summaryrefslogtreecommitdiffstats
path: root/src/math/geometry.h
blob: 9dcb447474604604786c41b77b4e424f55478309 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// * This file is part of the COLOBOT source code
// * Copyright (C) 2001-2008, Daniel ROUX & EPSITEC SA, www.epsitec.ch
// * Copyright (C) 2012, Polish Portal of Colobot (PPC)
// *
// * This program is free software: you can redistribute it and/or modify
// * it under the terms of the GNU General Public License as published by
// * the Free Software Foundation, either version 3 of the License, or
// * (at your option) any later version.
// *
// * This program is distributed in the hope that it will be useful,
// * but WITHOUT ANY WARRANTY; without even the implied warranty of
// * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// * GNU General Public License for more details.
// *
// * You should have received a copy of the GNU General Public License
// * along with this program. If not, see  http://www.gnu.org/licenses/.

/**
 * \file math/geometry.h
 * \brief Math functions related to 3D geometry calculations, transformations, etc.
 */

#pragma once


#include "math/const.h"
#include "math/func.h"
#include "math/point.h"
#include "math/matrix.h"
#include "math/vector.h"


#include <cmath>
#include <cstdlib>


// Math module namespace
namespace Math {


//! Returns py up on the line \a a - \a b
inline float MidPoint(const Math::Point &a, const Math::Point &b, float px)
{
    if (IsEqual(a.x, b.x))
    {
        if (a.y < b.y)
            return Math::HUGE_NUM;
        else
            return -Math::HUGE_NUM;
    }
    return (b.y-a.y) * (px-a.x) / (b.x-a.x) + a.y;
}

//! Tests whether the point \a p is inside the triangle (\a a,\a b,\a c)
inline bool IsInsideTriangle(Math::Point a, Math::Point b, Math::Point c, Math::Point p)
{
    float n, m;

    if ( p.x < a.x && p.x < b.x && p.x < c.x ) return false;
    if ( p.x > a.x && p.x > b.x && p.x > c.x ) return false;
    if ( p.y < a.y && p.y < b.y && p.y < c.y ) return false;
    if ( p.y > a.y && p.y > b.y && p.y > c.y ) return false;

    if ( a.x > b.x ) Swap(a,b);
    if ( a.x > c.x ) Swap(a,c);
    if ( c.x < a.x ) Swap(c,a);
    if ( c.x < b.x ) Swap(c,b);

    n = MidPoint(a, b, p.x);
    m = MidPoint(a, c, p.x);
    if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) ) return false;

    n = MidPoint(c, b, p.x);
    m = MidPoint(c, a, p.x);
    if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) ) return false;

    return true;
}

//! Rotates a point around a center
/**
 * \param center  center of rotation
 * \param angle   angle [radians] (positive is CCW)
 * \param p       the point to be rotated
 */
inline Math::Point RotatePoint(const Math::Point &center, float angle, const Math::Point &p)
{
    Math::Point a;
    a.x = p.x-center.x;
    a.y = p.y-center.y;

    Math::Point b;
    b.x = a.x*cosf(angle) - a.y*sinf(angle);
    b.y = a.x*sinf(angle) + a.y*cosf(angle);

    b.x += center.x;
    b.y += center.y;

    return b;
}

//! Rotates a point around the origin (0,0)
/**
 * \param angle angle [radians] (positive is CCW)
 * \param p     the point to be rotated
 */
inline Math::Point RotatePoint(float angle, const Math::Point &p)
{
    float x = p.x*cosf(angle) - p.y*sinf(angle);
    float y = p.x*sinf(angle) + p.y*cosf(angle);

    return Math::Point(x, y);
}

//! Rotates a vector (dist, 0)
/**
 * \param angle angle [radians] (positive is CCW)
 * \param dist  distance to origin
 */
inline Math::Point RotatePoint(float angle, float dist)
{
    float x = dist*cosf(angle);
    float y = dist*sinf(angle);

    return Math::Point(x, y);
}

//! Rotates a point around a center on 2D plane
/**
 * \param cx,cy  center of rotation
 * \param angle  angle of rotation [radians] (positive is CCW)
 * \param px,py  point coordinates to rotate
 */
inline void RotatePoint(float cx, float cy, float angle, float &px, float &py)
{
    float ax, ay;

    px -= cx;
    py -= cy;

    ax = px*cosf(angle) - py*sinf(angle);
    ay = px*sinf(angle) + py*cosf(angle);

    px = cx+ax;
    py = cy+ay;
}

//! Rotates a point around a center in space
/**
 * \a angleH is rotation along Y axis (heading) while \a angleV is rotation along X axis (TODO: ?).
 *
 * \param center         center of rotation
 * \param angleH,angleV  rotation angles [radians] (positive is CCW)
 * \param p              the point to be rotated
 */
inline void RotatePoint(const Math::Vector &center, float angleH, float angleV, Math::Vector &p)
{
    p.x -= center.x;
    p.y -= center.y;
    p.z -= center.z;

    Math::Vector b;
    b.x = p.x*cosf(angleH) - p.z*sinf(angleH);
    b.y = p.z*sinf(angleV) + p.y*cosf(angleV);
    b.z = p.x*sinf(angleH) + p.z*cosf(angleH);

    p = center + b;
}

//! Rotates a point around a center in space
/**
 * The rotation is performed first along Y axis (\a angleH) and then along X axis (\a angleV).
 *
 * \param center         center of rotation
 * \param angleH,angleV  rotation angles [radians] (positive is CCW)
 * \param p              the point to be rotated
 */
inline void RotatePoint2(const Math::Vector center, float angleH, float angleV, Math::Vector &p)
{
    p.x -= center.x;
    p.y -= center.y;
    p.z -= center.z;

    Math::Vector a;
    a.x = p.x*cosf(angleH) - p.z*sinf(angleH);
    a.y = p.y;
    a.z = p.x*sinf(angleH) + p.z*cosf(angleH);

    Math::Vector b;
    b.x = a.x;
    b.y = a.z*sinf(angleV) + a.y*cosf(angleV);
    b.z = a.z*cosf(angleV) - a.y*sinf(angleV);

    p = center + b;
}

//! Returns the angle between point (x,y) and (0,0)
inline float RotateAngle(float x, float y)
{
    if (x == 0.0f && y == 0.0f) return 0.0f;

    if (x >= 0.0f)
    {
        if (y >= 0.0f)
        {
            if (x > y) return atanf(y/x);
            else       return PI*0.5f - atanf(x/y);
        }
        else
        {
            if (x > -y) return PI*2.0f + atanf(y/x);
            else        return PI*1.5f - atanf(x/y);
        }
    }
    else
    {
        if (y >= 0.0f)
        {
            if (-x > y) return PI*1.0f + atanf(y/x);
            else        return PI*0.5f - atanf(x/y);
        }
        else
        {
            if (-x > -y) return PI*1.0f + atanf(y/x);
            else         return PI*1.5f - atanf(x/y);
        }
    }
}

//! Calculates the angle between two points and a center
/**
 * \param center  the center point
 * \param p1,p2   the two points
 * \returns       the angle [radians] (positive is CCW)
 */
inline float RotateAngle(const Math::Point &center, const Math::Point &p1, const Math::Point &p2)
{
    if (PointsEqual(p1, center))
        return 0;

    if (PointsEqual(p2, center))
        return 0;

    float a1 = asinf((p1.y - center.y) / Distance(p1, center));
    float a2 = asinf((p2.y - center.y) / Distance(p2, center));

    if (p1.x < center.x) a1 = PI - a1;
    if (p2.x < center.x) a2 = PI - a2;

    float a = a2 - a1;
    if (a < 0)
        a += 2.0f*PI;

    return a;
}

//! Loads view matrix from the given vectors
/**
 * \param mat      result matrix
 * \param from     origin
 * \param at       view direction
 * \param worldUp  up vector
 */
inline void LoadViewMatrix(Math::Matrix &mat, const Math::Vector &from,
                           const Math::Vector &at, const Math::Vector &worldUp)
{
    // Get the z basis vector, which points straight ahead. This is the
    // difference from the eyepoint to the lookat point.
    Math::Vector view = at - from;

    float length = view.Length();
    assert(! IsZero(length) );

    // Normalize the z basis vector
    view /= length;

    // Get the dot product, and calculate the projection of the z basis
    // vector onto the up vector. The projection is the y basis vector.
    float dotProduct = DotProduct(worldUp, view);

    Math::Vector up = worldUp - dotProduct * view;

    // If this vector has near-zero length because the input specified a
    // bogus up vector, let's try a default up vector
    if ( IsZero(length = up.Length()) )
    {
        up = Math::Vector(0.0f, 1.0f, 0.0f) - view.y * view;

        // If we still have near-zero length, resort to a different axis.
        if ( IsZero(length = up.Length()) )
        {
            up = Math::Vector(0.0f, 0.0f, 1.0f) - view.z * view;

            assert(! IsZero(up.Length()) );
        }
    }

    // Normalize the y basis vector
    up /= length;

    // The x basis vector is found simply with the cross product of the y
    // and z basis vectors
    Math::Vector right = CrossProduct(up, view);

    // Start building the matrix. The first three rows contains the basis
    // vectors used to rotate the view to point at the lookat point
    mat.LoadIdentity();

    /* (1,1) */ mat.m[0 ] = right.x;
    /* (2,1) */ mat.m[1 ] = up.x;
    /* (3,1) */ mat.m[2 ] = view.x;
    /* (1,2) */ mat.m[4 ] = right.y;
    /* (2,2) */ mat.m[5 ] = up.y;
    /* (3,2) */ mat.m[6 ] = view.y;
    /* (1,3) */ mat.m[8 ] = right.z;
    /* (2,3) */ mat.m[9 ] = up.z;
    /* (3,3) */ mat.m[10] = view.z;

    // Do the translation values (rotations are still about the eyepoint)
    /* (1,4) */ mat.m[12] = -DotProduct(from, right);
    /* (2,4) */ mat.m[13] = -DotProduct(from, up);
    /* (3,4) */ mat.m[14] = -DotProduct(from, view);
}

//! Loads a perspective projection matrix
/**
 * \param mat        result matrix
 * \param fov        field of view in radians
 * \param aspect     aspect ratio (width / height)
 * \param nearPlane  distance to near cut plane
 * \param farPlane   distance to far cut plane
 */
inline void LoadProjectionMatrix(Math::Matrix &mat, float fov = Math::PI / 2.0f, float aspect = 1.0f,
                                 float nearPlane = 1.0f, float farPlane = 1000.0f)
{
    assert(fabs(farPlane - nearPlane) >= 0.01f);
    assert(fabs(sin(fov / 2)) >= 0.01f);

    float f = cosf(fov / 2.0f) / sinf(fov / 2.0f);

    mat.LoadZero();

    /* (1,1) */ mat.m[0 ] = f / aspect;
    /* (2,2) */ mat.m[5 ] = f;
    /* (3,3) */ mat.m[10] = (nearPlane + farPlane) / (nearPlane - farPlane);
    /* (4,3) */ mat.m[11] = -1.0f;
    /* (3,4) */ mat.m[14] = (2.0f * farPlane * nearPlane) / (nearPlane - farPlane);
}

//! Loads an othogonal projection matrix
/**
 * \param mat         result matrix
 * \param left,right  coordinates for left and right vertical clipping planes
 * \param bottom,top  coordinates for bottom and top horizontal clipping planes
 * \param zNear,zFar  distance to nearer and farther depth clipping planes
 */
inline void LoadOrthoProjectionMatrix(Math::Matrix &mat, float left, float right, float bottom, float top,
                                      float zNear = -1.0f, float zFar = 1.0f)
{
    mat.LoadIdentity();

    /* (1,1) */ mat.m[0 ] =  2.0f / (right - left);
    /* (2,2) */ mat.m[5 ] =  2.0f / (top - bottom);
    /* (3,3) */ mat.m[10] = -2.0f / (zFar - zNear);

    /* (1,4) */ mat.m[12] =  - (right + left) / (right - left);
    /* (2,4) */ mat.m[13] =  - (top + bottom) / (top - bottom);
    /* (3,4) */ mat.m[14] =  - (zFar + zNear) / (zFar - zNear);
}

//! Loads a translation matrix from given vector
/**
 * \param mat   result matrix
 * \param trans vector of translation
 */
inline void LoadTranslationMatrix(Math::Matrix &mat, const Math::Vector &trans)
{
    mat.LoadIdentity();
    /* (1,4) */ mat.m[12] = trans.x;
    /* (2,4) */ mat.m[13] = trans.y;
    /* (3,4) */ mat.m[14] = trans.z;
}

//! Loads a scaling matrix fom given vector
/**
 * \param mat    result matrix
 * \param scale  vector with scaling factors for X, Y, Z
 */
inline void LoadScaleMatrix(Math::Matrix &mat, const Math::Vector &scale)
{
    mat.LoadIdentity();
    /* (1,1) */ mat.m[0 ] = scale.x;
    /* (2,2) */ mat.m[5 ] = scale.y;
    /* (3,3) */ mat.m[10] = scale.z;
}

//! Loads a rotation matrix along the X axis
/**
 * \param mat    result matrix
 * \param angle  angle [radians]
 */
inline void LoadRotationXMatrix(Math::Matrix &mat, float angle)
{
    mat.LoadIdentity();
    /* (2,2) */ mat.m[5 ] =  cosf(angle);
    /* (3,2) */ mat.m[6 ] =  sinf(angle);
    /* (2,3) */ mat.m[9 ] = -sinf(angle);
    /* (3,3) */ mat.m[10] =  cosf(angle);
}

//! Loads a rotation matrix along the Y axis
/**
 * \param mat    result matrix
 * \param angle  angle [radians]
 */
inline void LoadRotationYMatrix(Math::Matrix &mat, float angle)
{
    mat.LoadIdentity();
    /* (1,1) */ mat.m[0 ] =  cosf(angle);
    /* (3,1) */ mat.m[2 ] = -sinf(angle);
    /* (1,3) */ mat.m[8 ] =  sinf(angle);
    /* (3,3) */ mat.m[10] =  cosf(angle);
}

//! Loads a rotation matrix along the Z axis
/**
 * \param mat    result matrix
 * \param angle  angle [radians]
 */
inline void LoadRotationZMatrix(Math::Matrix &mat, float angle)
{
    mat.LoadIdentity();
    /* (1,1) */ mat.m[0 ] =  cosf(angle);
    /* (2,1) */ mat.m[1 ] =  sinf(angle);
    /* (1,2) */ mat.m[4 ] = -sinf(angle);
    /* (2,2) */ mat.m[5 ] =  cosf(angle);
}

//! Loads a rotation matrix along the given axis
/**
 * \param mat    result matrix
 * \param dir    axis of rotation
 * \param angle  angle [radians]
 */
inline void LoadRotationMatrix(Math::Matrix &mat, const Math::Vector &dir, float angle)
{
    float cos = cosf(angle);
    float sin = sinf(angle);
    Math::Vector v = Normalize(dir);

    mat.LoadIdentity();

    /* (1,1) */ mat.m[0 ] = (v.x * v.x) * (1.0f - cos) + cos;
    /* (2,1) */ mat.m[1 ] = (v.x * v.y) * (1.0f - cos) - (v.z * sin);
    /* (3,1) */ mat.m[2 ] = (v.x * v.z) * (1.0f - cos) + (v.y * sin);

    /* (1,2) */ mat.m[4 ] = (v.y * v.x) * (1.0f - cos) + (v.z * sin);
    /* (2,2) */ mat.m[5 ] = (v.y * v.y) * (1.0f - cos) + cos ;
    /* (3,2) */ mat.m[6 ] = (v.y * v.z) * (1.0f - cos) - (v.x * sin);

    /* (1,3) */ mat.m[8 ] = (v.z * v.x) * (1.0f - cos) - (v.y * sin);
    /* (2,3) */ mat.m[9 ] = (v.z * v.y) * (1.0f - cos) + (v.x * sin);
    /* (3,3) */ mat.m[10] = (v.z * v.z) * (1.0f - cos) + cos;
}

//! Calculates the matrix to make three rotations in the order X, Z and Y
inline void LoadRotationXZYMatrix(Math::Matrix &mat, const Math::Vector &angles)
{
    Math::Matrix temp;
    LoadRotationXMatrix(temp, angles.x);

    LoadRotationZMatrix(mat, angles.z);
    mat = Math::MultiplyMatrices(temp, mat);

    LoadRotationYMatrix(temp, angles.y);
    mat = Math::MultiplyMatrices(temp, mat);
}

//! Calculates the matrix to make three rotations in the order Z, X and Y
inline void LoadRotationZXYMatrix(Math::Matrix &mat, const Math::Vector &angles)
{
    Math::Matrix temp;
    LoadRotationZMatrix(temp, angles.z);

    LoadRotationXMatrix(mat, angles.x);
    mat = Math::MultiplyMatrices(temp, mat);

    LoadRotationYMatrix(temp, angles.y);
    mat = Math::MultiplyMatrices(temp, mat);
}

//! Returns the distance between projections on XZ plane of two vectors
inline float DistanceProjected(const Math::Vector &a, const Math::Vector &b)
{
    return sqrtf( (a.x-b.x)*(a.x-b.x) +
                  (a.z-b.z)*(a.z-b.z) );
}

//! Returns the normal vector to a plane
/**
 * \param p1,p2,p3 points defining the plane
 */
inline Math::Vector NormalToPlane(const Math::Vector &p1, const Math::Vector &p2, const Math::Vector &p3)
{
    Math::Vector u = p3 - p1;
    Math::Vector v = p2 - p1;

    return Normalize(CrossProduct(u, v));
}

//! Returns a point on the line \a p1 - \a p2, in \a dist distance from \a p1
/**
 * \param p1,p2  line start and end
 * \param dist   scaling factor from \a p1, relative to distance between \a p1 and \a p2
 */
inline Math::Vector SegmentPoint(const Math::Vector &p1, const Math::Vector &p2, float dist)
{
    return p1 + (p2 - p1) * dist;
}

//! Returns the distance between given point and a plane
/**
 * \param p      the point
 * \param a,b,c  points defining the plane
 */
inline float DistanceToPlane(const Math::Vector &a, const Math::Vector &b,
                             const Math::Vector &c, const Math::Vector &p)
{
    Math::Vector n = NormalToPlane(a, b, c);
    float d = -(n.x*a.x + n.y*a.y + n.z*a.z);

    return fabs(n.x*p.x + n.y*p.y + n.z*p.z + d);
}

//! Checks if two planes defined by three points are the same
/**
 * \param plane1  array of three vectors defining the first plane
 * \param plane2  array of three vectors defining the second plane
 */
inline bool IsSamePlane(const Math::Vector (&plane1)[3], const Math::Vector (&plane2)[3])
{
    Math::Vector n1 = NormalToPlane(plane1[0], plane1[1], plane1[2]);
    Math::Vector n2 = NormalToPlane(plane2[0], plane2[1], plane2[2]);

    if ( fabs(n1.x-n2.x) > 0.1f ||
         fabs(n1.y-n2.y) > 0.1f ||
         fabs(n1.z-n2.z) > 0.1f )
        return false;

    float dist = DistanceToPlane(plane1[0], plane1[1], plane1[2], plane2[0]);
    if ( dist > 0.1f )
        return false;

    return true;
}

//! Calculates the intersection "i" right "of" the plane "abc" (TODO: ?)
inline bool Intersect(const Math::Vector &a, const Math::Vector &b, const Math::Vector &c,
                      const Math::Vector &d, const Math::Vector &e, Math::Vector &i)
{
    float d1 = (d.x-a.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
               (d.y-a.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
               (d.z-a.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));

    float d2 = (d.x-e.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
               (d.y-e.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
               (d.z-e.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));

    if (d2 == 0)
        return false;

    i.x = d.x + d1/d2*(e.x-d.x);
    i.y = d.y + d1/d2*(e.y-d.y);
    i.z = d.z + d1/d2*(e.z-d.z);

    return true;
}

//! Calculates the intersection of the straight line passing through p (x, z)
/** Line is parallel to the y axis, with the plane abc. Returns p.y. (TODO: ?) */
inline bool IntersectY(const Math::Vector &a, const Math::Vector &b, const Math::Vector &c, Math::Vector &p)
{
    float d  = (b.x-a.x)*(c.z-a.z) - (c.x-a.x)*(b.z-a.z);
    float d1 = (p.x-a.x)*(c.z-a.z) - (c.x-a.x)*(p.z-a.z);
    float d2 = (b.x-a.x)*(p.z-a.z) - (p.x-a.x)*(b.z-a.z);

    if (d == 0.0f)
        return false;

    p.y = a.y + d1/d*(b.y-a.y) + d2/d*(c.y-a.y);

    return true;
}

//! Calculates the end point
inline Math::Vector LookatPoint(const Math::Vector &eye, float angleH, float angleV, float length)
{
    Math::Vector lookat = eye;
    lookat.z += length;

    RotatePoint(eye, angleH, angleV, lookat);

    return lookat;
}

//! Transforms the point \a p by matrix \a m
/** Is equal to multiplying the matrix by the vector (of course without perspective divide). */
inline Math::Vector Transform(const Math::Matrix &m, const Math::Vector &p)
{
    return MatrixVectorMultiply(m, p);
}

//! Calculates the projection of the point \a p on a straight line \a a to \a b
/**
 * \param p      point to project
 * \param a,b    two ends of the line
 */
inline Math::Vector Projection(const Math::Vector &a, const Math::Vector &b, const Math::Vector &p)
{
    float k = DotProduct(b - a, p - a);
    k /= DotProduct(b - a, b - a);

    return a + k*(b-a);
}

//! Calculates point of view to look at a center two angles and a distance
inline Math::Vector RotateView(Math::Vector center, float angleH, float angleV, float dist)
{
    Math::Matrix mat1, mat2;
    LoadRotationZMatrix(mat1, -angleV);
    LoadRotationYMatrix(mat2, -angleH);

    Math::Matrix mat = MultiplyMatrices(mat2, mat1);

    Math::Vector eye;
    eye.x = 0.0f+dist;
    eye.y = 0.0f;
    eye.z = 0.0f;
    eye = Transform(mat, eye);

    return eye+center;
}


} // namespace Math