summaryrefslogtreecommitdiffstats
path: root/src/lib/tlslite/utils/rijndael.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/tlslite/utils/rijndael.py')
-rwxr-xr-xsrc/lib/tlslite/utils/rijndael.py392
1 files changed, 392 insertions, 0 deletions
diff --git a/src/lib/tlslite/utils/rijndael.py b/src/lib/tlslite/utils/rijndael.py
new file mode 100755
index 000000000..cb2f54734
--- /dev/null
+++ b/src/lib/tlslite/utils/rijndael.py
@@ -0,0 +1,392 @@
+"""
+A pure python (slow) implementation of rijndael with a decent interface
+
+To include -
+
+from rijndael import rijndael
+
+To do a key setup -
+
+r = rijndael(key, block_size = 16)
+
+key must be a string of length 16, 24, or 32
+blocksize must be 16, 24, or 32. Default is 16
+
+To use -
+
+ciphertext = r.encrypt(plaintext)
+plaintext = r.decrypt(ciphertext)
+
+If any strings are of the wrong length a ValueError is thrown
+"""
+
+# ported from the Java reference code by Bram Cohen, bram@gawth.com, April 2001
+# this code is public domain, unless someone makes
+# an intellectual property claim against the reference
+# code, in which case it can be made public domain by
+# deleting all the comments and renaming all the variables
+
+import copy
+import string
+
+
+
+#-----------------------
+#TREV - ADDED BECAUSE THERE'S WARNINGS ABOUT INT OVERFLOW BEHAVIOR CHANGING IN
+#2.4.....
+import os
+if os.name != "java":
+ import exceptions
+ if hasattr(exceptions, "FutureWarning"):
+ import warnings
+ warnings.filterwarnings("ignore", category=FutureWarning, append=1)
+#-----------------------
+
+
+
+shifts = [[[0, 0], [1, 3], [2, 2], [3, 1]],
+ [[0, 0], [1, 5], [2, 4], [3, 3]],
+ [[0, 0], [1, 7], [3, 5], [4, 4]]]
+
+# [keysize][block_size]
+num_rounds = {16: {16: 10, 24: 12, 32: 14}, 24: {16: 12, 24: 12, 32: 14}, 32: {16: 14, 24: 14, 32: 14}}
+
+A = [[1, 1, 1, 1, 1, 0, 0, 0],
+ [0, 1, 1, 1, 1, 1, 0, 0],
+ [0, 0, 1, 1, 1, 1, 1, 0],
+ [0, 0, 0, 1, 1, 1, 1, 1],
+ [1, 0, 0, 0, 1, 1, 1, 1],
+ [1, 1, 0, 0, 0, 1, 1, 1],
+ [1, 1, 1, 0, 0, 0, 1, 1],
+ [1, 1, 1, 1, 0, 0, 0, 1]]
+
+# produce log and alog tables, needed for multiplying in the
+# field GF(2^m) (generator = 3)
+alog = [1]
+for i in xrange(255):
+ j = (alog[-1] << 1) ^ alog[-1]
+ if j & 0x100 != 0:
+ j ^= 0x11B
+ alog.append(j)
+
+log = [0] * 256
+for i in xrange(1, 255):
+ log[alog[i]] = i
+
+# multiply two elements of GF(2^m)
+def mul(a, b):
+ if a == 0 or b == 0:
+ return 0
+ return alog[(log[a & 0xFF] + log[b & 0xFF]) % 255]
+
+# substitution box based on F^{-1}(x)
+box = [[0] * 8 for i in xrange(256)]
+box[1][7] = 1
+for i in xrange(2, 256):
+ j = alog[255 - log[i]]
+ for t in xrange(8):
+ box[i][t] = (j >> (7 - t)) & 0x01
+
+B = [0, 1, 1, 0, 0, 0, 1, 1]
+
+# affine transform: box[i] <- B + A*box[i]
+cox = [[0] * 8 for i in xrange(256)]
+for i in xrange(256):
+ for t in xrange(8):
+ cox[i][t] = B[t]
+ for j in xrange(8):
+ cox[i][t] ^= A[t][j] * box[i][j]
+
+# S-boxes and inverse S-boxes
+S = [0] * 256
+Si = [0] * 256
+for i in xrange(256):
+ S[i] = cox[i][0] << 7
+ for t in xrange(1, 8):
+ S[i] ^= cox[i][t] << (7-t)
+ Si[S[i] & 0xFF] = i
+
+# T-boxes
+G = [[2, 1, 1, 3],
+ [3, 2, 1, 1],
+ [1, 3, 2, 1],
+ [1, 1, 3, 2]]
+
+AA = [[0] * 8 for i in xrange(4)]
+
+for i in xrange(4):
+ for j in xrange(4):
+ AA[i][j] = G[i][j]
+ AA[i][i+4] = 1
+
+for i in xrange(4):
+ pivot = AA[i][i]
+ if pivot == 0:
+ t = i + 1
+ while AA[t][i] == 0 and t < 4:
+ t += 1
+ assert t != 4, 'G matrix must be invertible'
+ for j in xrange(8):
+ AA[i][j], AA[t][j] = AA[t][j], AA[i][j]
+ pivot = AA[i][i]
+ for j in xrange(8):
+ if AA[i][j] != 0:
+ AA[i][j] = alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255]
+ for t in xrange(4):
+ if i != t:
+ for j in xrange(i+1, 8):
+ AA[t][j] ^= mul(AA[i][j], AA[t][i])
+ AA[t][i] = 0
+
+iG = [[0] * 4 for i in xrange(4)]
+
+for i in xrange(4):
+ for j in xrange(4):
+ iG[i][j] = AA[i][j + 4]
+
+def mul4(a, bs):
+ if a == 0:
+ return 0
+ r = 0
+ for b in bs:
+ r <<= 8
+ if b != 0:
+ r = r | mul(a, b)
+ return r
+
+T1 = []
+T2 = []
+T3 = []
+T4 = []
+T5 = []
+T6 = []
+T7 = []
+T8 = []
+U1 = []
+U2 = []
+U3 = []
+U4 = []
+
+for t in xrange(256):
+ s = S[t]
+ T1.append(mul4(s, G[0]))
+ T2.append(mul4(s, G[1]))
+ T3.append(mul4(s, G[2]))
+ T4.append(mul4(s, G[3]))
+
+ s = Si[t]
+ T5.append(mul4(s, iG[0]))
+ T6.append(mul4(s, iG[1]))
+ T7.append(mul4(s, iG[2]))
+ T8.append(mul4(s, iG[3]))
+
+ U1.append(mul4(t, iG[0]))
+ U2.append(mul4(t, iG[1]))
+ U3.append(mul4(t, iG[2]))
+ U4.append(mul4(t, iG[3]))
+
+# round constants
+rcon = [1]
+r = 1
+for t in xrange(1, 30):
+ r = mul(2, r)
+ rcon.append(r)
+
+del A
+del AA
+del pivot
+del B
+del G
+del box
+del log
+del alog
+del i
+del j
+del r
+del s
+del t
+del mul
+del mul4
+del cox
+del iG
+
+class rijndael:
+ def __init__(self, key, block_size = 16):
+ if block_size != 16 and block_size != 24 and block_size != 32:
+ raise ValueError('Invalid block size: ' + str(block_size))
+ if len(key) != 16 and len(key) != 24 and len(key) != 32:
+ raise ValueError('Invalid key size: ' + str(len(key)))
+ self.block_size = block_size
+
+ ROUNDS = num_rounds[len(key)][block_size]
+ BC = block_size / 4
+ # encryption round keys
+ Ke = [[0] * BC for i in xrange(ROUNDS + 1)]
+ # decryption round keys
+ Kd = [[0] * BC for i in xrange(ROUNDS + 1)]
+ ROUND_KEY_COUNT = (ROUNDS + 1) * BC
+ KC = len(key) / 4
+
+ # copy user material bytes into temporary ints
+ tk = []
+ for i in xrange(0, KC):
+ tk.append((ord(key[i * 4]) << 24) | (ord(key[i * 4 + 1]) << 16) |
+ (ord(key[i * 4 + 2]) << 8) | ord(key[i * 4 + 3]))
+
+ # copy values into round key arrays
+ t = 0
+ j = 0
+ while j < KC and t < ROUND_KEY_COUNT:
+ Ke[t / BC][t % BC] = tk[j]
+ Kd[ROUNDS - (t / BC)][t % BC] = tk[j]
+ j += 1
+ t += 1
+ tt = 0
+ rconpointer = 0
+ while t < ROUND_KEY_COUNT:
+ # extrapolate using phi (the round key evolution function)
+ tt = tk[KC - 1]
+ tk[0] ^= (S[(tt >> 16) & 0xFF] & 0xFF) << 24 ^ \
+ (S[(tt >> 8) & 0xFF] & 0xFF) << 16 ^ \
+ (S[ tt & 0xFF] & 0xFF) << 8 ^ \
+ (S[(tt >> 24) & 0xFF] & 0xFF) ^ \
+ (rcon[rconpointer] & 0xFF) << 24
+ rconpointer += 1
+ if KC != 8:
+ for i in xrange(1, KC):
+ tk[i] ^= tk[i-1]
+ else:
+ for i in xrange(1, KC / 2):
+ tk[i] ^= tk[i-1]
+ tt = tk[KC / 2 - 1]
+ tk[KC / 2] ^= (S[ tt & 0xFF] & 0xFF) ^ \
+ (S[(tt >> 8) & 0xFF] & 0xFF) << 8 ^ \
+ (S[(tt >> 16) & 0xFF] & 0xFF) << 16 ^ \
+ (S[(tt >> 24) & 0xFF] & 0xFF) << 24
+ for i in xrange(KC / 2 + 1, KC):
+ tk[i] ^= tk[i-1]
+ # copy values into round key arrays
+ j = 0
+ while j < KC and t < ROUND_KEY_COUNT:
+ Ke[t / BC][t % BC] = tk[j]
+ Kd[ROUNDS - (t / BC)][t % BC] = tk[j]
+ j += 1
+ t += 1
+ # inverse MixColumn where needed
+ for r in xrange(1, ROUNDS):
+ for j in xrange(BC):
+ tt = Kd[r][j]
+ Kd[r][j] = U1[(tt >> 24) & 0xFF] ^ \
+ U2[(tt >> 16) & 0xFF] ^ \
+ U3[(tt >> 8) & 0xFF] ^ \
+ U4[ tt & 0xFF]
+ self.Ke = Ke
+ self.Kd = Kd
+
+ def encrypt(self, plaintext):
+ if len(plaintext) != self.block_size:
+ raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(plaintext)))
+ Ke = self.Ke
+
+ BC = self.block_size / 4
+ ROUNDS = len(Ke) - 1
+ if BC == 4:
+ SC = 0
+ elif BC == 6:
+ SC = 1
+ else:
+ SC = 2
+ s1 = shifts[SC][1][0]
+ s2 = shifts[SC][2][0]
+ s3 = shifts[SC][3][0]
+ a = [0] * BC
+ # temporary work array
+ t = []
+ # plaintext to ints + key
+ for i in xrange(BC):
+ t.append((ord(plaintext[i * 4 ]) << 24 |
+ ord(plaintext[i * 4 + 1]) << 16 |
+ ord(plaintext[i * 4 + 2]) << 8 |
+ ord(plaintext[i * 4 + 3]) ) ^ Ke[0][i])
+ # apply round transforms
+ for r in xrange(1, ROUNDS):
+ for i in xrange(BC):
+ a[i] = (T1[(t[ i ] >> 24) & 0xFF] ^
+ T2[(t[(i + s1) % BC] >> 16) & 0xFF] ^
+ T3[(t[(i + s2) % BC] >> 8) & 0xFF] ^
+ T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i]
+ t = copy.copy(a)
+ # last round is special
+ result = []
+ for i in xrange(BC):
+ tt = Ke[ROUNDS][i]
+ result.append((S[(t[ i ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
+ result.append((S[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
+ result.append((S[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8)) & 0xFF)
+ result.append((S[ t[(i + s3) % BC] & 0xFF] ^ tt ) & 0xFF)
+ return string.join(map(chr, result), '')
+
+ def decrypt(self, ciphertext):
+ if len(ciphertext) != self.block_size:
+ raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(plaintext)))
+ Kd = self.Kd
+
+ BC = self.block_size / 4
+ ROUNDS = len(Kd) - 1
+ if BC == 4:
+ SC = 0
+ elif BC == 6:
+ SC = 1
+ else:
+ SC = 2
+ s1 = shifts[SC][1][1]
+ s2 = shifts[SC][2][1]
+ s3 = shifts[SC][3][1]
+ a = [0] * BC
+ # temporary work array
+ t = [0] * BC
+ # ciphertext to ints + key
+ for i in xrange(BC):
+ t[i] = (ord(ciphertext[i * 4 ]) << 24 |
+ ord(ciphertext[i * 4 + 1]) << 16 |
+ ord(ciphertext[i * 4 + 2]) << 8 |
+ ord(ciphertext[i * 4 + 3]) ) ^ Kd[0][i]
+ # apply round transforms
+ for r in xrange(1, ROUNDS):
+ for i in xrange(BC):
+ a[i] = (T5[(t[ i ] >> 24) & 0xFF] ^
+ T6[(t[(i + s1) % BC] >> 16) & 0xFF] ^
+ T7[(t[(i + s2) % BC] >> 8) & 0xFF] ^
+ T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i]
+ t = copy.copy(a)
+ # last round is special
+ result = []
+ for i in xrange(BC):
+ tt = Kd[ROUNDS][i]
+ result.append((Si[(t[ i ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
+ result.append((Si[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
+ result.append((Si[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8)) & 0xFF)
+ result.append((Si[ t[(i + s3) % BC] & 0xFF] ^ tt ) & 0xFF)
+ return string.join(map(chr, result), '')
+
+def encrypt(key, block):
+ return rijndael(key, len(block)).encrypt(block)
+
+def decrypt(key, block):
+ return rijndael(key, len(block)).decrypt(block)
+
+def test():
+ def t(kl, bl):
+ b = 'b' * bl
+ r = rijndael('a' * kl, bl)
+ assert r.decrypt(r.encrypt(b)) == b
+ t(16, 16)
+ t(16, 24)
+ t(16, 32)
+ t(24, 16)
+ t(24, 24)
+ t(24, 32)
+ t(32, 16)
+ t(32, 24)
+ t(32, 32)
+