// * This file is part of the COLOBOT source code // * Copyright (C) 2001-2008, Daniel ROUX & EPSITEC SA, www.epsitec.ch // * // * This program is free software: you can redistribute it and/or modify // * it under the terms of the GNU General Public License as published by // * the Free Software Foundation, either version 3 of the License, or // * (at your option) any later version. // * // * This program is distributed in the hope that it will be useful, // * but WITHOUT ANY WARRANTY; without even the implied warranty of // * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // * GNU General Public License for more details. // * // * You should have received a copy of the GNU General Public License // * along with this program. If not, see http://www.gnu.org/licenses/. #include #include "object/task/taskgoto.h" #include "common/event.h" #include "common/iman.h" #include "graphics/engine/terrain.h" #include "graphics/engine/water.h" #include "math/geometry.h" #include "physics/physics.h" #include const float FLY_DIST_GROUND = 80.0f; // minimum distance to remain on the ground const float FLY_DEF_HEIGHT = 50.0f; // default flying height const float BM_DIM_STEP = 5.0f; // Object's constructor. CTaskGoto::CTaskGoto(CObject* object) : CTask(object) { m_bmArray = 0; } // Object's destructor. CTaskGoto::~CTaskGoto() { BitmapClose(); } // Management of an event. bool CTaskGoto::EventProcess(const Event &event) { Math::Vector pos, goal; Math::Point rot, repulse; float a, g, dist, linSpeed, cirSpeed, h, hh, factor, dir; Error ret; if ( m_engine->GetPause() ) return true; if ( event.type != EVENT_FRAME ) return true; // Momentarily stationary object (ant on the back)? if ( m_object->GetFixed() ) { m_physics->SetMotorSpeedX(0.0f); // stops the advance m_physics->SetMotorSpeedZ(0.0f); // stops the rotation return true; } if ( m_error != ERR_OK ) return false; if ( m_bWorm ) { WormFrame(event.rTime); } if ( m_phase == TGP_BEAMLEAK ) // leak? { m_leakTime += event.rTime; pos = m_object->GetPosition(0); rot.x = m_leakPos.x-pos.x; rot.y = m_leakPos.z-pos.z; dist = Math::Point(rot.x, rot.y).Length(); if (dist != 0) { rot.x /= dist; rot.y /= dist; } a = m_object->GetAngleY(0); g = Math::RotateAngle(rot.x, -rot.y); // CW ! a = Math::Direction(a, g)*1.0f; cirSpeed = a; if ( cirSpeed > 1.0f ) cirSpeed = 1.0f; if ( cirSpeed < -1.0f ) cirSpeed = -1.0f; a = Math::NormAngle(a); if ( a > Math::PI*0.5f && a < Math::PI*1.5f ) { linSpeed = 1.0f; // obstacle behind -> advance cirSpeed = -cirSpeed; } else { linSpeed = -1.0f; // obstacle in front -> back } if ( m_bLeakRecede ) { linSpeed = -1.0f; cirSpeed = 0.0f; } m_physics->SetMotorSpeedZ(cirSpeed); // turns left / right m_physics->SetMotorSpeedX(linSpeed); // advance return true; } if ( m_phase == TGP_BEAMSEARCH ) // search path? { if ( m_bmStep == 0 ) { // Frees the area around the departure. BitmapClearCircle(m_object->GetPosition(0), BM_DIM_STEP*1.8f); } pos = m_object->GetPosition(0); if ( m_bmFretObject == 0 ) { goal = m_goal; dist = 0.0f; } else { goal = m_goalObject; dist = TAKE_DIST+2.0f; if ( m_bmFretObject->GetType() == OBJECT_BASE ) dist = 12.0f; } ret = BeamSearch(pos, goal, dist); if ( ret == ERR_OK ) { if ( m_physics->GetLand() ) m_phase = TGP_BEAMWCOLD; else m_phase = TGP_BEAMGOTO; m_bmIndex = 0; m_bmWatchDogPos = m_object->GetPosition(0); m_bmWatchDogTime = 0.0f; } if ( ret == ERR_GOTO_IMPOSSIBLE || ret == ERR_GOTO_ITER ) { m_error = ret; return false; } return true; } if ( m_phase == TGP_BEAMWCOLD ) // expects cooled reactor? { return true; } if ( m_phase == TGP_BEAMUP ) // off? { m_physics->SetMotorSpeedY(1.0f); // up return true; } if ( m_phase == TGP_BEAMGOTO ) // goto dot list? (?) { if ( m_physics->GetCollision() ) // collision? { m_physics->SetCollision(false); // there's more } pos = m_object->GetPosition(0); if ( m_physics->GetType() == TYPE_FLYING && m_altitude == 0.0f ) { if ( m_physics->GetLand() ) { m_physics->SetMotorSpeedY(0.0f); } else { m_physics->SetMotorSpeedY(-1.0f); } } if ( m_physics->GetType() == TYPE_FLYING && m_altitude > 0.0f ) { goal = m_bmPoints[m_bmIndex]; goal.y = pos.y; h = m_terrain->GetHeightToFloor(goal, true, true); dist = Math::DistanceProjected(pos, goal); if ( dist != 0.0f ) // anticipates? { linSpeed = m_physics->GetLinMotionX(MO_REASPEED); linSpeed /= m_physics->GetLinMotionX(MO_ADVSPEED); goal.x = pos.x + (goal.x-pos.x)*linSpeed*20.0f/dist; goal.z = pos.z + (goal.z-pos.z)*linSpeed*20.0f/dist; } goal.y = pos.y; hh = m_terrain->GetHeightToFloor(goal, true, true); h = Math::Min(h, hh); linSpeed = 0.0f; if ( h < m_altitude-1.0f ) { linSpeed = 0.2f+((m_altitude-1.0f)-h)*0.1f; // up if ( linSpeed > 1.0f ) linSpeed = 1.0f; } if ( h > m_altitude+1.0f ) { linSpeed = -0.2f; // down } m_physics->SetMotorSpeedY(linSpeed); } rot.x = m_bmPoints[m_bmIndex].x-pos.x; rot.y = m_bmPoints[m_bmIndex].z-pos.z; dist = Math::Point(rot.x, rot.y).Length(); rot.x /= dist; rot.y /= dist; a = m_object->GetAngleY(0); g = Math::RotateAngle(rot.x, -rot.y); // CW ! cirSpeed = Math::Direction(a, g)*2.0f; if ( cirSpeed > 1.0f ) cirSpeed = 1.0f; if ( cirSpeed < -1.0f ) cirSpeed = -1.0f; if ( dist < 4.0f ) cirSpeed *= dist/4.0f; // so close -> turns less if ( m_bmIndex == m_bmTotal ) // last point? { linSpeed = dist/(m_physics->GetLinStopLength()*1.5f); if ( linSpeed > 1.0f ) linSpeed = 1.0f; } else { linSpeed = 1.0f; // dark without stopping } linSpeed *= 1.0f-(1.0f-0.3f)*fabs(cirSpeed); //? if ( dist < 20.0f && fabs(cirSpeed) >= 0.5f ) if ( fabs(cirSpeed) >= 0.2f ) { linSpeed = 0.0f; // turns first, then advance } dist = Math::DistanceProjected(pos, m_bmWatchDogPos); if ( dist < 1.0f && linSpeed != 0.0f ) { m_bmWatchDogTime += event.rTime; } else { m_bmWatchDogTime = 0.0f; m_bmWatchDogPos = pos; } if ( m_bmWatchDogTime >= 1.0f ) // immobile for a long time? { m_physics->SetMotorSpeedX(0.0f); // stops the advance m_physics->SetMotorSpeedZ(0.0f); // stops the rotation BeamStart(); // we start all return true; } m_physics->SetMotorSpeedZ(cirSpeed); // turns left / right m_physics->SetMotorSpeedX(linSpeed); // advance return true; } if ( m_phase == TGP_BEAMDOWN ) // landed? { m_physics->SetMotorSpeedY(-0.5f); // tomb return true; } if ( m_phase == TGP_LAND ) // landed? { m_physics->SetMotorSpeedY(-0.5f); // tomb return true; } if ( m_goalMode == TGG_EXPRESS ) { if ( m_crashMode == TGC_HALT ) { if ( m_physics->GetCollision() ) // collision? { m_physics->SetCollision(false); // there's more m_error = ERR_STOP; return true; } } pos = m_object->GetPosition(0); if ( m_altitude > 0.0f ) { h = m_terrain->GetHeightToFloor(pos, true, true); linSpeed = 0.0f; if ( h < m_altitude ) { linSpeed = 0.1f; // up } if ( h > m_altitude ) { linSpeed = -0.2f; // down } m_physics->SetMotorSpeedY(linSpeed); } rot.x = m_goal.x-pos.x; rot.y = m_goal.z-pos.z; a = m_object->GetAngleY(0); g = Math::RotateAngle(rot.x, -rot.y); // CW ! cirSpeed = Math::Direction(a, g)*1.0f; if ( cirSpeed > 1.0f ) cirSpeed = 1.0f; if ( cirSpeed < -1.0f ) cirSpeed = -1.0f; m_physics->SetMotorSpeedZ(cirSpeed); // turns left / right m_physics->SetMotorSpeedX(1.0f); // advance return true; } if ( m_phase != TGP_TURN && m_physics->GetType() == TYPE_FLYING && m_altitude > 0.0f ) { pos = m_object->GetPosition(0); dist = Math::DistanceProjected(m_goal, pos); factor = (dist-20.0f)/20.0f; if ( factor < 0.0f ) factor = 0.0f; if ( factor > 1.0f ) factor = 1.0f; h = m_terrain->GetHeightToFloor(m_object->GetPosition(0), true, true); linSpeed = 0.0f; if ( h < (m_altitude-0.5f)*factor && factor == 1.0f ) { linSpeed = 0.1f; // up } if ( h > m_altitude*factor ) { linSpeed = -0.2f; // down } ComputeFlyingRepulse(dir); linSpeed += dir*0.2f; m_physics->SetMotorSpeedY(linSpeed); } if ( m_phase == TGP_ADVANCE ) // going towards the goal? { if ( m_physics->GetCollision() ) // collision? { m_physics->SetCollision(false); // there's more m_time = 0.0f; m_phase = TGP_CRWAIT; return true; } #if 0 pos = m_object->GetPosition(0); a = m_object->GetAngleY(0); g = Math::RotateAngle(m_goal.x-pos.x, pos.z-m_goal.z); // CW ! cirSpeed = Math::Direction(a, g)*1.0f; if ( cirSpeed > 1.0f ) cirSpeed = 1.0f; if ( cirSpeed < -1.0f ) cirSpeed = -1.0f; dist = Math::DistanceProjected(m_goal, pos); linSpeed = dist/(m_physics->GetLinStopLength()*1.5f); if ( linSpeed > 1.0f ) linSpeed = 1.0f; if ( dist < 20.0f && fabs(cirSpeed) >= 0.5f ) { linSpeed = 0.0f; // turns first, then advance } #else pos = m_object->GetPosition(0); rot.x = m_goal.x-pos.x; rot.y = m_goal.z-pos.z; dist = Math::Point(rot.x, rot.y).Length(); rot.x /= dist; rot.y /= dist; ComputeRepulse(repulse); rot.x += repulse.x*2.0f; rot.y += repulse.y*2.0f; a = m_object->GetAngleY(0); g = Math::RotateAngle(rot.x, -rot.y); // CW ! cirSpeed = Math::Direction(a, g)*1.0f; //? if ( m_physics->GetType() == TYPE_FLYING && //? m_physics->GetLand() ) // flying on the ground? //? { //? cirSpeed *= 4.0f; // more fishing //? } if ( cirSpeed > 1.0f ) cirSpeed = 1.0f; if ( cirSpeed < -1.0f ) cirSpeed = -1.0f; dist = Math::DistanceProjected(m_goal, pos); linSpeed = dist/(m_physics->GetLinStopLength()*1.5f); //? if ( m_physics->GetType() == TYPE_FLYING && //? m_physics->GetLand() ) // flying on the ground? //? { //? linSpeed *= 8.0f; // more fishing //? } if ( linSpeed > 1.0f ) linSpeed = 1.0f; linSpeed *= 1.0f-(1.0f-0.3f)*fabs(cirSpeed); if ( dist < 20.0f && fabs(cirSpeed) >= 0.5f ) { linSpeed = 0.0f; // turns first, then advance } #endif m_physics->SetMotorSpeedZ(cirSpeed); // turns left / right m_physics->SetMotorSpeedX(linSpeed); // advance } if ( m_phase == TGP_TURN || // turns to the object? m_phase == TGP_CRTURN || // turns after collision? m_phase == TGP_CLTURN ) // turns after collision? { a = m_object->GetAngleY(0); g = m_angle; cirSpeed = Math::Direction(a, g)*1.0f; if ( cirSpeed > 1.0f ) cirSpeed = 1.0f; if ( cirSpeed < -1.0f ) cirSpeed = -1.0f; m_physics->SetMotorSpeedZ(cirSpeed); // turns left / right } if ( m_phase == TGP_CRWAIT || // waits after collision? m_phase == TGP_CLWAIT ) // waits after collision? { m_time += event.rTime; m_physics->SetMotorSpeedX(0.0f); // stops the advance m_physics->SetMotorSpeedZ(0.0f); // stops the rotation } if ( m_phase == TGP_CRADVANCE ) // advance after collision? { if ( m_physics->GetCollision() ) // collision? { m_physics->SetCollision(false); // there's more m_time = 0.0f; m_phase = TGP_CLWAIT; return true; } m_physics->SetMotorSpeedX(0.5f); // advance mollo } if ( m_phase == TGP_CLADVANCE ) // advance after collision? { if ( m_physics->GetCollision() ) // collision? { m_physics->SetCollision(false); // there's more m_time = 0.0f; m_phase = TGP_CRWAIT; return true; } m_physics->SetMotorSpeedX(0.5f); // advance mollo } if ( m_phase == TGP_MOVE ) // final advance? { m_bmTimeLimit -= event.rTime; m_physics->SetMotorSpeedX(1.0f); } return true; } // Sought a target for the worm. CObject* CTaskGoto::WormSearch(Math::Vector &impact) { CObject* pObj; CObject* pBest = 0; Math::Vector iPos, oPos; ObjectType oType; float distance, min, radius; int i; CInstanceManager* iMan = CInstanceManager::GetInstancePointer(); iPos = m_object->GetPosition(0); min = 1000000.0f; for ( i=0 ; i<1000000 ; i++ ) { pObj = static_cast(iMan->SearchInstance(CLASS_OBJECT, i)); if ( pObj == 0 ) break; oType = pObj->GetType(); if ( oType != OBJECT_MOBILEfa && oType != OBJECT_MOBILEta && oType != OBJECT_MOBILEwa && oType != OBJECT_MOBILEia && oType != OBJECT_MOBILEfc && oType != OBJECT_MOBILEtc && oType != OBJECT_MOBILEwc && oType != OBJECT_MOBILEic && oType != OBJECT_MOBILEfi && oType != OBJECT_MOBILEti && oType != OBJECT_MOBILEwi && oType != OBJECT_MOBILEii && oType != OBJECT_MOBILEfs && oType != OBJECT_MOBILEts && oType != OBJECT_MOBILEws && oType != OBJECT_MOBILEis && oType != OBJECT_MOBILErt && oType != OBJECT_MOBILErc && oType != OBJECT_MOBILErr && oType != OBJECT_MOBILErs && oType != OBJECT_MOBILEsa && oType != OBJECT_MOBILEtg && oType != OBJECT_MOBILEft && oType != OBJECT_MOBILEtt && oType != OBJECT_MOBILEwt && oType != OBJECT_MOBILEit && oType != OBJECT_MOBILEdr && oType != OBJECT_DERRICK && oType != OBJECT_STATION && oType != OBJECT_FACTORY && oType != OBJECT_REPAIR && oType != OBJECT_DESTROYER && oType != OBJECT_CONVERT && oType != OBJECT_TOWER && oType != OBJECT_RESEARCH && oType != OBJECT_RADAR && oType != OBJECT_INFO && oType != OBJECT_ENERGY && oType != OBJECT_LABO && oType != OBJECT_NUCLEAR && oType != OBJECT_PARA && oType != OBJECT_SAFE && oType != OBJECT_HUSTON ) continue; if ( pObj->GetVirusMode() ) continue; // object infected? if ( !pObj->GetCrashSphere(0, oPos, radius) ) continue; distance = Math::DistanceProjected(oPos, iPos); if ( distance < min ) { min = distance; pBest = pObj; } } if ( pBest == 0 ) return 0; impact = pBest->GetPosition(0); return pBest; } // Contaminate objects near the worm. void CTaskGoto::WormFrame(float rTime) { CObject* pObj; Math::Vector impact, pos; float dist; m_wormLastTime += rTime; if ( m_wormLastTime >= 0.5f ) { m_wormLastTime = 0.0f; pObj = WormSearch(impact); if ( pObj != 0 ) { pos = m_object->GetPosition(0); dist = Math::Distance(pos, impact); if ( dist <= 15.0f ) { pObj->SetVirusMode(true); // bam, infected! } } } } // Assigns the goal was achieved. // "dist" is the distance that needs to go far to make a deposit or object. Error CTaskGoto::Start(Math::Vector goal, float altitude, TaskGotoGoal goalMode, TaskGotoCrash crashMode) { Math::Vector pos; CObject* target; ObjectType type; float dist; int x, y; type = m_object->GetType(); if ( goalMode == TGG_DEFAULT ) { goalMode = TGG_STOP; if ( type == OBJECT_MOTHER || type == OBJECT_ANT || type == OBJECT_SPIDER || type == OBJECT_WORM ) { goalMode = TGG_EXPRESS; } } if ( crashMode == TGC_DEFAULT ) { //? crashMode = TGC_RIGHTLEFT; crashMode = TGC_BEAM; if ( type == OBJECT_MOTHER || type == OBJECT_ANT || type == OBJECT_SPIDER || type == OBJECT_WORM || type == OBJECT_BEE ) { crashMode = TGC_HALT; } } m_altitude = altitude; m_goalMode = goalMode; m_crashMode = crashMode; m_goalObject = goal; m_goal = goal; m_bTake = false; m_phase = TGP_ADVANCE; m_error = ERR_OK; m_try = 0; m_bmFretObject = 0; m_bmFinalMove = 0.0f; pos = m_object->GetPosition(0); dist = Math::DistanceProjected(pos, m_goal); if ( dist < 10.0f && m_crashMode == TGC_BEAM ) { m_crashMode = TGC_RIGHTLEFT; } m_bWorm = false; if ( type == OBJECT_WORM ) { m_bWorm = true; m_wormLastTime = 0.0f; } m_bApprox = false; if ( type == OBJECT_HUMAN || type == OBJECT_TECH || type == OBJECT_MOTHER || type == OBJECT_ANT || type == OBJECT_SPIDER || type == OBJECT_BEE || type == OBJECT_WORM || type == OBJECT_MOBILErt || type == OBJECT_MOBILErc || type == OBJECT_MOBILErr || type == OBJECT_MOBILErs ) { m_bApprox = true; } if ( !m_bApprox && m_crashMode != TGC_BEAM ) { target = SearchTarget(goal, 1.0f); if ( target != 0 ) { m_goal = target->GetPosition(0); dist = 0.0f; if ( !AdjustBuilding(m_goal, 1.0f, dist) ) { dist = 0.0f; AdjustTarget(target, m_goal, dist); } m_bTake = true; // object was taken on arrival (final rotation) } } m_lastDistance = 1000.0f; m_physics->SetCollision(false); if ( m_crashMode == TGC_BEAM ) // with the algorithm of rays? { target = SearchTarget(goal, 1.0f); if ( target != 0 ) { m_goal = target->GetPosition(0); dist = 4.0f; if ( AdjustBuilding(m_goal, 1.0f, dist) ) { m_bmFinalMove = dist; } else { dist = 4.0f; if ( AdjustTarget(target, m_goal, dist) ) { m_bmFretObject = target; // cargo on the ground } else { m_bmFinalMove = dist; } } m_bTake = true; // object was taken on arrival (final rotation) } if ( m_physics->GetType() == TYPE_FLYING && m_altitude == 0.0f ) { pos = m_object->GetPosition(0); dist = Math::DistanceProjected(pos, m_goal); if ( dist > FLY_DIST_GROUND ) // over 20 meters? { m_altitude = FLY_DEF_HEIGHT; // default altitude } } BeamStart(); if ( m_bmFretObject == 0 ) { x = static_cast((m_goal.x+1600.0f)/BM_DIM_STEP); y = static_cast((m_goal.z+1600.0f)/BM_DIM_STEP); if ( BitmapTestDot(0, x, y) ) // arrival occupied? { m_error = ERR_GOTO_BUSY; return m_error; } } } return ERR_OK; } // Indicates whether the action is finished. Error CTaskGoto::IsEnded() { Math::Vector pos; float limit, angle = 0.0f, dist, h, level; if ( m_engine->GetPause() ) return ERR_CONTINUE; if ( m_error != ERR_OK ) return m_error; pos = m_object->GetPosition(0); if ( m_phase == TGP_BEAMLEAK ) // leak? { if ( m_leakTime >= m_leakDelay ) { m_physics->SetMotorSpeedX(0.0f); // stops the advance m_physics->SetMotorSpeedZ(0.0f); // stops the rotation BeamInit(); m_phase = TGP_BEAMSEARCH; // will seek the path } return ERR_CONTINUE; } if ( m_phase == TGP_BEAMSEARCH ) // search path? { return ERR_CONTINUE; } if ( m_phase == TGP_BEAMWCOLD ) // expects cool reactor? { if ( m_altitude != 0.0f && m_physics->GetReactorRange() < 1.0f ) return ERR_CONTINUE; m_phase = TGP_BEAMUP; } if ( m_phase == TGP_BEAMUP ) // off? { if ( m_physics->GetType() == TYPE_FLYING && m_altitude > 0.0f ) { level = m_terrain->GetFloorLevel(pos, true, true); h = level+m_altitude-20.0f; limit = m_terrain->GetFlyingMaxHeight(); if ( h > limit ) h = limit; if ( pos.y < h-1.0f ) return ERR_CONTINUE; m_physics->SetMotorSpeedY(0.0f); // stops the ascent } m_phase = TGP_BEAMGOTO; } if ( m_phase == TGP_BEAMGOTO ) // goto dot list ? { if ( m_altitude != 0.0f && m_physics->GetReactorRange() < 0.1f ) // overheating? { m_physics->SetMotorSpeedX(0.0f); // stops the advance m_physics->SetMotorSpeedZ(0.0f); // stops the rotation m_physics->SetMotorSpeedY(-1.0f); // tomb m_phase = TGP_BEAMWCOLD; return ERR_CONTINUE; } if ( m_physics->GetLand() ) // on the ground? { limit = 1.0f; } else // in flight? { limit = 2.0f; if ( m_bmIndex < m_bmTotal ) limit *= 2.0f; // intermediate point } if ( m_bApprox ) limit = 2.0f; if ( fabs(pos.x - m_bmPoints[m_bmIndex].x) < limit && fabs(pos.z - m_bmPoints[m_bmIndex].z) < limit ) { m_physics->SetMotorSpeedX(0.0f); // stops the advance m_physics->SetMotorSpeedZ(0.0f); // stops the rotation m_bmIndex = BeamShortcut(); if ( m_bmIndex > m_bmTotal ) { m_phase = TGP_BEAMDOWN; } } } if ( m_phase == TGP_BEAMDOWN ) // landed? { if ( m_physics->GetType() == TYPE_FLYING && m_altitude > 0.0f ) { if ( !m_physics->GetLand() ) return ERR_CONTINUE; m_physics->SetMotorSpeedY(0.0f); // stops the descent m_altitude = 0.0f; m_phase = TGP_BEAMGOTO; // advance finely on the ground to finish m_bmIndex = m_bmTotal; return ERR_CONTINUE; } if ( m_bTake ) { m_angle = Math::RotateAngle(m_goalObject.x-pos.x, pos.z-m_goalObject.z); m_phase = TGP_TURN; } else { m_physics->SetMotorSpeedX(0.0f); // stops the advance m_physics->SetMotorSpeedZ(0.0f); // stops the rotation return ERR_STOP; } } if ( m_goalMode == TGG_EXPRESS ) { dist = Math::DistanceProjected(m_goal, pos); if ( dist < 10.0f && dist > m_lastDistance ) { return ERR_STOP; } m_lastDistance = dist; } if ( m_phase == TGP_ADVANCE ) // going towards the goal? { if ( m_physics->GetLand() ) limit = 0.1f; // on the ground else limit = 1.0f; // flying if ( m_bApprox ) limit = 2.0f; if ( fabs(pos.x - m_goal.x) < limit && fabs(pos.z - m_goal.z) < limit ) { m_physics->SetMotorSpeedX(0.0f); // stops the advance m_physics->SetMotorSpeedZ(0.0f); // stops the rotation m_phase = TGP_LAND; } } if ( m_phase == TGP_LAND ) // landed? { if ( m_physics->GetType() == TYPE_FLYING && m_altitude > 0.0f ) { if ( !m_physics->GetLand() ) return ERR_CONTINUE; m_physics->SetMotorSpeedY(0.0f); } if ( m_bTake ) { m_angle = Math::RotateAngle(m_goalObject.x-pos.x, pos.z-m_goalObject.z); m_phase = TGP_TURN; } else { return ERR_STOP; } } if ( m_phase == TGP_TURN ) // turns to the object? { angle = Math::NormAngle(m_object->GetAngleY(0)); limit = 0.02f; if ( m_bApprox ) limit = 0.10f; if ( fabs(angle-m_angle) < limit ) { m_physics->SetMotorSpeedZ(0.0f); // stops the rotation if ( m_bmFinalMove == 0.0f ) return ERR_STOP; m_bmFinalPos = m_object->GetPosition(0); m_bmFinalDist = m_physics->GetLinLength(m_bmFinalMove); m_bmTimeLimit = m_physics->GetLinTimeLength(fabs(m_bmFinalMove))*1.5f; if ( m_bmTimeLimit < 0.5f ) m_bmTimeLimit = 0.5f; m_phase = TGP_MOVE; } } if ( m_phase == TGP_CRWAIT ) // waits after collision? { if ( m_crashMode == TGC_HALT ) { m_physics->SetMotorSpeedX(0.0f); // stops the advance m_physics->SetMotorSpeedZ(0.0f); // stops the rotation m_error = ERR_GENERIC; return m_error; } if ( m_time >= 1.0f ) { if ( m_crashMode == TGC_RIGHTLEFT || m_crashMode == TGC_RIGHT ) angle = Math::PI/2.0f; // 90 deegres to the right else angle = -Math::PI/2.0f; // 90 deegres to the left m_angle = Math::NormAngle(m_object->GetAngleY(0)+angle); m_phase = TGP_CRTURN; //? m_phase = TGP_ADVANCE; } } if ( m_phase == TGP_CRTURN ) // turns after collision? { angle = Math::NormAngle(m_object->GetAngleY(0)); limit = 0.1f; if ( fabs(angle-m_angle) < limit ) { m_physics->SetMotorSpeedZ(0.0f); // stops the rotation m_pos = pos; m_phase = TGP_CRADVANCE; } } if ( m_phase == TGP_CRADVANCE ) // advance after collision? { if ( Math::Distance(pos, m_pos) >= 5.0f ) { m_phase = TGP_ADVANCE; } } if ( m_phase == TGP_CLWAIT ) // waits after collision? { if ( m_time >= 1.0f ) { if ( m_crashMode == TGC_RIGHTLEFT ) angle = -Math::PI; if ( m_crashMode == TGC_LEFTRIGHT ) angle = Math::PI; if ( m_crashMode == TGC_RIGHT ) angle = Math::PI/2.0f; if ( m_crashMode == TGC_LEFT ) angle = -Math::PI/2.0f; m_angle = Math::NormAngle(m_object->GetAngleY(0)+angle); m_phase = TGP_CLTURN; } } if ( m_phase == TGP_CLTURN ) // turns after collision? { angle = Math::NormAngle(m_object->GetAngleY(0)); limit = 0.1f; if ( fabs(angle-m_angle) < limit ) { m_physics->SetMotorSpeedZ(0.0f); // stops the rotation m_pos = pos; m_phase = TGP_CLADVANCE; } } if ( m_phase == TGP_CLADVANCE ) // advance after collision? { if ( Math::Distance(pos, m_pos) >= 10.0f ) { m_phase = TGP_ADVANCE; m_try ++; } } if ( m_phase == TGP_MOVE ) // final advance? { if ( m_bmTimeLimit <= 0.0f ) { m_physics->SetMotorSpeedX(0.0f); // stops Abort(); return ERR_STOP; } dist = Math::Distance(m_bmFinalPos, m_object->GetPosition(0)); if ( dist < m_bmFinalDist ) return ERR_CONTINUE; m_physics->SetMotorSpeedX(0.0f); // stops the advance return ERR_STOP; } return ERR_CONTINUE; } // Tries the object is the target position. CObject* CTaskGoto::SearchTarget(Math::Vector pos, float margin) { CObject *pObj, *pBest; Math::Vector oPos; float dist, min; int i; CInstanceManager* iMan = CInstanceManager::GetInstancePointer(); pBest = 0; min = 1000000.0f; for ( i=0 ; i<1000000 ; i++ ) { pObj = static_cast(iMan->SearchInstance(CLASS_OBJECT, i)); if ( pObj == 0 ) break; if ( !pObj->GetActif() ) continue; if ( pObj->GetTruck() != 0 ) continue; // object transtorted? oPos = pObj->GetPosition(0); dist = Math::DistanceProjected(pos, oPos); if ( dist <= margin && dist <= min ) { min = dist; pBest = pObj; } } return pBest; } // Adjusts the target as a function of the object. // Returns true if it is cargo laying on the ground, which can be approached from any site. bool CTaskGoto::AdjustTarget(CObject* pObj, Math::Vector &pos, float &distance) { ObjectType type; Character* character; Math::Matrix* mat; Math::Vector goal; float dist, suppl; type = m_object->GetType(); if ( type == OBJECT_BEE || type == OBJECT_WORM ) { pos = pObj->GetPosition(0); return false; // single approach } type = pObj->GetType(); if ( type == OBJECT_FRET || type == OBJECT_STONE || type == OBJECT_URANIUM || type == OBJECT_METAL || type == OBJECT_POWER || type == OBJECT_ATOMIC || type == OBJECT_BULLET || type == OBJECT_BBOX || type == OBJECT_KEYa || type == OBJECT_KEYb || type == OBJECT_KEYc || type == OBJECT_KEYd || type == OBJECT_TNT || type == OBJECT_SCRAP1 || type == OBJECT_SCRAP2 || type == OBJECT_SCRAP3 || type == OBJECT_SCRAP4 || type == OBJECT_SCRAP5 || type == OBJECT_BOMB || type == OBJECT_RUINmobilew1 || type == OBJECT_RUINmobilew2 || type == OBJECT_RUINmobilet1 || type == OBJECT_RUINmobilet2 || type == OBJECT_RUINmobiler1 || type == OBJECT_RUINmobiler2 ) { pos = m_object->GetPosition(0); goal = pObj->GetPosition(0); dist = Math::Distance(goal, pos); pos = (pos-goal)*(TAKE_DIST+distance)/dist + goal; return true; // approach from all sites } if ( type == OBJECT_BASE ) { pos = m_object->GetPosition(0); goal = pObj->GetPosition(0); dist = Math::Distance(goal, pos); pos = (pos-goal)*(TAKE_DIST+distance)/dist + goal; return true; // approach from all sites } if ( type == OBJECT_MOBILEfa || type == OBJECT_MOBILEta || type == OBJECT_MOBILEwa || type == OBJECT_MOBILEia || type == OBJECT_MOBILEfs || type == OBJECT_MOBILEts || type == OBJECT_MOBILEws || type == OBJECT_MOBILEis || type == OBJECT_MOBILEfc || type == OBJECT_MOBILEtc || type == OBJECT_MOBILEwc || type == OBJECT_MOBILEic || type == OBJECT_MOBILEfi || type == OBJECT_MOBILEti || type == OBJECT_MOBILEwi || type == OBJECT_MOBILEii || type == OBJECT_MOBILErt || type == OBJECT_MOBILErc || type == OBJECT_MOBILErr || type == OBJECT_MOBILErs || type == OBJECT_MOBILEsa || type == OBJECT_MOBILEtg || type == OBJECT_MOBILEft || type == OBJECT_MOBILEtt || type == OBJECT_MOBILEwt || type == OBJECT_MOBILEit || type == OBJECT_MOBILEdr ) { character = pObj->GetCharacter(); pos = character->posPower; pos.x -= TAKE_DIST+TAKE_DIST_OTHER+distance; mat = pObj->GetWorldMatrix(0); pos = Transform(*mat, pos); return false; // single approach } if ( GetHotPoint(pObj, goal, true, distance, suppl) ) { pos = goal; distance += suppl; return false; // single approach } pos = pObj->GetPosition(0); distance = 0.0f; return false; // single approach } // If you are on an object produced by a building (ore produced by derrick), // changes the position by report the building. bool CTaskGoto::AdjustBuilding(Math::Vector &pos, float margin, float &distance) { CObject* pObj; Math::Vector oPos; float dist, suppl; int i; CInstanceManager* iMan = CInstanceManager::GetInstancePointer(); for ( i=0 ; i<1000000 ; i++ ) { pObj = static_cast(iMan->SearchInstance(CLASS_OBJECT, i)); if ( pObj == 0 ) break; if ( !pObj->GetActif() ) continue; if ( pObj->GetTruck() != 0 ) continue; // object transported? if ( !GetHotPoint(pObj, oPos, false, 0.0f, suppl) ) continue; dist = Math::DistanceProjected(pos, oPos); if ( dist <= margin ) { GetHotPoint(pObj, pos, true, distance, suppl); distance += suppl; return true; } } return false; } // Returns the item or product or pose is something on a building. bool CTaskGoto::GetHotPoint(CObject *pObj, Math::Vector &pos, bool bTake, float distance, float &suppl) { ObjectType type; Math::Matrix* mat; pos = Math::Vector(0.0f, 0.0f, 0.0f); suppl = 0.0f; type = pObj->GetType(); if ( type == OBJECT_DERRICK ) { mat = pObj->GetWorldMatrix(0); pos.x += 8.0f; if ( bTake && distance != 0.0f ) suppl = 4.0f; if ( bTake ) pos.x += TAKE_DIST+distance+suppl; pos = Transform(*mat, pos); return true; } if ( type == OBJECT_CONVERT ) { mat = pObj->GetWorldMatrix(0); pos.x += 0.0f; if ( bTake && distance != 0.0f ) suppl = 4.0f; if ( bTake ) pos.x += TAKE_DIST+distance+suppl; pos = Transform(*mat, pos); return true; } if ( type == OBJECT_RESEARCH ) { mat = pObj->GetWorldMatrix(0); pos.x += 10.0f; if ( bTake && distance != 0.0f ) suppl = 2.5f; if ( bTake ) pos.x += TAKE_DIST+TAKE_DIST_OTHER+distance+suppl; pos = Transform(*mat, pos); return true; } if ( type == OBJECT_ENERGY ) { mat = pObj->GetWorldMatrix(0); pos.x += 6.0f; if ( bTake && distance != 0.0f ) suppl = 6.0f; if ( bTake ) pos.x += TAKE_DIST+TAKE_DIST_OTHER+distance; pos = Transform(*mat, pos); return true; } if ( type == OBJECT_TOWER ) { mat = pObj->GetWorldMatrix(0); pos.x += 5.0f; if ( bTake && distance != 0.0f ) suppl = 4.0f; if ( bTake ) pos.x += TAKE_DIST+TAKE_DIST_OTHER+distance+suppl; pos = Transform(*mat, pos); return true; } if ( type == OBJECT_LABO ) { mat = pObj->GetWorldMatrix(0); pos.x += 6.0f; if ( bTake && distance != 0.0f ) suppl = 6.0f; if ( bTake ) pos.x += TAKE_DIST+TAKE_DIST_OTHER+distance; pos = Transform(*mat, pos); return true; } if ( type == OBJECT_NUCLEAR ) { mat = pObj->GetWorldMatrix(0); pos.x += 22.0f; if ( bTake && distance != 0.0f ) suppl = 4.0f; if ( bTake ) pos.x += TAKE_DIST+TAKE_DIST_OTHER+distance+suppl; pos = Transform(*mat, pos); return true; } if ( type == OBJECT_FACTORY ) { mat = pObj->GetWorldMatrix(0); pos.x += 4.0f; if ( bTake && distance != 0.0f ) suppl = 6.0f; if ( bTake ) pos.x += TAKE_DIST+distance+suppl; pos = Transform(*mat, pos); return true; } if ( type == OBJECT_STATION ) { mat = pObj->GetWorldMatrix(0); pos.x += 4.0f; if ( bTake && distance != 0.0f ) suppl = 4.0f; if ( bTake ) pos.x += distance; pos = Transform(*mat, pos); return true; } if ( type == OBJECT_REPAIR ) { mat = pObj->GetWorldMatrix(0); pos.x += 4.0f; if ( bTake && distance != 0.0f ) suppl = 4.0f; if ( bTake ) pos.x += distance; pos = Transform(*mat, pos); return true; } if ( type == OBJECT_PARA && m_physics->GetType() == TYPE_FLYING ) { mat = pObj->GetWorldMatrix(0); if ( bTake && distance != 0.0f ) suppl = 20.0f; if ( bTake ) pos.x += distance+suppl; pos = Transform(*mat, pos); return true; } suppl = 0.0f; return false; } // Seeks an object too close that he must flee. bool CTaskGoto::LeakSearch(Math::Vector &pos, float &delay) { CObject *pObj, *pObstacle = nullptr; Math::Vector iPos, oPos, bPos; float iRadius, oRadius, bRadius, dist, min, dir; int i, j; if ( !m_physics->GetLand() ) return false; // in flight? m_object->GetCrashSphere(0, iPos, iRadius); CInstanceManager* iMan = CInstanceManager::GetInstancePointer(); min = 100000.0f; bRadius = 0.0f; for ( i=0 ; i<1000000 ; i++ ) { pObj = static_cast(iMan->SearchInstance(CLASS_OBJECT, i)); if ( pObj == 0 ) break; if ( pObj == m_object ) continue; if ( !pObj->GetActif() ) continue; if ( pObj->GetTruck() != 0 ) continue; // object transported? j = 0; while ( pObj->GetCrashSphere(j++, oPos, oRadius) ) { dist = Math::DistanceProjected(oPos, iPos); if ( dist < min ) { min = dist; bPos = oPos; bRadius = oRadius; pObstacle = pObj; } } } if ( min > iRadius+bRadius+4.0f ) return false; m_bLeakRecede = false; dist = 4.0f; dir = 1.0f; if ( pObstacle->GetType() == OBJECT_FACTORY ) { dist = 16.0f; dir = -1.0f; m_bLeakRecede = true; // simply recoils } pos = bPos; delay = m_physics->GetLinTimeLength(dist, dir); return true; } // Calculates the force of repulsion due to obstacles. // The vector length rendered is between 0 and 1. void CTaskGoto::ComputeRepulse(Math::Point &dir) { #if 0 Math::Vector iPos, oPos; Math::Point repulse; CObject *pObj; float dist, iRadius, oRadius; int i; dir.x = 0.0f; dir.y = 0.0f; m_object->GetCrashSphere(0, iPos, iRadius); for ( i=0 ; i<1000000 ; i++ ) { pObj = static_cast(iMan->SearchInstance(CLASS_OBJECT, i)); if ( pObj == 0 ) break; if ( pObj == m_object ) continue; if ( pObj->GetTruck() != 0 ) continue; oPos = pObj->GetPosition(0); dist = Math::Distance(oPos, m_goalObject); if ( dist <= 1.0f ) continue; pObj->GetGlobalSphere(oPos, oRadius); oRadius += iRadius+m_physics->GetLinStopLength()*1.1f; dist = Math::DistanceProjected(oPos, iPos); if ( dist <= oRadius ) { repulse.x = iPos.x-oPos.x; repulse.y = iPos.z-oPos.z; //? dist = 0.2f-(0.2f*dist/oRadius); dist = powf(dist/oRadius, 2.0f); dist = 0.2f-0.2f*dist; repulse.x *= dist; repulse.y *= dist; //? repulse.x /= dist; //? repulse.y /= dist; dir.x += repulse.x; dir.y += repulse.y; } } #else ObjectType iType, oType; Math::Vector iPos, oPos; Math::Point repulse; CObject *pObj; float gDist, add, addi, fac, dist, iRadius, oRadius; int i, j; bool bAlien; dir.x = 0.0f; dir.y = 0.0f; // The worm goes everywhere and through everything! iType = m_object->GetType(); if ( iType == OBJECT_WORM || iType == OBJECT_CONTROLLER ) return; m_object->GetCrashSphere(0, iPos, iRadius); gDist = Math::Distance(iPos, m_goal); add = m_physics->GetLinStopLength()*1.1f; // braking distance fac = 2.0f; if ( iType == OBJECT_MOBILEwa || iType == OBJECT_MOBILEwc || iType == OBJECT_MOBILEwi || iType == OBJECT_MOBILEws || iType == OBJECT_MOBILEwt ) // wheels? { add = 5.0f; fac = 1.5f; } if ( iType == OBJECT_MOBILEta || iType == OBJECT_MOBILEtc || iType == OBJECT_MOBILEti || iType == OBJECT_MOBILEts || iType == OBJECT_MOBILEtt || iType == OBJECT_MOBILEdr ) // caterpillars? { add = 4.0f; fac = 1.5f; } if ( iType == OBJECT_MOBILEfa || iType == OBJECT_MOBILEfc || iType == OBJECT_MOBILEfi || iType == OBJECT_MOBILEfs || iType == OBJECT_MOBILEft ) // flying? { if ( m_physics->GetLand() ) { add = 5.0f; fac = 1.5f; } else { add = 10.0f; fac = 1.5f; } } if ( iType == OBJECT_MOBILEia || iType == OBJECT_MOBILEic || iType == OBJECT_MOBILEii || iType == OBJECT_MOBILEis || iType == OBJECT_MOBILEit ) // legs? { add = 4.0f; fac = 1.5f; } if ( iType == OBJECT_BEE ) // wasp? { if ( m_physics->GetLand() ) { add = 3.0f; fac = 1.5f; } else { add = 5.0f; fac = 1.5f; } } bAlien = false; if ( iType == OBJECT_MOTHER || iType == OBJECT_ANT || iType == OBJECT_SPIDER || iType == OBJECT_BEE || iType == OBJECT_WORM ) { bAlien = true; } CInstanceManager* iMan = CInstanceManager::GetInstancePointer(); for ( i=0 ; i<1000000 ; i++ ) { pObj = static_cast(iMan->SearchInstance(CLASS_OBJECT, i)); if ( pObj == 0 ) break; if ( pObj == m_object ) continue; if ( pObj->GetTruck() != 0 ) continue; oType = pObj->GetType(); if ( oType == OBJECT_WORM ) continue; if ( bAlien ) { if ( oType == OBJECT_STONE || oType == OBJECT_URANIUM || oType == OBJECT_METAL || oType == OBJECT_POWER || oType == OBJECT_ATOMIC || oType == OBJECT_BULLET || oType == OBJECT_BBOX || oType == OBJECT_KEYa || oType == OBJECT_KEYb || oType == OBJECT_KEYc || oType == OBJECT_KEYd || oType == OBJECT_TNT || oType == OBJECT_SCRAP1 || oType == OBJECT_SCRAP2 || oType == OBJECT_SCRAP3 || oType == OBJECT_SCRAP4 || oType == OBJECT_SCRAP5 || oType == OBJECT_BOMB || (oType >= OBJECT_PLANT0 && oType <= OBJECT_PLANT19 ) || (oType >= OBJECT_MUSHROOM0 && oType <= OBJECT_MUSHROOM9 ) ) continue; } addi = add; if ( iType == OBJECT_BEE && oType == OBJECT_BEE ) { addi = 2.0f; // between wasps, do not annoy too much } j = 0; while ( pObj->GetCrashSphere(j++, oPos, oRadius) ) { if ( oPos.y-oRadius > iPos.y+iRadius ) continue; if ( oPos.y+oRadius < iPos.y-iRadius ) continue; dist = Math::Distance(oPos, m_goal); if ( dist <= 1.0f ) continue; // on purpose? oRadius += iRadius+addi; dist = Math::DistanceProjected(oPos, iPos); if ( dist > gDist ) continue; // beyond the goal? if ( dist <= oRadius ) { repulse.x = iPos.x-oPos.x; repulse.y = iPos.z-oPos.z; dist = powf(dist/oRadius, fac); dist = 0.2f-0.2f*dist; repulse.x *= dist; repulse.y *= dist; dir.x += repulse.x; dir.y += repulse.y; } } } #endif } // Calculates the force of vertical repulsion according to barriers. // The vector length is made​between -1 and 1. void CTaskGoto::ComputeFlyingRepulse(float &dir) { ObjectType oType; Math::Vector iPos, oPos; CObject *pObj; float add, fac, dist, iRadius, oRadius, repulse; int i, j; m_object->GetCrashSphere(0, iPos, iRadius); add = 0.0f; fac = 1.5f; dir = 0.0f; CInstanceManager* iMan = CInstanceManager::GetInstancePointer(); for ( i=0 ; i<1000000 ; i++ ) { pObj = static_cast(iMan->SearchInstance(CLASS_OBJECT, i)); if ( pObj == 0 ) break; if ( pObj == m_object ) continue; if ( pObj->GetTruck() != 0 ) continue; oType = pObj->GetType(); if ( oType == OBJECT_WORM ) continue; j = 0; while ( pObj->GetCrashSphere(j++, oPos, oRadius) ) { oRadius += iRadius+add; dist = Math::DistanceProjected(oPos, iPos); if ( dist <= oRadius ) { repulse = iPos.y-oPos.y; dist = powf(dist/oRadius, fac); dist = 0.2f-0.2f*dist; repulse *= dist; dir += repulse; } } } if ( dir < -1.0f ) dir = -1.0f; if ( dir > 1.0f ) dir = 1.0f; } // Among all of the following, seek if there is one allowing to go directly to the crow flies. // If yes, skip all the unnecessary intermediate points. int CTaskGoto::BeamShortcut() { int i; for ( i=m_bmTotal ; i>=m_bmIndex+2 ; i-- ) // tries from the last { if ( BitmapTestLine(m_bmPoints[m_bmIndex], m_bmPoints[i], 0.0f, false) ) { return i; // bingo, found } } return m_bmIndex+1; // simply goes to the next } // That's the big start. void CTaskGoto::BeamStart() { Math::Vector min, max; BitmapOpen(); BitmapObject(); min = m_object->GetPosition(0); max = m_goal; if ( min.x > max.x ) Math::Swap(min.x, max.x); if ( min.z > max.z ) Math::Swap(min.z, max.z); min.x -= 10.0f*BM_DIM_STEP; min.z -= 10.0f*BM_DIM_STEP; max.x += 10.0f*BM_DIM_STEP; max.z += 10.0f*BM_DIM_STEP; BitmapTerrain(min, max); if ( LeakSearch(m_leakPos, m_leakDelay) ) { m_phase = TGP_BEAMLEAK; // must first leak m_leakTime = 0.0f; } else { m_physics->SetMotorSpeedX(0.0f); // stops the advance m_physics->SetMotorSpeedZ(0.0f); // stops the rotation BeamInit(); m_phase = TGP_BEAMSEARCH; // will seek the path } } // Initialization before the first BeamSearch. void CTaskGoto::BeamInit() { int i; for ( i=0 ; i 20.0f ) step = 20.0f; nbIter = 200; // in order not to lower the framerate m_bmIterCounter = 0; return BeamExplore(start, start, goal, goalRadius, 165.0f*Math::PI/180.0f, 22, step, 0, nbIter); } // prevPos: previous position // curPos: current position // goalPos: position that seeks to achieve // angle: angle to the goal we explores // nbDiv: number of subdivisions being done with angle // step length of a step // i number of recursions made // nbIter maximum number of iterations you have the right to make before temporarily interrupt Error CTaskGoto::BeamExplore(const Math::Vector &prevPos, const Math::Vector &curPos, const Math::Vector &goalPos, float goalRadius, float angle, int nbDiv, float step, int i, int nbIter) { Math::Vector newPos; Error ret; int iDiv, iClear, iLar; iLar = 0; if ( i >= MAXPOINTS ) return ERR_GOTO_ITER; // too many recursions if ( m_bmIter[i] == -1 ) { m_bmIter[i] = 0; if ( i == 0 ) { m_bmPoints[i] = curPos; } else { if ( !BitmapTestLine(prevPos, curPos, angle/nbDiv, true) ) return ERR_GOTO_IMPOSSIBLE; m_bmPoints[i] = curPos; if ( Math::DistanceProjected(curPos, goalPos)-goalRadius <= step ) { if ( goalRadius == 0.0f ) { newPos = goalPos; } else { newPos = BeamPoint(curPos, goalPos, 0, Math::DistanceProjected(curPos, goalPos)-goalRadius); } if ( BitmapTestLine(curPos, newPos, angle/nbDiv, false) ) { m_bmPoints[i+1] = newPos; m_bmTotal = i+1; return ERR_OK; } } } } if ( iLar >= m_bmIter[i] ) { newPos = BeamPoint(curPos, goalPos, 0, step); ret = BeamExplore(curPos, newPos, goalPos, goalRadius, angle, nbDiv, step, i+1, nbIter); if ( ret != ERR_GOTO_IMPOSSIBLE ) return ret; m_bmIter[i] = iLar+1; for ( iClear=i+1 ; iClear<=MAXPOINTS ; iClear++ ) m_bmIter[iClear] = -1; m_bmIterCounter ++; if ( m_bmIterCounter >= nbIter ) return ERR_CONTINUE; } iLar ++; for ( iDiv=1 ; iDiv<=nbDiv ; iDiv++ ) { if ( iLar >= m_bmIter[i] ) { newPos = BeamPoint(curPos, goalPos, angle*iDiv/nbDiv, step); ret = BeamExplore(curPos, newPos, goalPos, goalRadius, angle, nbDiv, step, i+1, nbIter); if ( ret != ERR_GOTO_IMPOSSIBLE ) return ret; m_bmIter[i] = iLar+1; for ( iClear=i+1 ; iClear<=MAXPOINTS ; iClear++ ) m_bmIter[iClear] = -1; m_bmIterCounter ++; if ( m_bmIterCounter >= nbIter ) return ERR_CONTINUE; } iLar ++; if ( iLar >= m_bmIter[i] ) { newPos = BeamPoint(curPos, goalPos, -angle*iDiv/nbDiv, step); ret = BeamExplore(curPos, newPos, goalPos, goalRadius, angle, nbDiv, step, i+1, nbIter); if ( ret != ERR_GOTO_IMPOSSIBLE ) return ret; m_bmIter[i] = iLar+1; for ( iClear=i+1 ; iClear<=MAXPOINTS ; iClear++ ) m_bmIter[iClear] = -1; m_bmIterCounter ++; if ( m_bmIterCounter >= nbIter ) return ERR_CONTINUE; } iLar ++; } return ERR_GOTO_IMPOSSIBLE; } // Is a right "start-goal". Calculates the point located at the distance "step" // from the point "start" and an angle "angle" with the right. Math::Vector CTaskGoto::BeamPoint(const Math::Vector &startPoint, const Math::Vector &goalPoint, float angle, float step) { Math::Vector resPoint; float goalAngle; goalAngle = Math::RotateAngle(goalPoint.x-startPoint.x, goalPoint.z-startPoint.z); resPoint.x = startPoint.x + cosf(goalAngle+angle)*step; resPoint.z = startPoint.z + sinf(goalAngle+angle)*step; resPoint.y = 0.0f; return resPoint; } // Tests if a path along a straight line is possible. bool CTaskGoto::BitmapTestLine(const Math::Vector &start, const Math::Vector &goal, float stepAngle, bool bSecond) { Math::Vector pos, inc; float dist, step; float distNoB2; int i, max, x, y; if ( m_bmArray == 0 ) return true; dist = Math::DistanceProjected(start, goal); if ( dist == 0.0f ) return true; step = BM_DIM_STEP*0.5f; inc.x = (goal.x-start.x)*step/dist; inc.z = (goal.z-start.z)*step/dist; pos = start; if ( bSecond ) { x = static_cast((pos.x+1600.0f)/BM_DIM_STEP); y = static_cast((pos.z+1600.0f)/BM_DIM_STEP); BitmapSetDot(1, x, y); // puts the flag as the starting point } max = static_cast(dist/step); if ( max == 0 ) max = 1; distNoB2 = BM_DIM_STEP*sqrtf(2.0f)/sinf(stepAngle); for ( i=0 ; i((pos.x+1600.0f)/BM_DIM_STEP); y = static_cast((pos.z+1600.0f)/BM_DIM_STEP); if ( bSecond ) { if ( i > 2 && BitmapTestDot(1, x, y) ) return false; if ( step*(i+1) > distNoB2 && i < max-2 ) { BitmapSetDot(1, x, y); } } if ( BitmapTestDot(0, x, y) ) return false; } return true; } // Adds the objects in the bitmap. void CTaskGoto::BitmapObject() { CObject *pObj; ObjectType type; Math::Vector iPos, oPos; float iRadius, oRadius, h; int i, j; m_object->GetCrashSphere(0, iPos, iRadius); CInstanceManager* iMan = CInstanceManager::GetInstancePointer(); for ( i=0 ; i<1000000 ; i++ ) { pObj = static_cast(iMan->SearchInstance(CLASS_OBJECT, i)); if ( pObj == 0 ) break; type = pObj->GetType(); if ( pObj == m_object ) continue; if ( pObj == m_bmFretObject ) continue; if ( pObj->GetTruck() != 0 ) continue; h = m_terrain->GetFloorLevel(pObj->GetPosition(0), false); if ( m_physics->GetType() == TYPE_FLYING && m_altitude > 0.0f ) { h += m_altitude; } j = 0; while ( pObj->GetCrashSphere(j++, oPos, oRadius) ) { if ( m_physics->GetType() == TYPE_FLYING && m_altitude > 0.0f ) // flying? { if ( oPos.y-oRadius > h+8.0f || oPos.y+oRadius < h-8.0f ) continue; } else // crawling? { if ( oPos.y-oRadius > h+8.0f ) continue; } if ( type == OBJECT_PARA ) oRadius -= 2.0f; BitmapSetCircle(oPos, oRadius+iRadius+4.0f); } } } // Adds a section of land in the bitmap. void CTaskGoto::BitmapTerrain(const Math::Vector &min, const Math::Vector &max) { int minx, miny, maxx, maxy; minx = static_cast((min.x+1600.0f)/BM_DIM_STEP); miny = static_cast((min.z+1600.0f)/BM_DIM_STEP); maxx = static_cast((max.x+1600.0f)/BM_DIM_STEP); maxy = static_cast((max.z+1600.0f)/BM_DIM_STEP); BitmapTerrain(minx, miny, maxx, maxy); } // Adds a section of land in the bitmap. void CTaskGoto::BitmapTerrain(int minx, int miny, int maxx, int maxy) { ObjectType type; Math::Vector p; float aLimit, angle, h; int x, y; bool bAcceptWater, bFly; if ( minx > maxx ) Math::Swap(minx, maxx); if ( miny > maxy ) Math::Swap(miny, maxy); if ( minx < 0 ) minx = 0; if ( miny < 0 ) miny = 0; if ( maxx > m_bmSize-1 ) maxx = m_bmSize-1; if ( maxy > m_bmSize-1 ) maxy = m_bmSize-1; if ( minx > m_bmMinX ) minx = m_bmMinX; if ( miny > m_bmMinY ) miny = m_bmMinY; if ( maxx < m_bmMaxX ) maxx = m_bmMaxX; if ( maxy < m_bmMaxY ) maxy = m_bmMaxY; if ( minx >= m_bmMinX && maxx <= m_bmMaxX && miny >= m_bmMinY && maxy <= m_bmMaxY ) return; aLimit = 20.0f*Math::PI/180.0f; bAcceptWater = false; bFly = false; type = m_object->GetType(); if ( type == OBJECT_MOBILEwa || type == OBJECT_MOBILEwc || type == OBJECT_MOBILEws || type == OBJECT_MOBILEwi || type == OBJECT_MOBILEwt || type == OBJECT_MOBILEtg ) // wheels? { aLimit = 20.0f*Math::PI/180.0f; } if ( type == OBJECT_MOBILEta || type == OBJECT_MOBILEtc || type == OBJECT_MOBILEti || type == OBJECT_MOBILEts ) // caterpillars? { aLimit = 35.0f*Math::PI/180.0f; } if ( type == OBJECT_MOBILErt || type == OBJECT_MOBILErc || type == OBJECT_MOBILErr || type == OBJECT_MOBILErs ) // large caterpillars? { aLimit = 35.0f*Math::PI/180.0f; } if ( type == OBJECT_MOBILEsa ) // submarine caterpillars? { aLimit = 35.0f*Math::PI/180.0f; bAcceptWater = true; } if ( type == OBJECT_MOBILEdr ) // designer caterpillars? { aLimit = 35.0f*Math::PI/180.0f; } if ( type == OBJECT_MOBILEfa || type == OBJECT_MOBILEfc || type == OBJECT_MOBILEfs || type == OBJECT_MOBILEfi || type == OBJECT_MOBILEft ) // flying? { aLimit = 15.0f*Math::PI/180.0f; bFly = true; } if ( type == OBJECT_MOBILEia || type == OBJECT_MOBILEic || type == OBJECT_MOBILEis || type == OBJECT_MOBILEii ) // insect legs? { aLimit = 60.0f*Math::PI/180.0f; } for ( y=miny ; y<=maxy ; y++ ) { for ( x=minx ; x<=maxx ; x++ ) { if ( x >= m_bmMinX && x <= m_bmMaxX && y >= m_bmMinY && y <= m_bmMaxY ) continue; p.x = x*BM_DIM_STEP-1600.0f; p.z = y*BM_DIM_STEP-1600.0f; if ( bFly ) // flying robot? { h = m_terrain->GetFloorLevel(p, true); if ( h >= m_terrain->GetFlyingMaxHeight()-5.0f ) { BitmapSetDot(0, x, y); } continue; } if ( !bAcceptWater ) // not going underwater? { h = m_terrain->GetFloorLevel(p, true); if ( h < m_water->GetLevel()-2.0f ) // under water (*)? { //? BitmapSetDot(0, x, y); BitmapSetCircle(p, BM_DIM_STEP*1.0f); continue; } } angle = m_terrain->GetFineSlope(p); if ( angle > aLimit ) { BitmapSetDot(0, x, y); } } } m_bmMinX = minx; m_bmMinY = miny; m_bmMaxX = maxx; m_bmMaxY = maxy; // expanded rectangular area } // (*) Accepts that a robot is 50cm under water, for example Tropica 3! // Opens an empty bitmap. bool CTaskGoto::BitmapOpen() { BitmapClose(); m_bmSize = static_cast(3200.0f/BM_DIM_STEP); m_bmArray = new unsigned char[m_bmSize*m_bmSize/8*2]; memset(m_bmArray, 0, m_bmSize*m_bmSize/8*2); m_bmOffset = m_bmSize/2; m_bmLine = m_bmSize/8; m_bmMinX = m_bmSize; // non-existent rectangular area m_bmMinY = m_bmSize; m_bmMaxX = 0; m_bmMaxY = 0; return true; } // Closes the bitmap. bool CTaskGoto::BitmapClose() { delete[] m_bmArray; m_bmArray = 0; return true; } // Puts a circle in the bitmap. void CTaskGoto::BitmapSetCircle(const Math::Vector &pos, float radius) { float d, r; int cx, cy, ix, iy; cx = static_cast((pos.x+1600.0f)/BM_DIM_STEP); cy = static_cast((pos.z+1600.0f)/BM_DIM_STEP); r = radius/BM_DIM_STEP; for ( iy=cy-static_cast(r) ; iy<=cy+static_cast(r) ; iy++ ) { for ( ix=cx-static_cast(r) ; ix<=cx+static_cast(r) ; ix++ ) { d = Math::Point(static_cast(ix-cx), static_cast(iy-cy)).Length(); if ( d > r ) continue; BitmapSetDot(0, ix, iy); } } } // Removes a circle in the bitmap. //TODO this method is almost same as above one void CTaskGoto::BitmapClearCircle(const Math::Vector &pos, float radius) { float d, r; int cx, cy, ix, iy; cx = static_cast((pos.x+1600.0f)/BM_DIM_STEP); cy = static_cast((pos.z+1600.0f)/BM_DIM_STEP); r = radius/BM_DIM_STEP; for ( iy=cy-static_cast(r) ; iy<=cy+static_cast(r) ; iy++ ) { for ( ix=cx-static_cast(r) ; ix<=cx+static_cast(r) ; ix++ ) { d = Math::Point(static_cast(ix-cx), static_cast(iy-cy)).Length(); if ( d > r ) continue; BitmapClearDot(0, ix, iy); } } } // Makes a point in the bitmap. // x:y: 0..m_bmSize-1 void CTaskGoto::BitmapSetDot(int rank, int x, int y) { if ( x < 0 || x >= m_bmSize || y < 0 || y >= m_bmSize ) return; m_bmArray[rank*m_bmLine*m_bmSize + m_bmLine*y + x/8] |= (1<= m_bmSize || y < 0 || y >= m_bmSize ) return; m_bmArray[rank*m_bmLine*m_bmSize + m_bmLine*y + x/8] &= ~(1<= m_bmSize || y < 0 || y >= m_bmSize ) return false; if ( x < m_bmMinX || x > m_bmMaxX || y < m_bmMinY || y > m_bmMaxY ) { BitmapTerrain(x-10,y-10, x+10,y+10); // remade a layer } return m_bmArray[rank*m_bmLine*m_bmSize + m_bmLine*y + x/8] & (1<