summaryrefslogtreecommitdiffstats
path: root/src/math/geometry.h
blob: 2d79d8aaa7e247aa5cca56264f9764083184e541 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// * This file is part of the COLOBOT source code
// * Copyright (C) 2001-2008, Daniel ROUX & EPSITEC SA, www.epsitec.ch
// * Copyright (C) 2012, Polish Portal of Colobot (PPC)
// *
// * This program is free software: you can redistribute it and/or modify
// * it under the terms of the GNU General Public License as published by
// * the Free Software Foundation, either version 3 of the License, or
// * (at your option) any later version.
// *
// * This program is distributed in the hope that it will be useful,
// * but WITHOUT ANY WARRANTY; without even the implied warranty of
// * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// * GNU General Public License for more details.
// *
// * You should have received a copy of the GNU General Public License
// * along with this program. If not, see  http://www.gnu.org/licenses/.

/** @defgroup MathGeometryModule math/geometry.h
   Contains math functions related to 3D geometry calculations,
   transformations, etc.
 */

#pragma once

#include "const.h"
#include "func.h"
#include "point.h"
#include "vector.h"
#include "matrix.h"

#include <cmath>
#include <cstdlib>


// Math module namespace
namespace Math
{

/* @{ */ // start of group


//! Returns py up on the line \a a - \a b
inline float MidPoint(const Point &a, const Point &b, float px)
{
  if (IsEqual(a.x, b.x))
  {
    if (a.y < b.y)
      return HUGE;
    else
      return -HUGE;
  }
  return (b.y-a.y) * (px-a.x) / (b.x-a.x)  + a.y;
}

//! Calculates the parameters a and b of the linear function passing through \a p1 and \a p2
/** Returns \c false if the line is vertical.
  \param p1,p2 points
  \param a,b linear function parameters */
inline bool LinearFunction(const Point &p1, const Point &p2, float &a, float &b)
{
  if ( IsZero(p1.x-p2.x) )
  {
    a = HUGE;
    b = p2.x;
    return false;
  }

  a = (p2.y-p1.y) / (p2.x-p1.x);
  b = p2.y - p2.x*a;

  return true;
}

//! Tests whether the point \a p is inside the triangle (\a a,\a b,\a c)
inline bool IsInsideTriangle(Point a, Point b, Point c, Point p)
{
  float n, m;

  if ( p.x < a.x && p.x < b.x && p.x < c.x )  return false;
  if ( p.x > a.x && p.x > b.x && p.x > c.x )  return false;
  if ( p.y < a.y && p.y < b.y && p.y < c.y )  return false;
  if ( p.y > a.y && p.y > b.y && p.y > c.y )  return false;

  if ( a.x > b.x )  Swap(a,b);
  if ( a.x > c.x )  Swap(a,c);
  if ( c.x < a.x )  Swap(c,a);
  if ( c.x < b.x )  Swap(c,b);

  n = MidPoint(a, b, p.x);
  m = MidPoint(a, c, p.x);
  if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) )  return false;

  n = MidPoint(c, b, p.x);
  m = MidPoint(c, a, p.x);
  if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) )  return false;

  return true;
}

//! Rotates a point around a center
/** \a center center of rotation
    \a angle angle is in radians (positive is counterclockwise (CCW) )
    \a p the point */
inline Point RotatePoint(const Point &center, float angle, const Point &p)
{
  Point a;
  a.x = p.x-center.x;
  a.y = p.y-center.y;

  Point b;
  b.x = a.x*cosf(angle) - a.y*sinf(angle);
  b.y = a.x*sinf(angle) + a.y*cosf(angle);

  b.x += center.x;
  b.y += center.y;

  return b;
}

//! Rotates a point around the origin (0,0)
/** \a angle angle in radians (positive is counterclockwise (CCW) )
    \a p the point */
inline Point RotatePoint(float angle, const Point &p)
{
  float x = p.x*cosf(angle) - p.y*sinf(angle);
  float y = p.x*sinf(angle) + p.y*cosf(angle);

  return Point(x, y);
}

//! Rotates a vector (dist, 0).
/** \a angle angle is in radians (positive is counterclockwise (CCW) )
    \a dist distance to origin */
inline Point RotatePoint(float angle, float dist)
{
  float x = dist*cosf(angle);
  float y = dist*sinf(angle);

  return Point(x, y);
}

//! TODO documentation
inline void RotatePoint(float cx, float cy, float angle, float &px, float &py)
{
  float ax, ay;

  px -= cx;
  py -= cy;

  ax = px*cosf(angle) - py*sinf(angle);
  ay = px*sinf(angle) + py*cosf(angle);

  px = cx+ax;
  py = cy+ay;
}

//! Rotates a point around a center in space.
/** \a center center of rotation
    \a angleH,angleV rotation angles in radians (positive is counterclockwise (CCW) ) )
    \a p the point
    \returns the rotated point */
inline Vector RotatePoint(const Vector &center, float angleH, float angleV, Vector p)
{
  p.x -= center.x;
  p.y -= center.y;
  p.z -= center.z;

  Vector b;
  b.x = p.x*cosf(angleH) - p.z*sinf(angleH);
  b.y = p.z*sinf(angleV) + p.y*cosf(angleV);
  b.z = p.x*sinf(angleH) + p.z*cosf(angleH);

  return center + b;
}

//! Rotates a point around a center in space.
/** \a center center of rotation
    \a angleH,angleV rotation angles in radians (positive is counterclockwise (CCW) ) )
    \a p the point
    \returns the rotated point */
inline Vector RotatePoint2(const Vector center, float angleH, float angleV, Vector p)
{
  p.x -= center.x;
  p.y -= center.y;
  p.z -= center.z;

  Vector a;
  a.x = p.x*cosf(angleH) - p.z*sinf(angleH);
  a.y = p.y;
  a.z = p.x*sinf(angleH) + p.z*cosf(angleH);

  Vector b;
  b.x = a.x;
  b.y = a.z*sinf(angleV) + a.y*cosf(angleV);
  b.z = a.z*cosf(angleV) - a.y*sinf(angleV);

  return center + b;
}

//! Returns the angle between point (x,y) and (0,0)
float RotateAngle(float x, float y)
{
  float result = std::atan2(x, y);
  if (result < 0)
    result = PI_MUL_2 + result;

  return result;
}

/*inline float RotateAngle(float x, float y)
{
  if ( x == 0.0f && y == 0.0f )  return 0.0f;

  if ( x >= 0.0f )
  {
    if ( y >= 0.0f )
    {
      if ( x > y )  return atanf(y/x);
      else          return Math::PI*0.5f - atanf(x/y);
    }
    else
    {
      if ( x > -y )  return Math::PI*2.0f + atanf(y/x);
      else           return Math::PI*1.5f - atanf(x/y);
    }
  }
  else
  {
    if ( y >= 0.0f )
    {
      if ( -x > y )  return Math::PI*1.0f + atanf(y/x);
      else           return Math::PI*0.5f - atanf(x/y);
    }
    else
    {
      if ( -x > -y )  return Math::PI*1.0f + atanf(y/x);
      else            return Math::PI*1.5f - atanf(x/y);
    }
  }
}*/

//! Calculates the angle between two points and one center
/** \a center the center point
    \a p1,p2 the two points
    \returns The angle in radians  (positive is counterclockwise (CCW) ) */
inline float RotateAngle(const Point &center, const Point &p1, const Point &p2)
{
  if (PointsEqual(p1, center))
    return 0;

  if (PointsEqual(p2, center))
    return 0;

  float a1 = asinf((p1.y - center.y) / Distance(p1, center));
  float a2 = asinf((p2.y - center.y) / Distance(p2, center));

  if (p1.x < center.x) a1 = PI - a1;
  if (p2.x < center.x) a2 = PI - a2;

  float a = a2 - a1;
  if (a < 0)
    a += PI_MUL_2;

  return a;
}

//! Loads view matrix from the given vectors
/** \a from origin
    \a at view direction
    \a worldUp up vector */
inline void LoadViewMatrix(Matrix &mat, const Vector &from, const Vector &at, const Vector &worldUp)
{
  // Get the z basis vector, which points straight ahead. This is the
  // difference from the eyepoint to the lookat point.
  Vector view = at - from;

  float length = view.Length();
  assert(! Math::IsZero(length) );

  // Normalize the z basis vector
  view /= length;

  // Get the dot product, and calculate the projection of the z basis
  // vector onto the up vector. The projection is the y basis vector.
  float dotProduct = DotProduct(worldUp, view);

  Vector up = worldUp - dotProduct * view;

  // If this vector has near-zero length because the input specified a
  // bogus up vector, let's try a default up vector
  if ( IsZero(length = up.Length()) )
  {
    up = Vector(0.0f, 1.0f, 0.0f) - view.y * view;

    // If we still have near-zero length, resort to a different axis.
    if ( IsZero(length = up.Length()) )
    {
      up = Vector(0.0f, 0.0f, 1.0f) - view.z * view;

      assert(! IsZero(up.Length()) );
    }
  }

  // Normalize the y basis vector
  up /= length;

  // The x basis vector is found simply with the cross product of the y
  // and z basis vectors
  Vector right = CrossProduct(up, view);

  // Start building the matrix. The first three rows contains the basis
  // vectors used to rotate the view to point at the lookat point
  mat.LoadIdentity();

  /* (1,1) */ mat.m[0 ] = right.x;
  /* (2,1) */ mat.m[1 ] = up.x;
  /* (3,1) */ mat.m[2 ] = view.x;
  /* (1,2) */ mat.m[4 ] = right.y;
  /* (2,2) */ mat.m[5 ] = up.y;
  /* (3,2) */ mat.m[6 ] = view.y;
  /* (1,3) */ mat.m[8 ] = right.z;
  /* (2,3) */ mat.m[9 ] = up.z;
  /* (3,3) */ mat.m[10] = view.z;

  // Do the translation values (rotations are still about the eyepoint)
  /* (1,4) */ mat.m[12] = -DotProduct(from, right);
  /* (2,4) */ mat.m[13] = -DotProduct(from, up);
  /* (3,4) */ mat.m[14] = -DotProduct(from, view);
}

//! Loads a perspective projection matrix
/** \a fov field of view in radians
    \a aspect aspect ratio (width / height)
    \a nearPlane distance to near cut plane
    \a farPlane distance to far cut plane */
inline void LoadProjectionMatrix(Matrix &mat, float fov = 1.570795f, float aspect = 1.0f,
                                 float nearPlane = 1.0f, float farPlane = 1000.0f)
{
  assert(fabs(farPlane - nearPlane) >= 0.01f);
  assert(fabs(sin(fov / 2)) >= 0.01f);

  float w = aspect * (cosf(fov / 2) / sinf(fov / 2));
  float h = 1.0f   * (cosf(fov / 2) / sinf(fov / 2));
  float q = farPlane / (farPlane - nearPlane);

  mat.LoadZero();

  /* (1,1) */ mat.m[0 ] = w;
  /* (2,2) */ mat.m[5 ] = h;
  /* (3,3) */ mat.m[10] = q;
  /* (3,4) */ mat.m[14] = 1.0f;
  /* (4,3) */ mat.m[11] = -q * nearPlane;
}

//! Loads a translation matrix from given vector
/** \a trans vector of translation*/
inline void LoadTranslationMatrix(Matrix &mat, const Vector &trans)
{
  mat.LoadIdentity();
  /* (1,4) */ mat.m[12] = trans.x;
  /* (2,4) */ mat.m[13] = trans.y;
  /* (3,4) */ mat.m[14] = trans.z;
}

//! Loads a scaling matrix fom given vector
/** \a scale vector with scaling factors for X, Y, Z */
inline void LoadScaleMatix(Matrix &mat, const Vector &scale)
{
  mat.LoadIdentity();
  /* (1,1) */ mat.m[0 ] = scale.x;
  /* (2,2) */ mat.m[5 ] = scale.y;
  /* (3,3) */ mat.m[10] = scale.z;
}

//! Loads a rotation matrix along the X axis
/** \a angle angle in radians */
inline void LoadRotationXMatrix(Matrix &mat, float angle)
{
  mat.LoadIdentity();
  /* (2,2) */ mat.m[5 ] =  cosf(angle);
  /* (3,2) */ mat.m[6 ] =  sinf(angle);
  /* (2,3) */ mat.m[9 ] = -sinf(angle);
  /* (3,3) */ mat.m[10] =  cosf(angle);
}

//! Loads a rotation matrix along the Y axis
/** \a angle angle in radians */
inline void LoadRotationYMatrix(Matrix &mat, float angle)
{
  mat.LoadIdentity();
  /* (1,1) */ mat.m[0 ] =  cosf(angle);
  /* (3,1) */ mat.m[2 ] = -sinf(angle);
  /* (1,3) */ mat.m[8 ] =  sinf(angle);
  /* (3,3) */ mat.m[10] =  cosf(angle);
}

//! Loads a rotation matrix along the Z axis
/** \a angle angle in radians */
inline void LoadRotationZMatrix(Matrix &mat, float angle)
{
  mat.LoadIdentity();
  /* (1,1) */ mat.m[0 ] =  cosf(angle);
  /* (2,1) */ mat.m[1 ] =  sinf(angle);
  /* (1,2) */ mat.m[4 ] = -sinf(angle);
  /* (2,2) */ mat.m[5 ] =  cosf(angle);
}

//! Loads a rotation matrix along the given axis
/** \a dir axis of rotation
    \a angle angle in radians */
inline void LoadRotationMatrix(Matrix &mat, const Vector &dir, float angle)
{
  float cos = cosf(angle);
  float sin = sinf(angle);
  Vector v = Math::Normalize(dir);

  mat.LoadIdentity();

  /* (1,1) */ mat.m[0 ] = (v.x * v.x) * (1.0f - cos) + cos;
  /* (2,1) */ mat.m[1 ] = (v.x * v.y) * (1.0f - cos) - (v.z * sin);
  /* (3,1) */ mat.m[2 ] = (v.x * v.z) * (1.0f - cos) + (v.y * sin);

  /* (1,2) */ mat.m[4 ] = (v.y * v.x) * (1.0f - cos) + (v.z * sin);
  /* (2,2) */ mat.m[5 ] = (v.y * v.y) * (1.0f - cos) + cos ;
  /* (3,2) */ mat.m[6 ] = (v.y * v.z) * (1.0f - cos) - (v.x * sin);

  /* (1,3) */ mat.m[8 ] = (v.z * v.x) * (1.0f - cos) - (v.y * sin);
  /* (2,3) */ mat.m[9 ] = (v.z * v.y) * (1.0f - cos) + (v.x * sin);
  /* (3,3) */ mat.m[10] = (v.z * v.z) * (1.0f - cos) + cos;
}

//! Calculates the matrix to make three rotations in the order X, Z and Y
inline void LoadRotationXZYMatrix(Matrix &mat, const Vector &angle)
{
  LoadRotationXMatrix(mat, angle.x);

  Matrix temp;
  LoadRotationZMatrix(temp, angle.z);
  mat.Multiply(temp);

  LoadRotationYMatrix(temp, angle.y);
  mat.Multiply(temp);
}

//! Calculates the matrix to make three rotations in the order Z, X and Y
inline void LoadRotationZXYMatrix(Matrix &mat, const Vector &angle)
{
  LoadRotationZMatrix(mat, angle.z);

  Matrix temp;
  LoadRotationXMatrix(temp, angle.x);
  mat.Multiply(temp);

  LoadRotationYMatrix(temp, angle.y);
  mat.Multiply(temp);
}

//! Returns the distance between projections on XZ plane of two vectors
inline float DistanceProjected(const Vector &a, const Vector &b)
{
  return sqrtf( (a.x-b.x)*(a.x-b.x) +
                (a.z-b.z)*(a.z-b.z) );
}

//! Returns the normal vector to a plane
/** \param p1,p2,p3 points defining the plane */
inline Vector NormalToPlane(const Vector &p1, const Vector &p2, const Vector &p3)
{
  Vector u = p3 - p1;
  Vector v = p2 - p1;

  return Normalize(CrossProduct(u, v));
}

//! Returns a point on the line \a p1 - \a p2, in \a dist distance from \a p1
/** \a p1,p2 line start and end
    \a dist scaling factor from \a p1, relative to distance between \a p1 and \a p2 */
inline Vector SegmentPoint(const Vector &p1, const Vector &p2, float dist)
{
  return p1 + (p2 - p1) * dist;
}

//! Returns the distance between given point and a plane
/** \param p the point
    \param a,b,c points defining the plane */
inline float DistanceToPlane(const Vector &a, const Vector &b, const Vector &c, const Vector &p)
{
  Vector n = NormalToPlane(a, b, c);
  float d = -(n.x*a.x + n.y*a.y + n.z*a.z);

  return fabs(n.x*p.x + n.y*p.y + n.z*p.z + d);
}

//! Checks if two planes defined by three points are the same
/** \a plane1 array of three vectors defining the first plane
    \a plane2 array of three vectors defining the second plane */
inline bool IsSamePlane(const Vector (&plane1)[3], const Vector (&plane2)[3])
{
  Vector n1 = NormalToPlane(plane1[0], plane1[1], plane1[2]);
  Vector n2 = NormalToPlane(plane2[0], plane2[1], plane2[2]);

  if ( fabs(n1.x-n2.x) > 0.1f ||
       fabs(n1.y-n2.y) > 0.1f ||
       fabs(n1.z-n2.z) > 0.1f )
    return false;

  float dist = DistanceToPlane(plane1[0], plane1[1], plane1[2], plane2[0]);
  if ( dist > 0.1f )
    return false;

  return true;
}

//! Calculates the intersection "i" right "of" the plane "abc".
inline bool Intersect(const Vector &a, const Vector &b, const Vector &c, const Vector &d, const Vector &e, Vector &i)
{
  float d1 = (d.x-a.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
     (d.y-a.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
     (d.z-a.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));

  float d2 = (d.x-e.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
     (d.y-e.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
     (d.z-e.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));

  if (d2 == 0)
    return false;

  i.x = d.x + d1/d2*(e.x-d.x);
  i.y = d.y + d1/d2*(e.y-d.y);
  i.z = d.z + d1/d2*(e.z-d.z);

  return true;
}

//! Calculates the intersection of the straight line passing through p (x, z)
/** Line is parallel to the y axis, with the plane abc. Returns p.y. */
inline bool IntersectY(const Vector &a, const Vector &b, const Vector &c, Vector &p)
{
  float d  = (b.x-a.x)*(c.z-a.z) - (c.x-a.x)*(b.z-a.z);
  float d1 = (p.x-a.x)*(c.z-a.z) - (c.x-a.x)*(p.z-a.z);
  float d2 = (b.x-a.x)*(p.z-a.z) - (p.x-a.x)*(b.z-a.z);

  if (d == 0.0f)
    return false;

  p.y = a.y + d1/d*(b.y-a.y) + d2/d*(c.y-a.y);

  return true;
}

//! Calculates the end point
inline Vector LookatPoint(const Vector &eye, float angleH, float angleV, float length)
{

  Vector lookat = eye;
  lookat.z += length;

  RotatePoint(eye, angleH, angleV, lookat);

  return lookat;
}

//! TODO documentation
inline Vector Transform(const Matrix &m, const Vector &p)
{
  return MatrixVectorMultiply(m, p);
}

//! Calculates the projection of the point \a p on a straight line \a a to \a b.
/** \a p point to project
    \a a,b two ends of the line */
inline Vector Projection(const Vector &a, const Vector &b, const Vector &p)
{
  float k = DotProduct(b - a, p - a);
  k /= DotProduct(b - a, b - a);

  return a + k*(b-a);
}

//! Calculates point of view to look at a center two angles and a distance
inline Vector RotateView(Vector center, float angleH, float angleV, float dist)
{
  Matrix mat1, mat2;
  LoadRotationZMatrix(mat1, -angleV);
  LoadRotationYMatrix(mat2, -angleH);

  Matrix mat = MultiplyMatrices(mat1, mat2);

  Vector eye;
  eye.x = 0.0f+dist;
  eye.y = 0.0f;
  eye.z = 0.0f;
  eye = Transform(mat, eye);

  return eye+center;
}

/* @} */ // end of group

}; // namespace Math