;
+}
+
+// Rotates a vector (dist, 0).
+// The angle is in radians.
+// A positive angle is counterclockwise (CCW).
+
+FPOINT RotatePoint(float angle, float dist)
+{
+ FPOINT a;
+
+ a.x = dist*cosf(angle);
+ a.y = dist*sinf(angle);
+
+ return a;
+}
+
+// Calculates the angle of a right triangle.
+// The angle is counterclockwise (CCW), between 0 and 2 * PI.
+// For an angle clockwise (CW), just go ahead.
+//
+// ^
+// |
+// y o----o
+// | / |
+// |/)a |
+// ----o----o-->
+// | x
+// |
+
+float RotateAngle(float x, float y)
+{
+#if 1
+ if ( x == 0.0f && y == 0.0f ) return 0.0f;
+
+ if ( x >= 0.0f )
+ {
+ if ( y >= 0.0f )
+ {
+ if ( x > y ) return atanf(y/x);
+ else return PI*0.5f - atanf(x/y);
+ }
+ else
+ {
+ if ( x > -y ) return PI*2.0f + atanf(y/x);
+ else return PI*1.5f - atanf(x/y);
+ }
+ }
+ else
+ {
+ if ( y >= 0.0f )
+ {
+ if ( -x > y ) return PI*1.0f + atanf(y/x);
+ else return PI*0.5f - atanf(x/y);
+ }
+ else
+ {
+ if ( -x > -y ) return PI*1.0f + atanf(y/x);
+ else return PI*1.5f - atanf(x/y);
+ }
+ }
+#else
+ float angle;
+
+ if ( x == 0.0f )
+ {
+ if ( y > 0.0f )
+ {
+ return 90.0f*PI/180.0f;
+ }
+ else
+ {
+ return 270.0f*PI/180.0f;
+ }
+ }
+ else
+ {
+ angle = atanf(y/x);
+ if ( x < 0.0f )
+ {
+ angle += PI;
+ }
+ return angle;
+ }
+#endif
+}
+
+// Calculates the angle between two points and one center.
+// The angle is in radians.
+// A positive angle is counterclockwise (CCW).
+
+float RotateAngle(FPOINT center, FPOINT p1, FPOINT p2)
+{
+ float a1, a2, a;
+
+ if ( p1.x == center.x &&
+ p1.y == center.y ) return 0;
+
+ if ( p2.x == center.x &&
+ p2.y == center.y ) return 0;
+
+ a1 = asinf((p1.y-center.y)/Length(p1,center));
+ a2 = asinf((p2.y-center.y)/Length(p2,center));
+
+ if ( p1.x < center.x ) a1 = PI-a1;
+ if ( p2.x < center.x ) a2 = PI-a2;
+
+ a = a2-a1;
+ if ( a < 0 ) a += PI*2;
+ return a;
+}
+
+// Returns py up on the line ab.
+
+float MidPoint(FPOINT a, FPOINT b, float px)
+{
+ if ( Abs(a.x-b.x) < CHOUIA )
+ {
+ if ( a.y < b.y ) return BEAUCOUP;
+ else return -BEAUCOUP;
+ }
+ return (b.y-a.y)*(px-a.x)/(b.x-a.x)+a.y;
+}
+
+// Advance "dist" along the segment p1-p2.
+
+D3DVECTOR SegmentDist(const D3DVECTOR &p1, const D3DVECTOR &p2, float dist)
+{
+ return p1+Normalize(p2-p1)*dist;
+}
+
+// Check if a point is inside a triangle.
+
+BOOL IsInsideTriangle(FPOINT a, FPOINT b, FPOINT c, FPOINT p)
+{
+ float n, m;
+
+ if ( p.x < a.x && p.x < b.x && p.x < c.x ) return FALSE;
+ if ( p.x > a.x && p.x > b.x && p.x > c.x ) return FALSE;
+ if ( p.y < a.y && p.y < b.y && p.y < c.y ) return FALSE;
+ if ( p.y > a.y && p.y > b.y && p.y > c.y ) return FALSE;
+
+ if ( a.x > b.x ) Swap(a,b);
+ if ( a.x > c.x ) Swap(a,c);
+ if ( c.x < a.x ) Swap(c,a);
+ if ( c.x < b.x ) Swap(c,b);
+
+ n = MidPoint(a, b, p.x);
+ m = MidPoint(a, c, p.x);
+ if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) ) return FALSE;
+
+ n = MidPoint(c, b, p.x);
+ m = MidPoint(c, a, p.x);
+ if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) ) return FALSE;
+
+ return TRUE;
+}
+
+// Calculates the intersection "i" right "of" the plan "abc".
+
+BOOL Intersect(D3DVECTOR a, D3DVECTOR b, D3DVECTOR c,
+ D3DVECTOR d, D3DVECTOR e, D3DVECTOR &i)
+{
+ float d1, d2;
+
+ d1 = (d.x-a.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
+ (d.y-a.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
+ (d.z-a.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));
+
+ d2 = (d.x-e.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
+ (d.y-e.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
+ (d.z-e.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));
+
+ if ( d2 == 0 ) return FALSE;
+
+ i.x = d.x + d1/d2*(e.x-d.x);
+ i.y = d.y + d1/d2*(e.y-d.y);
+ i.z = d.z + d1/d2*(e.z-d.z);
+ return TRUE;
+}
+
+// Calculates the intersection of the straight line passing through p (x, z)
+// parallel to the y axis, with the plane abc. Returns p.y.
+
+BOOL IntersectY(D3DVECTOR a, D3DVECTOR b, D3DVECTOR c, D3DVECTOR &p)
+{
+#if 0
+ D3DVECTOR d,e,i;
+
+ d.x = p.x;
+ d.y = 0.0f;
+ d.z = p.z;
+ e.x = p.x;
+ e.y = 1.0f;
+ e.z = p.z;
+ if ( !Intersect(a,b,c,d,e,i) ) return FALSE;
+ p.y = i.y;
+ return TRUE;
+#else
+ float d, d1, d2;
+
+ d = (b.x-a.x)*(c.z-a.z) - (c.x-a.x)*(b.z-a.z);
+ d1 = (p.x-a.x)*(c.z-a.z) - (c.x-a.x)*(p.z-a.z);
+ d2 = (b.x-a.x)*(p.z-a.z) - (p.x-a.x)*(b.z-a.z);
+
+ if ( d == 0.0f ) return FALSE;
+
+ p.y = a.y + d1/d*(b.y-a.y) + d2/d*(c.y-a.y);
+ return TRUE;
+#endif
+}
+
+
+// Rotates a point around a center in the plan.
+// The angle is in radians.
+// A positive angle is counterclockwise (CCW).
+
+void RotatePoint(float cx, float cy, float angle, float &px, float &py)
+{
+ float ax, ay;
+
+ px -= cx;
+ py -= cy;
+
+ ax = px*cosf(angle) - py*sinf(angle);
+ ay = px*sinf(angle) + py*cosf(angle);
+
+ px = cx+ax;
+ py = cy+ay;
+}
+
+// Rotates a point around a center in space.
+// The angle is in radians.
+// A positive angle is counterclockwise (CCW).
+
+void RotatePoint(D3DVECTOR center, float angleH, float angleV, D3DVECTOR &p)
+{
+ D3DVECTOR a, b;
+
+ p.x -= center.x;
+ p.y -= center.y;
+ p.z -= center.z;
+
+ b.x = p.x*cosf(angleH) - p.z*sinf(angleH);
+ b.y = p.z*sinf(angleV) + p.y*cosf(angleV);
+ b.z = p.x*sinf(angleH) + p.z*cosf(angleH);
+
+ p.x = center.x+b.x;
+ p.y = center.y+b.y;
+ p.z = center.z+b.z;
+}
+
+// Rotates a point around a center in space.
+// The angle is in radians.
+// A positive angle is counterclockwise (CCW).
+
+void RotatePoint2(D3DVECTOR center, float angleH, float angleV, D3DVECTOR &p)
+{
+ D3DVECTOR a, b;
+
+ p.x -= center.x;
+ p.y -= center.y;
+ p.z -= center.z;
+
+ a.x = p.x*cosf(angleH) - p.z*sinf(angleH);
+ a.y = p.y;
+ a.z = p.x*sinf(angleH) + p.z*cosf(angleH);
+
+ b.x = a.x;
+ b.y = a.z*sinf(angleV) + a.y*cosf(angleV);
+ b.z = a.z*cosf(angleV) - a.y*sinf(angleV);
+
+ p.x = center.x+b.x;
+ p.y = center.y+b.y;
+ p.z = center.z+b.z;
+}
+
+// Calculation point of view to look at a center
+// two angles and a distance.
+
+D3DVECTOR RotateView(D3DVECTOR center, float angleH, float angleV, float dist)
+{
+ D3DMATRIX mat1, mat2, mat;
+ D3DVECTOR eye;
+
+ D3DUtil_SetRotateZMatrix(mat1, -angleV);
+ D3DUtil_SetRotateYMatrix(mat2, -angleH);
+ D3DMath_MatrixMultiply(mat, mat1, mat2);
+
+ eye.x = 0.0f+dist;
+ eye.y = 0.0f;
+ eye.z = 0.0f;
+ eye = Transform(mat, eye);
+
+ return eye+center;
+}
+
+// Calculates the end point.
+
+D3DVECTOR LookatPoint( D3DVECTOR eye, float angleH, float angleV, float length )
+{
+ D3DVECTOR lookat;
+
+ lookat = eye;
+ lookat.z += length;
+
+//? RotatePoint(eye.x, eye.z, angleH, lookat.x, lookat.z);
+//? RotatePoint(eye.z, eye.y, angleV, lookat.z, lookat.y);
+ RotatePoint(eye, angleH, angleV, lookat);
+
+ return lookat;
+}
+
+
+// Returns the distance between two points.
+
+float Length(FPOINT a, FPOINT b)
+{
+ return sqrtf( (a.x-b.x)*(a.x-b.x) +
+ (a.y-b.y)*(a.y-b.y) );
+}
+
+// Returns the hypotenuse of a right triangle.
+
+float Length(float x, float y)
+{
+ return sqrtf( (x*x) + (y*y) );
+}
+
+// Returns the length of a vector.
+
+float Length(const D3DVECTOR &u)
+{
+ return sqrtf( (u.x*u.x) + (u.y*u.y) + (u.z*u.z) );
+}
+
+// Returns the distance between two points.
+
+float Length(const D3DVECTOR &a, const D3DVECTOR &b)
+{
+ return sqrtf( (a.x-b.x)*(a.x-b.x) +
+ (a.y-b.y)*(a.y-b.y) +
+ (a.z-b.z)*(a.z-b.z) );
+}
+
+// Returns the distance "a flat" between two points.
+
+float Length2d(const D3DVECTOR &a, const D3DVECTOR &b)
+{
+ return sqrtf( (a.x-b.x)*(a.x-b.x) +
+ (a.z-b.z)*(a.z-b.z) );
+}
+
+
+// Returns the angle formed by two vectors.
+
+float Angle( D3DVECTOR u, D3DVECTOR v )
+{
+#if 0
+ return acosf( Abs(u.x*v.x + u.y*v.y + u.z*v.z) / (Length(u)*Length(v)) );
+#endif
+#if 0
+ float d;
+ d = (u.y*v.z-u.z*v.y) + (u.z*v.x-u.x*v.z) + (u.x*v.y-u.y*v.x);
+ return asinf( Abs(d) / (Length(u)*Length(v)) );
+#endif
+#if 0
+ return asinf( Length(Cross(u,v)) / (Length(u)*Length(v)) );
+#endif
+#if 1
+ float len, a, b;
+
+ len = Length(u)*Length(v);
+ a = acosf( (u.x*v.x + u.y*v.y + u.z*v.z) / len );
+ b = asinf( Length(Cross(u,v)) / len );
+ return a;
+#endif
+}
+
+// Returns the product of two vectors.
+
+D3DVECTOR Cross( D3DVECTOR u, D3DVECTOR v )
+{
+ return D3DVECTOR( u.y*v.z - u.z*v.y,
+ u.z*v.x - u.x*v.z,
+ u.x*v.y - u.y*v.x );
+}
+
+// Returns the normal vector of a triangular face.
+
+D3DVECTOR ComputeNormal( D3DVECTOR p1, D3DVECTOR p2, D3DVECTOR p3 )
+{
+ D3DVECTOR u, v;
+
+ u = D3DVECTOR( p3.x-p1.x, p3.y-p1.y, p3.z-p1.z );
+ v = D3DVECTOR( p2.x-p1.x, p2.y-p1.y, p2.z-p1.z );
+
+ return Normalize(Cross(u, v));
+}
+
+
+// Transforms a point in a matrix, in exactly the same manner as Direct3D.
+
+D3DVECTOR Transform(const D3DMATRIX &m, D3DVECTOR p)
+{
+ D3DVECTOR pp;
+
+ pp.x = p.x*m._11 + p.y*m._21 + p.z*m._31 + m._41;
+ pp.y = p.x*m._12 + p.y*m._22 + p.z*m._32 + m._42;
+ pp.z = p.x*m._13 + p.y*m._23 + p.z*m._33 + m._43;
+
+ return pp;
+}
+
+
+// Calculates the projection of a point P on a straight line AB.
+
+D3DVECTOR Projection(const D3DVECTOR &a, const D3DVECTOR &b, const D3DVECTOR &p)
+{
+ float k;
+
+ k = (b.x-a.x)*(p.x-a.x) + (b.y-a.y)*(p.y-a.y) + (b.z-a.z)*(p.z-a.z);
+ k /= (b.x-a.x)*(b.x-a.x) + (b.y-a.y)*(b.y-a.y) + (b.z-a.z)*(b.z-a.z);
+
+ return a + k*(b-a);
+}
+
+// The texture plate in the xz plane.
+
+void MappingObject(D3DVERTEX2* pVertices, int nb, float scale)
+{
+ int i;
+
+ for ( i=0 ; i<nb ; i++ )
+ {
+ pVertices[i].tu = pVertices[i].x*scale;
+ pVertices[i].tv = pVertices[i].z*scale;
+ }
+}
+
+// Smooths normal.
+
+void SmoothObject(D3DVERTEX2* pVertices, int nb)
+{
+ char* bDone;
+ int index[100];
+ int i, j, rank;
+ D3DVECTOR sum;
+
+ bDone = (char*)malloc(nb*sizeof(char));
+ ZeroMemory(bDone, nb*sizeof(char));
+
+ for ( i=0 ; i<nb ; i++ )
+ {
+ bDone[i] = TRUE;
+ rank = 0;
+ index[rank++] = i;
+
+ for ( j=0 ; j<nb ; j++ )
+ {
+ if ( bDone[j] ) continue;
+ if ( pVertices[j].x == pVertices[i].x &&
+ pVertices[j].y == pVertices[i].y &&
+ pVertices[j].z == pVertices[i].z )
+ {
+ bDone[j] = TRUE;
+ index[rank++] = j;
+ if ( rank >= 100 ) break;
+ }
+ }
+
+ sum.x = 0;
+ sum.y = 0;
+ sum.z = 0;
+ for ( j=0 ; j<rank ; j++ )
+ {
+ sum.x += pVertices[index[j]].nx;
+ sum.y += pVertices[index[j]].ny;
+ sum.z += pVertices[index[j]].nz;
+ }
+ sum = Normalize(sum);
+
+ for ( j=0 ; j<rank ; j++ )
+ {
+ pVertices[index[j]].nx = sum.x;
+ pVertices[index[j]].ny = sum.y;
+ pVertices[index[j]].nz = sum.z;
+ }
+ }
+
+ free(bDone);
+}
+
+
+
+// Calculates the parameters a and b of the segment passing
+// through the points p1 and p2, knowing that:
+// f(x) = ax+b
+// Returns FALSE if the line is vertical.
+
+BOOL LineFunction(FPOINT p1, FPOINT p2, float &a, float &b)
+{
+ if ( D3DMath_IsZero(p1.x-p2.x) )
+ {
+ a = g_HUGE; // infinite slope!
+ b = p2.x;
+ return FALSE;
+ }
+
+ a = (p2.y-p1.y)/(p2.x-p1.x);
+ b = p2.y - p2.x*a;
+ return TRUE;
+}
+
+
+// Calculates the distance between a plane ABC and a point P.
+
+float DistancePlanPoint(const D3DVECTOR &a, const D3DVECTOR &b,
+ const D3DVECTOR &c, const D3DVECTOR &p)
+{
+ D3DVECTOR n;
+ float aa,bb,cc,dd;
+
+ n = ComputeNormal(a,b,c);
+
+ aa = n.x;
+ bb = n.y;
+ cc = n.z;
+ dd = -(n.x*a.x + n.y*a.y + n.z*a.z);
+
+ return Abs(aa*p.x + bb*p.y + cc*p.z + dd);
+}
+
+// Check if two planes defined by 3 points are part of the same plan.
+
+BOOL IsSamePlane(D3DVECTOR *plan1, D3DVECTOR *plan2)
+{
+ D3DVECTOR n1, n2;
+ float dist;
+
+ n1 = ComputeNormal(plan1[0], plan1[1], plan1[2]);
+ n2 = ComputeNormal(plan2[0], plan2[1], plan2[2]);
+
+ if ( Abs(n1.x-n2.x) > 0.1f ||
+ Abs(n1.y-n2.y) > 0.1f ||
+ Abs(n1.z-n2.z) > 0.1f ) return FALSE;
+
+ dist = DistancePlanPoint(plan1[0], plan1[1], plan1[2], plan2[0]);
+ if ( dist > 0.1f ) return FALSE;
+
+ return TRUE;
+}
+
+
+// Calculates the matrix to make three rotations in the X, Y and Z
+// >>>>>> OPTIMIZING!!!
+
+void MatRotateXZY(D3DMATRIX &mat, D3DVECTOR angle)
+{
+ D3DMATRIX temp;
+
+ D3DUtil_SetRotateXMatrix(temp, angle.x);
+ D3DUtil_SetRotateZMatrix(mat, angle.z);
+ D3DMath_MatrixMultiply(mat, mat, temp);
+ D3DUtil_SetRotateYMatrix(temp, angle.y);
+ D3DMath_MatrixMultiply(mat, mat, temp); // X-Z-Y
+}
+
+// Calculates the matrix to make three rotations in the order Z, X and Y.
+// >>>>>> OPTIMIZING!!!
+
+void MatRotateZXY(D3DMATRIX &mat, D3DVECTOR angle)
+{
+ D3DMATRIX temp;
+
+ D3DUtil_SetRotateZMatrix(temp, angle.z);
+ D3DUtil_SetRotateXMatrix(mat, angle.x);
+ D3DMath_MatrixMultiply(mat, mat, temp);
+ D3DUtil_SetRotateYMatrix(temp, angle.y);
+ D3DMath_MatrixMultiply(mat, mat, temp); // Z-X-Y
+}
+
+
+// Returns a random value between 0 and 1.
+
+float Rand()
+{
+ return (float)rand()/RAND_MAX;
+}
+
+
+// Managing the dead zone of a joystick.
+
+// in: -1 0 1
+// --|-------|----o----|-------|-->
+// <---->
+// dead
+// out: -1 0 0 1
+
+float Neutral(float value, float dead)
+{
+ if ( Abs(value) <= dead )
+ {
+ return 0.0f;
+ }
+ else
+ {
+ if ( value > 0.0f ) return (value-dead)/(1.0f-dead);
+ else return (value+dead)/(1.0f-dead);
+ }
+}
+
+
+// Calculates a value (radians) proportional between a and b (degrees).
+
+float Prop(int a, int b, float p)
+{
+ float aa, bb;
+
+ aa = (float)a*PI/180.0f;
+ bb = (float)b*PI/180.0f;
+
+ return aa+p*(bb-aa);
+}
+
+// Gently advanced a desired value from its current value.
+// Over time, the greater the progression is rapid.
+
+float Smooth(float actual, float hope, float time)
+{
+ float futur;
+
+ futur = actual + (hope-actual)*time;
+
+ if ( hope > actual )
+ {
+ if ( futur > hope ) futur = hope;
+ }
+ if ( hope < actual )
+ {
+ if ( futur < hope ) futur = hope;
+ }
+
+ return futur;
+}
+
+
+// Bounces any movement.
+
+// out
+// |
+// 1+------o-------o---
+// | o | o o | | bounce
+// | o | o---|---
+// | o | |
+// | o | |
+// -o------|-------+----> progress
+// 0| | 1
+// |<---->|middle
+
+float Bounce(float progress, float middle, float bounce)
+{
+ if ( progress < middle )
+ {
+ progress = progress/middle; // 0..1
+ return 0.5f+sinf(progress*PI-PI/2.0f)/2.0f;
+ }
+ else
+ {
+ progress = (progress-middle)/(1.0f-middle); // 0..1
+ return (1.0f-bounce/2.0f)+sinf((0.5f+progress*2.0f)*PI)*(bounce/2.0f);
+ }
+}
+
+
+// Returns the color corresponding D3DCOLOR.
+
+D3DCOLOR RetColor(float intensity)
+{
+ D3DCOLOR color;
+
+ if ( intensity <= 0.0f ) return 0x00000000;
+ if ( intensity >= 1.0f ) return 0xffffffff;
+
+ color = (int)(intensity*255.0f)<<24;
+ color |= (int)(intensity*255.0f)<<16;
+ color |= (int)(intensity*255.0f)<<8;
+ color |= (int)(intensity*255.0f);
+
+ return color;
+}
+
+// Returns the color corresponding D3DCOLOR.
+
+D3DCOLOR RetColor(D3DCOLORVALUE intensity)
+{
+ D3DCOLOR color;
+
+ color = (int)(intensity.a*255.0f)<<24;
+ color |= (int)(intensity.r*255.0f)<<16;
+ color |= (int)(intensity.g*255.0f)<<8;
+ color |= (int)(intensity.b*255.0f);
+
+ return color;
+}
+
+// Returns the color corresponding D3DCOLORVALUE.
+
+D3DCOLORVALUE RetColor(D3DCOLOR intensity)
+{
+ D3DCOLORVALUE color;
+
+ color.r = (float)((intensity>>16)&0xff)/256.0f;
+ color.g = (float)((intensity>>8 )&0xff)/256.0f;
+ color.b = (float)((intensity>>0 )&0xff)/256.0f;
+ color.a = (float)((intensity>>24)&0xff)/256.0f;
+
+ return color;
+}
+
+
+// RGB to HSV conversion.
+
+void RGB2HSV(D3DCOLORVALUE src, ColorHSV &dest)
+{
+ float min, max, delta;
+
+ min = Min(src.r, src.g, src.b);
+ max = Max(src.r, src.g, src.b);
+
+ dest.v = max; // intensity
+
+ if ( max == 0.0f )
+ {
+ dest.s = 0.0f; // saturation
+ dest.h = 0.0f; // undefined color!
+ }
+ else
+ {
+ delta = max-min;
+ dest.s = delta/max; // saturation
+
+ if ( src.r == max ) // between yellow & magenta
+ {
+ dest.h = (src.g-src.b)/delta;
+ }
+ else if ( src.g == max ) // between cyan & yellow
+ {
+ dest.h = 2.0f+(src.b-src.r)/delta;
+ }
+ else // between magenta & cyan
+ {
+ dest.h = 4.0f+(src.r-src.g)/delta;
+ }
+
+ dest.h *= 60.0f; // in degrees
+ if ( dest.h < 0.0f ) dest.h += 360.0f;
+ dest.h /= 360.0f; // 0..1
+ }
+}
+
+// HSV to RGB conversion.
+
+void HSV2RGB(ColorHSV src, D3DCOLORVALUE &dest)
+{
+ int i;
+ float f,v,p,q,t;
+
+ src.h = Norm(src.h)*360.0f;
+ src.s = Norm(src.s);
+ src.v = Norm(src.v);
+
+ if ( src.s == 0.0f ) // zero saturation?
+ {
+ dest.r = src.v;
+ dest.g = src.v;
+ dest.b = src.v; // gray
+ }
+ else
+ {
+ if ( src.h == 360.0f ) src.h = 0.0f;
+ src.h /= 60.0f;
+ i = (int)src.h; // integer part (0 .. 5)
+ f = src.h-i; // fractional part
+
+ v = src.v;
+ p = src.v*(1.0f-src.s);
+ q = src.v*(1.0f-(src.s*f));
+ t = src.v*(1.0f-(src.s*(1.0f-f)));
+
+ switch (i)
+ {
+ case 0: dest.r=v; dest.g=t; dest.b=p; break;
+ case 1: dest.r=q; dest.g=v; dest.b=p; break;
+ case 2: dest.r=p; dest.g=v; dest.b=t; break;
+ case 3: dest.r=p; dest.g=q; dest.b=v; break;
+ case 4: dest.r=t; dest.g=p; dest.b=v; break;
+ case 5: dest.r=v; dest.g=p; dest.b=q; break;
+ }
+ }
+}
+