
Bcfg2 Documentation
Release 1.2.0

Narayan Desai et al.

November 09, 2010

CONTENTS

1 Introduction 1
1.1 Architecture Overview . 1
1.2 What Operating Systems Does Bcfg2 Support? . 2

2 Installation 3
2.1 Prerequisites . 3
2.2 Download . 4
2.3 Installation from source . 4
2.4 Building packages from source . 5
2.5 Distribution-specific notes . 6

3 Getting started 9
3.1 Get and Install Bcfg2 Server . 9
3.2 Set up Repository . 9
3.3 Populate Repository . 10
3.4 Next Steps . 12

4 Architecture in Detail 13
4.1 Goals . 13
4.2 The Bcfg2 Client . 14
4.3 The Bcfg2 Server . 15
4.4 The Literal Configuration Specification . 16
4.5 Design Considerations . 17

5 The Bcfg2 Server 19
5.1 Plugins . 19
5.2 Admin . 99
5.3 Configuration Entries . 101
5.4 Info . 104
5.5 Bcfg2 Snapshots . 105

6 The Bcfg2 Client 109
6.1 Available client tools . 109
6.2 Other client-related documentation . 141

i

7 The Bcfg2 Reporting System 147
7.1 Bcfg2 Static Reporting System . 147
7.2 Bcfg2 Dynamic Reporting System . 149

8 Bcfg2 Development 157
8.1 Tips for Bcfg2 Development . 157
8.2 Environment setup for development . 158
8.3 Writing A Client Tool Driver . 158
8.4 Bcfg2 Plugin development . 159
8.5 Writing Bcfg2 Plugins . 160
8.6 Server Plugin Types . 162
8.7 Writing Bcfg2 Specification . 163
8.8 Writing Server Plugins . 165
8.9 Packages . 165
8.10 Testing . 166
8.11 Documentation . 167
8.12 Documentation Style Guide for Bcfg2 . 168
8.13 Emacs + YASnippet mode . 169
8.14 Vim Snippet Support . 170

9 Getting Help 173
9.1 Reporting bugs . 173
9.2 Mailing List . 173
9.3 IRC Channel . 173
9.4 FAQ . 174
9.5 Error Messages . 175
9.6 Manual pages . 177
9.7 Troubleshooting . 178

10 Glossary 183

11 Appendix 185
11.1 Example files . 185
11.2 Example configuration . 188
11.3 Contributors . 190
11.4 Books . 191
11.5 Papers . 191
11.6 Articles . 192
11.7 Guides . 192
11.8 Tools . 233

12 Unsorted Docs 235
12.1 Ways to get help . 235
12.2 HOWTOs . 237
12.3 Python SSL . 237
12.4 Notes on possible Windows support . 238
12.5 Writing Bcfg2 Specification . 240

13 Deprecated/obsolete documentation 247

ii

Index 249

iii

iv

CHAPTER

ONE

INTRODUCTION

Bcfg2 helps system administrators produce a consistent, reproducible, and verifiable description of their
environment, and offers visualization and reporting tools to aid in day-to-day administrative tasks. It is the
fifth generation of configuration management tools developed in the Mathematics and Computer Science
Division of Argonne National Laboratory.

It is based on an operational model in which the specification can be used to validate and optionally change
the state of clients, but in a feature unique to Bcfg2 the client’s response to the specification can also be used
to assess the completeness of the specification. Using this feature, Bcfg2 provides an objective measure
of how good a job an administrator has done in specifying the configuration of client systems. Bcfg2 is
therefore built to help administrators construct an accurate, comprehensive specification.

Bcfg2 has been designed from the ground up to support gentle reconciliation between the specification and
current client states. It is designed to gracefully cope with manual system modifications.

Finally, due to the rapid pace of updates on modern networks, client systems are constantly changing;
if required in your environment, Bcfg2 can enable the construction of complex change management and
deployment strategies.

1.1 Architecture Overview

Bcfg2 provides a declarative interface to system configuration. Its configuration specifications describe
a literal configuration goal state for clients. In this architecture, the Bcfg2 client tool is responsible for
determining what, if any, configuration operations must occur and then performing those operations. The
client also uploads statistics and client configuration state information. The design and implementation of
the reporting system is described on a separate page.

A comprehensive description of the Bcfg2 Architecture (and the choices behind the design) can be found at
Architecture in Detail.

1.1.1 Server

The role of the Bcfg2 server is rendering a client-specific target configuration description from a global
specification. The specification consists of a directory structure containing data for a variety of server
plugins. The Bcfg2 server has a plugin interface that can be used to interpret the configuration specification.

1

http://www.mcs.anl.gov/
http://www.mcs.anl.gov/
http://www.anl.gov/

Bcfg2 Documentation, Release 1.2.0

1.1.2 Client

The Bcfg2 client is responsible for determining what operations are necessary in order to reach the desired
configuration state. Read on for more information about The Bcfg2 Client.

1.2 What Operating Systems Does Bcfg2 Support?

Bcfg2 is fairly portable. It has been successfully run on:

• AIX, FreeBSD, OpenBSD, Mac OS X, OpenSolaris, Solaris.

• Many GNU/Linux distributions, including Archlinux, Blag, CentOS, Debian, Fedora, Gentoo,
gNewSense, Mandriva, OpenSUSE, Red Hat/RHEL, Scientific Linux, SuSE/SLES, Trisquel, and
Ubuntu.

Bcfg2 should run on any POSIX compatible operating system, however direct support for an operating
system’s package and service formats are limited by the currently available Available client tools (new client
tools are pretty easy to add). Check the FAQ for a more exact list of platforms on which Bcfg2 works‘.

2 Chapter 1. Introduction

http://www.ibm.com/aix
http://www.freebsd.org/
http://www.openbsd.org/
http://www.apple.com/macosx/
http://opensolaris.org/
http://www.sun.com/software/solaris/
http://www.gnu.org/gnu/Linux-and-gnu.html
http://www.archlinux.org
http://www.blagblagblag.org/
http://www.centos.org/
http://www.debian.org/
http://www.fedoraproject.org/
http://www.gentoo.org/
http://www.gnewsense.org/
http://www.mandriva.com/
http://opensuse.org/
http://www.redhat.com/rhel/
http://www.scientificlinux.org/
http://www.novell.com/linux/
http://trisquel.info/
http://www.ubuntu.com/

CHAPTER

TWO

INSTALLATION

Before installing, you will need to choose a machine to be the Bcfg2 server. We recommend a Linux-based
machine for this purpose, but the server will work on any supported operating system. Note that you may
eventually want to run a web server on this machine for reporting and serving up package repositories. The
server package only needs to be installed on your designated Bcfg2 server machine. The clients package
needs to be installed on any machine you plan to manage by Bcfg2.

2.1 Prerequisites

Bcfg2 has several server side prerequisites and a minimal set of client side requirements. This page describes
the prerequisite software situation on all supported platforms. The table describes what software is needed
on the client and server side.

2.1.1 Bcfg2 Client

Software Version Requires
libxml2 (if lxml is used) Any
libxslt (if lxml is used) Any libxml2
python 2.3-2.4, 2.5 1

lxml or elementtree 2 Any lxml: libxml2,
libxslt, python

python-apt 3 Any python
debsums (if APT tool driver is used) Any

1python 2.5 works with elementtree.
2elementtree is included in python 2.5 and later.
3python-apt is only required on platforms that use apt, such as Debian and Ubuntu.

3

Bcfg2 Documentation, Release 1.2.0

2.1.2 Bcfg2 Server

Software Version Requires
libxml2 2.6.24+
libxslt Any libxml2
python 2.2-2.5
lxml 0.9+ lxml: libxml2, libxslt, python
gamin or fam Any
python-gamin or python-fam Any gamin or fam, python
M2crypto Any python, openssl

2.2 Download

2.2.1 Tarball

The Bcfg2 source tarball can be grabbed from the Download page.

Version URL GPG key Release Date md5sum
1.1.0 Tarball GPGKey 9/27/10 13593938daf7e8b9a81cb4b677dc7f99

The full command to use with wget are listed below. Please replace <version> with 1.1.0.

wget ftp://ftp.mcs.anl.gov/pub/bcfg/bcfg2-<version>.tar.gz
wget ftp://ftp.mcs.anl.gov/pub/bcfg/bcfg2-<version>.tar.gz.gpg

All tarballs are signed with GPG key 7F7D197E. You can verify your download by importing the key and
running

$ gpg --recv-keys 0x75bf2c177f7d197e
$ gpg --verify bcfg2-<version>.tar.gz.gpg bcfg2-<version>.tar.gz

For older or prepreleases please visit the Download wiki page.

2.2.2 Git checkout

You can also get the latest (possibly broken) code via git

git clone git://git.mcs.anl.gov/bcfg2.git

2.3 Installation from source

If you are working with the release tarball of Bcfg2 you need to untar it before you can go on with the
installation

tar -xzf bcfg2-<version>.tar.gz

Now you can build Bcfg2 with. If you are working with a SVN checkout no <version> need to be specified.

4 Chapter 2. Installation

http://trac.mcs.anl.gov/projects/bcfg2/wiki/Download
ftp://ftp.mcs.anl.gov/pub/bcfg/bcfg2-1.1.0.tar.gz
ftp://ftp.mcs.anl.gov/pub/bcfg/bcfg2-1.1.0.tar.gz.gpg
http://trac.mcs.anl.gov/projects/bcfg2/wiki/Download

Bcfg2 Documentation, Release 1.2.0

cd bcfg2-<version>
python setup.py install --prefix=/install/prefix

This will install both the client and server on that machine.

2.4 Building packages from source

The Bcfg2 distribution contains two different spec files.

2.4.1 Building from Tarball

• Copy the tarball to /usr/src/packages/SOURCES/

• Extract another copy of it somewhere else (eg: /tmp) and retrieve the misc/bcfg2.spec file

• Run

rpmbuild -ba bcfg2.spec

• The resulting RPMs will be in /usr/src/packages/RPMS/ and SRPMs in /usr/src/packages/SRPMS

2.4.2 Building from an GIT Checkout

• Change to the redhat/ directory in the working copy

• Run

make

• The resulting RPMs will be in /usr/src/redhat/RPMS/ ‘and SRPMs in ‘/usr/src/redhat/SRPMS and will
have the SVN revision appended

2.4.3 Building RPM packages with rpmbuild

While you can go about building all these things from source, this how to will try and meet the dependencies
using packages from EPEL. The el5 package should be compatible with CentOS 5.x.

• Installation of the EPEL repository package

[root@centos ~]# rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/epel-release-5-4.noarch.rpm

• Now you can install the rest of the prerequisites

[root@centos ~]# yum install python-genshi python-cheetah python-lxml

• After installing git, check out the master branch

[root@centos redhat]# git clone git://git.mcs.anl.gov/bcfg2.git

2.4. Building packages from source 5

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL

Bcfg2 Documentation, Release 1.2.0

• Install the fedora-packager package

[root@centos ~]# yum install fedora-packager

• A directory structure for the RPM build process has to be established.

[you@centos ~]$ rpmdev-setuptree

• Change to the redhat directory of the checked out Bcfg2 source:

[you@centos ~]$ cd bcfg2/redhat/

• In the particular directory is a Makefile which will do the job of building the RPM packages. You
can do this as root, but it’s not recommanded

[you@centos redhat]$ make

• Now the new RPM package can be installed. Please adjust the path to your RPM package

[root@centos ~]# rpm -ihv /home/YOU/rpmbuild/RPMS/noarch/bcfg2-server-1.0.0-0.2r5835.noarch.rpm

2.5 Distribution-specific notes

The installation of Bcfg2 on a specific distribution depends on the used package management tool and the
disposability in the distribution’s package repository .

2.5.1 ArchLinux

Packages for Arch Linux are available in the Arch User Repository (AUR). Just use pacman to perform the
installation

pacman -S bcfg2 bcfg2-server

2.5.2 Debian

Packages of Bcfg2 are available for Debian Lenny, Debian Squeeze, and Debian Sid. The fastest way to get
Bcfg2 onto your Debian system is to use apt-get or aptitude.

sudo aptitude install bcfg2 bcfg2-server

If you want to use unofficial packages from Bcfg2. Add the following line to your /etc/apt/sources.list file

deb ftp://ftp.mcs.anl.gov/pub/bcfg/debian sarge/

Now just run aptitute in the way it is mentioned above.

For more details about running prerelease version of Bcfg2 on Debian systems, please refer to the Wiki.

6 Chapter 2. Installation

http://www.archlinux.org/
http://aur.archlinux.org/packages.php?ID=20979
http://trac.mcs.anl.gov/projects/bcfg2/wiki/PrecompiledPackages#UnofficialDebianRepository

Bcfg2 Documentation, Release 1.2.0

2.5.3 Fedora

The fastest way to get Bcfg2 Packages onto your Fedora system is to use yum or PackageKit. Yum will pull
in all dependencies of Bcfg2 automatically.

$ su -c ’yum install bcfg2-server bcfg2’

Be aware that the latest release of Bcfg2 may only be available for the Development release of Fedora
(Rawhide). With the activation of the Rawhide repository of Fedora you will be able to install it.

$ su -c ’yum install --enablerepo=rawhide bcfg2-server bcfg2’

This way is not recommanded on productive systems. Only for testing.

2.5.4 Gentoo

Early in July 2008, Bcfg2 was added to the Gentoo portage tree. So far it’s only keyworded for ~x86, but we
hope to see it soon in the amd64 and x64-solaris ports. If you’re using Gentoo on some other architecture, it
should still work provided that you have a reasonably up to date Python; try adding app-admin/bcfg2 ~* to
your /etc/portage/package.keywords file.

If you don’t use portage to install Bcfg2, you’ll want to make sure you have all the prerequisites installed
first. For a server, you’ll need:

• app-admin/gamin or app-admin/fam

• dev-python/lxml

Clients will need at least:

• app-portage/gentoolkit

2.5.5 OS X

Once macports is installed:

port install bcfg2

Using native OS X python

First, make sure you have Xcode installed as you need packagemaker which comes bundled in the Developer
tools.

Clone the git source:

git clone git://git.mcs.anl.gov/bcfg2.git

Change to the osx directory and type make. Your new package should be located at bcfg2-
‘’‘$VERSION’‘’.pkg (where ‘’‘$VERSION’‘’ is that which is specified in setup.py).

2.5. Distribution-specific notes 7

https://admin.fedoraproject.org/pkgdb/acls/name/bcfg2
https://www.fedoraproject.org

Bcfg2 Documentation, Release 1.2.0

2.5.6 RHEL / Centos / Scientific Linux

While you can go about building all these things from source, this section will try and meet the dependencies
using packages from EPEL 4. The el5 and the soon available el6 package should be compatible with CentOS
5.x/6.x and Scientific Linux.

EPEL:

[root@centos ~]# rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/epel-release-5-4.noarch.rpm

Install the bcfg2-server and bcfg2 RPMs:

[root@centos ~]# yum install bcfg2-server bcfg2

Note: The latest package for el5 is only available in the testing repository.

2.5.7 Ubuntu

The steps to bring Bcfg2 onto your Ubuntu system depends on your release.

• Dapper Add the following lines to /etc/apt/sources.list

deb ftp://ftp.mcs.anl.gov/pub/bcfg/ubuntu dapper/
deb http://archive.ubuntu.com/ubuntu dapper universe
deb-src http://archive.ubuntu.com/ubuntu dapper universe

• Edgy Add the following lines to /etc/apt/sources.list

deb ftp://ftp.mcs.anl.gov/pub/bcfg/ubuntu edgy/
deb http://archive.ubuntu.com/ubuntu edgy universe
deb-src http://archive.ubuntu.com/ubuntu edgy universe

• Feisty Those packages are available from the Ubuntu repositories.

To install the packages, just lauch the following command

sudo aptitude install bcfg2 bcfg2-server

For more details about running prerelease version of Bcfg2 on Ubuntu systems, please refer to the Wiki.

4 For more details check the EPEL instructions

8 Chapter 2. Installation

http://fedoraproject.org/wiki/EPEL
http://www.centos.org/
http://www.scientificlinux.org/
http://fedoraproject.org/wiki/EPEL
http://www.ubuntu.com
http://www.ubuntu.com
http://www.ubuntu.com
http://trac.mcs.anl.gov/projects/bcfg2/wiki/PrecompiledPackages#UbuntuLaunchpadBcfg2PPA
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL/FAQ#howtouse

CHAPTER

THREE

GETTING STARTED

The steps below should get you from just thinking about a configuration management system to an oper-
ational installation of Bcfg2. If you get stuck, be sure to check the mailinglist or to drop in on our IRC
Channel.

3.1 Get and Install Bcfg2 Server

We recommend running the server on a Linux machine for ease of deployment due to the availability of
packages for the dependencies.

First, you need to download and install Bcfg2. The section Installation in this manual describes the steps to
take. To start, you will need to install the server on one machine and the client on one or more machines.
Yes, your server can also be a client (and should be by the time your environment is fully managed).

3.2 Set up Repository

The next step after installing the Bcfg2 packages is to configure the server. You can easily set up a person-
alized default configuration by running, on the server,

bcfg2-admin init

You will be presented with a series of questions that will build a Bcfg2 configuration file in
/etc/bcfg2.conf, set up a skeleton repository (in /var/lib/bcfg2 by default), help you create
ssl certificates, and do any other similar tasks needed to get you started.

Once this process is done, you can start the Bcfg2 server:

/etc/init.d/bcfg2-server start

You can try it out by running the Bcfg2 client on the same machine, acting like it is your first client.

Note: The following command will tell the client to run in no-op mode, meaning it will only check the
client against the repository and report any changes it sees. It won’t make any changes (partially because
you haven’t populated the repository with any yet). However, nobody is perfect - you can make a typo, our
software can have bugs, monkeys can break in and hit enter before you are done. Don’t run this command

9

Bcfg2 Documentation, Release 1.2.0

on a production system if you don’t know what it does and aren’t prepared for the consequences. We don’t
know of anybody having problems with it before, but it is better to be safe than sorry.

And now for the command:

bcfg2 -q -v -n

That can be translated as “bcfg2 quick verbose no-op”. The output should be something similar to:

Loaded tool drivers:
Chkconfig POSIX PostInstall RPM

Phase: initial
Correct entries: 0
Incorrect entries: 0
Total managed entries: 0
Unmanaged entries: 242

Phase: final
Correct entries: 0
Incorrect entries: 0
Total managed entries: 0
Unmanaged entries: 242

Perfect! We have started out with an empty configuration, and none of our configuration elements are
correct. It doesn’t get much cleaner than that. But what about those unmanaged entries? Those are the extra
configuration elements (probably all packages at the moment) that still aren’t managed. Your goal now is to
migrate each of those plus any it can’t see up to the “Correct entries” line.

3.3 Populate Repository

Finally, you need to populate your repository. Unfortunately, from here on out we can’t write up a simple
recipe for you to follow to get this done. It is very dependent on your local configuration, your configuration
management goals, the politics surrounding your particular machines, and many other similar details. We
can, however, give you guidance.

After the above steps, you should have a toplevel repository structure that looks like:

bcfg-server:~ # ls /var/lib/bcfg2
Bundler/ Cfg/ Metadata/ Pkgmgr/ Rules/ SSHbase/ etc/

The place to start is the Metadata directory, which contains two files: clients.xml and groups.xml.
Your current clients.xml will look pretty close to:

<Clients version="3.0">
<Client profile="basic" pingable="Y" pingtime="0" name="bcfg-server.example.com"/>

</Clients>

The clients.xml file is just a series of <Client /> tags, each of which describe one host you manage.
Right now we only manage one host, the server machine we just created. This machine is bound to the
basic profile, is pingable, has a pingtime of 0, and has the name bcfg-server.example.com. The

10 Chapter 3. Getting started

Bcfg2 Documentation, Release 1.2.0

two “ping” parameters don’t matter to us at the moment, but the other two do. The name parameter is the
fully qualified domain name of your host, and the profile parameter maps that host into the groups.xml
file.

Our simple groups.xml file looks like:

<Groups version=’3.0’>
<Group profile=’true’ public=’false’ name=’basic’>

<Group name=’suse’/>
</Group>
<Group name=’ubuntu’ toolset=’debian’/>
<Group name=’debian’ toolset=’debian’/>
<Group name=’redhat’ toolset=’rh’/>
<Group name=’suse’ toolset=’rh’/>
<Group name=’mandrake’ toolset=’rh’/>
<Group name=’solaris’ toolset=’solaris’/>

</Groups>

There are two types of groups in Bcfg: profile groups (profile=’true’) and non-profile groups
(profile=’false’). Profile groups can act as top-level groups to which clients can bind, while non-
profile groups only exist as members of other groups. In our simple starter case, we have a profile group
named basic, and that is the group that our first client bound to. Our first client is a SuSE machine, so it
contains the suse group. Of course, bcfg2-admin isn’t smart enough to fill out the rest of your config,
so the suse group further down is empty.

Let’s say the first thing we want to set up on our machine is the message of the day. To do this, we simply
need to create a Bundle and add that Bundle to an appropriate group. In this simple example, we start out
by adding

<Bundle name=’motd’/>

to the basic group.

Next, we create a motd.xml file in the Bundler directory:

<Bundle name=’motd’ version=’2.0’>
<Path name=’/etc/motd’ />

</Bundle>

Now when we run the client, we get slightly different output:

Loaded tool drivers:
Chkconfig POSIX PostInstall RPM

Incomplete information for entry Path:/etc/motd; cannot verify

Phase: initial
Correct entries: 0
Incorrect entries: 1
Total managed entries: 1
Unmanaged entries: 242

In dryrun mode: suppressing entry installation for:
Path:/etc/motd

3.3. Populate Repository 11

Bcfg2 Documentation, Release 1.2.0

Phase: final
Correct entries: 0
Incorrect entries: 1
Total managed entries: 1
Unmanaged entries: 242

We now have an extra unmanaged entry, bringing our total number of managed entries up to one. To
manage it we need to copy /etc/motd to /var/lib/bcfg2/Cfg/etc/motd/. Note the lay-
out of that path: all plain-text config files live in the Cfg directory. The directory structure under that
directory directly mimics your real filesystem layout, making it easy to find and add new files. The
last directory is the name of the file itself, so in this case the full path to the motd file would be
/var/lib/bcfg2/Cfg/etc/motd/motd. Copy your real /etc/motd file to that location, run the
client again, and you will find that we now have a correct entry:

Loaded tool drivers:
Chkconfig POSIX PostInstall RPM

Phase: initial
Correct entries: 1
Incorrect entries: 0
Total managed entries: 1
Unmanaged entries: 242

Phase: final
Correct entries: 1
Incorrect entries: 0
Total managed entries: 1
Unmanaged entries: 242

Done! Now we just have 242 (or more) entries to take care of!

Bundler is a relatively easy directory to populate. You can find many samples of Bundles in the Bundle
Repository, many of which can be used without editing.

3.4 Next Steps

Several other utilities can help from this point on:

bcfg2-info is a utility that instantiates a copy of the Bcfg2 server core (minus the networking code) for
examination. From this, you can directly query:

• Client Metadata

• Which entries are provided by particular plugins

• Client Configurations

Run bcfg2-info, and type help and the prompt when it comes up.

bcfg2-admin can perform a variety of repository maintenance tasks. Run bcfg2-admin help for
details.

12 Chapter 3. Getting started

http://trac.mcs.anl.gov/projects/bcfg2/wiki/Plugins/Bundler/examples
http://trac.mcs.anl.gov/projects/bcfg2/wiki/Plugins/Bundler/examples

CHAPTER

FOUR

ARCHITECTURE IN DETAIL

Bcfg2 is based on a client-server architecture. The client is responsible for interpreting (but not processing)
the configuration served by the server. This configuration is literal, so no local process is required. After
completion of the configuration process, the client uploads a set of statistics to the server. This section will
describe the goals and then the architecture motivated by it.

4.1 Goals

• Model configurations using declarative semantics.

Declarative semantics maximize the utility of configuration management tools; they provide the most
flexibility for the tool to determine the right course of action in any given situation. This means
that users can focus on the task of describing the desired configuration, while leaving the task of
transitioning clients states to the tool.

• Configuration descriptions should be comprehensive.

This means that configurations served to the client should be sufficient to reproduce all desired func-
tionality. This assumption allows the use of heuristics to detect extra configuration, aiding in reliable,
comprehensive configuration definitions.

• Provide a flexible approach to user interactions.

Most configuration management systems take a rigid approach to user interactions; that is, either the
client system is always correct, or the central system is. This means that users are forced into an overly
proscribed model where the system asserts where correct data is. Configuration data modification is
frequently undertaken on both the configuration server and clients. Hence, the existence of a single
canonical data location can easily pose a problem during normal tool use. Bcfg2 takes a different
approach.

The default assumption is that data on the server is correct, however, the client has the option to run in
another mode where local changes are catalogued for server-side integration. If the Bcfg2 client is run
in dry run mode, it can help to reconcile differences between current client state and the configuration
described on the server. The Bcfg2 client also searches for extra configuration; that is, configuration that is
not specified by the configuration description. When extra configuration is found, either configuration has
been removed from the configuration description on the server, or manual configuration has occurred on the

13

Bcfg2 Documentation, Release 1.2.0

client. Options related to two-way verification and removal are useful for configuration reconciliation when
interactive access is used.

• Plugins and administrative applications.

• Incremental operations.

4.2 The Bcfg2 Client

The Bcfg2 client performs all client configuration or reconfiguration operations. It renders a declarative
configuration specification, provided by the Bcfg2 server, into a set of configuration operations which will,
if executed, attempt to change the client’s state into that described by the configuration specification. Con-
ceptually, the Bcfg2 client serves to isolate the Bcfg2 server and specification from the imperative operations
required to implement configuration changes.

This isolation allows declarative specifications to be manipulated symbolically on the server, without need-
ing to understand the properties of the underlying system tools. In this way, the Bcfg2 client acts as a sort
of expert system that knows how to implement declarative configuration changes.

The operation of the Bcfg2 client is intended to be as simple as possible. The normal configuration process
consists of four main steps:

• Probe Execution

During the probe execution stage, the client connects to the server and downloads a series of probes to
execute. These probes reveal local facts to the Bcfg2 server. For example, a probe could discover the
type of video card in a system. The Bcfg2 client returns this data to the server, where it can influence
the client configuration generation process.

• Configuration Download and Inventory

The Bcfg2 client now downloads a configuration specification from the Bcfg2 server. The configu-
ration describes the complete target state of the machine. That is, all aspects of client configuration
should be represented in this specification. For example, all software packages and services should
be represented in the configuration specification. The client now performs a local system inventory.
This process consists of verifying each entry present in the configuration specification. After this
check is completed, heuristic checks are executed for configuration not included in the configuration
specification. We refer to this inventory process as 2-way validation, as first we verify that the client
contains all configuration that is included in the specification, then we check if the client has any
extra configuration that isn’t present. This provides a fairly rigorous notion of client configuration
congruence. Once the 2-way verification process has been performed, the client has built a list of
all configuration entries that are out of spec. This list has two parts: specified configuration that is
incorrect (or missing) and unspecified configuration that should be removed.

• Configuration Update

The client now attempts to update its configuration to match the specification. Depending on options,
changes may not (or only partially) be performed. First, if extra configuration correction is enabled,
extra configuration can be removed. Then the remaining changes are processed. The Bcfg2 client
loops while progress is made in the correction of these incorrect configuration entries. This loop
results in the client being able to accomplish all it will be able to during one execution. Once all

14 Chapter 4. Architecture in Detail

Bcfg2 Documentation, Release 1.2.0

entries are fixed, or no progress is being made, the loop terminates. Once all configuration changes
that can be performed have been, bundle dependencies are handled. Bundle groupings result in two
different behaviors. Contained entries are assumed to be inter-dependent. To address this, the client re-
verifies each entry in any bundle containing an updates configuration entry. Also, services contained
in modified bundles are restarted.

• Statistics Upload

Once the reconfiguration process has concluded, the client reports information back to the server
about the actions it performed during the reconfiguration process. Statistics function as a detailed
return code from the client. The server stores statistics information. Information included in this
statistics update includes (but is not limited to):

– Overall client status (clean/dirty)

– List of modified configuration entries

– List of uncorrectable configuration entries

– List of unmanaged configuration entries

4.2.1 Architecture Abstraction

The Bcfg2 client internally supports the administrative tools available on different architectures. For exam-
ple, rpm and apt-get are both supported, allowing operation of Debian, Redhat, SUSE, and Mandriva
systems. The client toolset is determined based on the availability of client tools. The client includes a series
of libraries which describe how to interact with the system tools on a particular platform.

Three of the libraries exist. There is a base set of functions, which contain definitions describing how
to perform POSIX operations. Support for configuration files, directories, symlinks, hardlinks, etc., are
included here. Two other libraries subclass this one, providing support for Debian and rpm-based systems.

The Debian toolset includes support for apt-get and update-rc.d. These tools provide the ability to install
and remove packages, and to install and remove services.

The Redhat toolset includes support for rpm and chkconfig. Any other platform that uses these tools can
also use this toolset. Hence, all of the other familiar rpm-based distributions can use this toolset without
issue.

Other platforms can easily use the POSIX toolset, ignoring support for packages or services. Alternatively,
adding support for new toolsets isn’t difficult. Each toolset consists of about 125 lines of python code.

4.3 The Bcfg2 Server

The Bcfg2 server is responsible for taking a network description and turning it into a series of configuration
specifications for particular clients. It also manages probed data and tracks statistics for clients.

The Bcfg2 server takes information from two sources when generating client configuration specifications.
The first is a pool of metadata that describes clients as members of an aspect-based classing system. That

4.3. The Bcfg2 Server 15

Bcfg2 Documentation, Release 1.2.0

is, clients are defined in terms of aspects of their behavior. The other is a file system repository that con-
tains mappings from metadata to literal configuration. These are combined to form the literal configuration
specifications for clients.

4.3.1 The Configuration Specification Construction Process

As we described in the previous section, the client connects to the server to request a configuration speci-
fication. The server uses the client’s metadata and the file system repository to build a specification that is
tailored for the client. This process consists of the following steps:

• Metadata Lookup

The server uses the client’s IP address to initiate the metadata lookup. This initial metadata consists
of a (profile, image) tuple. If the client already has metadata registered, then it is used. If not,
then default values are used and stored for future use. This metadata tuple is expanded using some
profile and class definitions also included in the metadata. The end result of this process is metadata
consisting of hostname, profile, image, a list of classes, a list of attributes and a list of bundles.

• Abstract Configuration Construction

Once the server has the client metadata, it is used to create an abstract configuration. An abstract
configuration contains all of the configuration elements that will exist in the final specification without
any specifics. All entries will be typed (i.e. the tagname will be one of Package, Path, Action, etc)
and will include a name. These configuration entries are grouped into bundles, which document
installation time interdependencies.

• Configuration Binding

The abstract configuration determines the structure of the client configuration, however, it doesn’t yet
contain literal configuration information. After the abstract configuration is created, each configura-
tion entry must be bound to a client-specific value. The Bcfg2 server uses plugins to provide these
client-specific bindings. The Bcfg2 server core contains a dispatch table that describes which plugins
can handle requests of a particular type. The responsible plugin is located for each entry. It is called,
passing in the configuration entry and the client’s metadata. The behavior of plugins is explicitly un-
defined, so as to allow maximum flexibility. The behaviours of the stock plugins are documented else-
where in this manual. Once this binding process is completed, the server has a literal, client-specific
configuration specification. This specification is complete and comprehensive; the client doesn’t need
to process it at all in order to use it. It also represents the totality of the configuration specified for the
client.

4.4 The Literal Configuration Specification

Literal configuration specifications are served to clients by the Bcfg2 server. This is a differentiating factor
for Bcfg2; all other major configuration management systems use a non-literal configuration specification.
That is, the clients receive a symbolic configuration that they process to implement target states. We took
the literal approach for a few reasons:

• A small list of configuration element types can be defined, each of which can have a set of defined
semantics. This allows the server to have a well-formed model of client-side operations. Without a

16 Chapter 4. Architecture in Detail

Bcfg2 Documentation, Release 1.2.0

static lexicon with defined semantics, this isn’t possible. This allows the server, for example, to record
the update of a package as a coherent event.

• Literal configurations do not require client-side processing. Removing client-side processing reduces
the critical footprint of the tool. That is, the Bcfg2 client (and the tools it calls) need to be functional,
but the rest of the system can be in any state. Yet, the client will receive a correct configuration.

• Having static, defined element semantics also requires that all operations be defined and implemented
in advance. The implementation can maximize reliability and robustness. In more ad-hoc setups,
these operations aren’t necessarily safely implemented.

4.4.1 The Structure of Specifications

Configuration specifications contain some number of clauses. Two types of clauses exist. Bundles are
groups of inter-dependent configuration entities. The purpose of bundles is to encode installation-time
dependencies such that all new configuration is properly activated during reconfiguration operations. That
is, if a daemon configuration file is changed, its daemon should be restarted. Another example of bundle
usage is the reconfiguration of a software package. If a package contains a default configuration file, but it
gets overwritten by an environment-specific one, then that updated configuration file should survive package
upgrade. The purpose of bundles is to describe services, or reconfigured software packages. Independent
clauses contain groups of configuration entities that aren’t related in any way. This provides a convenient
mechanism that can be used for bulk installations of software.

Each of these clauses contains some number of configuration entities. A number of configuration entities
exist including Path, Package, Service, etc. Each of these correspond to the obvious system item. Config-
uration specifications can get quite large; many systems have specifications that top one megabyte in size.
An example of one is included in an appendix. These configurations can be written by hand, or generated
by the server.

4.5 Design Considerations

This section will discuss several aspects of the design of Bcfg2, and the particular use cases that motivated
them. Initially, this will consist of a discussion of the system metadata, and the intended usage model for
package indices as well.

4.5.1 System Metadata

Bcfg2 system metadata describes the underlying patterns in system configurations. It describes commonali-
ties and differences between these specifications in a rigorous way. The groups used by Bcfg2’s metadata are
responsible for differentiating clients from one another, and building collections of allocatable configuration.

The Bcfg2 metadata system has been designed with several high-level goals in mind. Flexibility and preci-
sion are paramount concerns; no configuration should be undescribable using the constructs present in the
Bcfg2 repository. We have found (generally the hard way) that any assumptions about the inherent simplic-
ity of configuration patterns tend to be wrong, so obscenely complex configurations must be representable,
even if these requirements seem illogical during the implementation.

In particular, we wanted to streamline several operations that commonly occurred in our environment.

4.5. Design Considerations 17

Bcfg2 Documentation, Release 1.2.0

• Copying one node’s profile to another node.

In many environments, many nodes are instances of a common configuration specification. They all
have similar roles and software. In our environment, desktop machines were the best example of
this. Other than strictly per-host configuration like SSH keys, all desktop machines use a common
configuration specification. This trivializes the process of creating a new desktop machine.

• Creating a specialized version of an existing profile.

In environments with highly varied configurations, departmental infrastructure being a good example,
“another machine like X but with extra software” is a common requirement. For this reason, it must
be trivially possible to inherit most of a configuration specification from some more generic source,
while being able to describe overriding aspects in a convenient fashion.

• Compose several pre-existing configuration aspects to create a new profile.

The ability to compose configuration aspects allows the easy creation of new profiles based on a
series of predefined set of configuration specification fragments. The end result is more agility in
environments where change is the norm.

In order for a classing system to be comprehensive, it must be usable in complex ways. The Bcfg2
metadata system has constructs that map cleanly to first-order logic. This implies that any complex
configuration pattern can be represented (at all) by the metadata, as first-order logic is provably com-
prehensive. (There is a discussion later in the document describing the metadata system in detail, and
showing how it corresponds to first-order logic)

These use cases motivate several of the design decisions that we made. There must be a many to one
correspondence between clients and groups. Membership in a given profile group must imbue a client with
all of its configuration properties.

4.5.2 Package Management

The interface provided in the Bcfg2 repository for package specification was designed with automation in
mind. The goal was to support an append only interface to the repository, so that users do not need to
continuously re-write already existing bits of specification.

18 Chapter 4. Architecture in Detail

CHAPTER

FIVE

THE BCFG2 SERVER

5.1 Plugins

Plugins are the source of all logic used in building a config. They can perform one of several tasks:

1. Generating configuration inventory lists for clients

2. Generating configuration entry contents for clients

3. Probing client-side state (like hardware inventory, etc) – the generic client probing mechanism is
described at Probes.

4. Automating administrative tasks (e.g. SSHbase which automates ssh key management)

5. Generating client per-entry installation decision-lists

5.1.1 Enabling Plugins

In order for the Bcfg2 server to use a plugin, it needs to be listed on the plugins line in bcfg2.conf.

5.1.2 Default Plugins

The Bcfg2 repository has the default plugin list currently distributed with Bcfg2:
http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/bcfg2/src/lib/Server/Plugins.

Connectors

Properties

The Properties plugin is a connector plugin that adds information from properties files into client metadata
instances.

Enabling Properties First, mkdir /var/lib/bcfg2/Properties. Each property XML file goes
in this directory. Each will automatically be cached by the server, and reread/reparsed upon changes. Add
Properties to your plugins line in /etc/bcfg2.conf.

19

http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/bcfg2/src/lib/Server/Plugins.
http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/bcfg2/src/lib/Server/Plugins

Bcfg2 Documentation, Release 1.2.0

Data Structures Properties adds a new dictionary to client metadata instances that maps property file
names to PropertyFile instances. PropertyFile instances contain parsed XML data as the “data” attribute.

Usage Specific property files can be referred to in templates as metadata.Properties[<filename>]. The data
attribute is an LXML element object. (Documented here)

Currently, no access methods are defined for this data, but as we formulate common use cases, we will add
them to the !PropertyFile class as methods. This will simplify templates.

Accessing Properties contest from TGenshi Access contents of Properties/auth.xml

${metadata.Properties[’auth.xml’].data.find(’file’).find(’bcfg2.key’).text}

Each of these plugins has a corresponding subdirectory with the same name in the Bcfg2 repository.

Metadata (Grouping)

GroupPatterns

The GroupPatterns plugin is a connector that can assign clients group membership pased on patterns in
client hostnames. Two basic methods are supported: regular expressions (NamePatterns) and ranges (Nam-
eRange). Hosts that match the specification are placed in the group or groups specified by the pattern.

Setup

1. Enable the GroupPatterns plugin

2. Create the GroupPatterns/config.xml file (similar to the example below).

3. Client groups will be augmented based on the specification

Pattern Types NamePatterns use regular expressions to match client hostnames. All matching clients are
placed in the resulting groups. NamePatterns also have the ability to use regular expression matched groups
to dynamically create group names. The first two examples below are NamePatterns. The first adds client
hostname to both groups gp-test1 and gp-test2. The second matches the hostname as a group and places the
client in a group called group-<hostname>.

NameRange patterns allow the use of the application of numeric ranges to host names. The final pattern
below matches any of node1-node32 and places them all into the rack1 group. Dynamically generated
group names are not supported with NameRange.

Examples
<GroupPatterns>

<GroupPattern>
<NamePattern>hostname</NamePattern>
<Group>gp-test1</Group>
<Group>gp-test2</Group>

20 Chapter 5. The Bcfg2 Server

http://codespeak.net/lxml/tutorial.html#the-element-class

Bcfg2 Documentation, Release 1.2.0

</GroupPattern>
<GroupPattern>

<NamePattern>(.*)</NamePattern>
<Group>group-$1’</Group>

</GroupPattern>
<GroupPattern>

<NameRange>node[[1-32]]</NameRange>
<Group>rack1</Group>

</GroupPattern>
</GroupPatterns>

Cluster Example Functional aspects are extracted from hostname strings, and dynamic groups are cre-
ated.

Expected hostname to group mapping:

xnfs1.example.com -> nfs-server
xnfs2.example.com -> nfs-server
xlogin1.example.com -> login-server
xlogin2.example.com -> login-server
xpvfs1.example.com -> pvfs-server
xpvfs2.example.com -> pvfs-server
xwww.example.com -> www-server

GroupPatterns configuration:

<GroupPatterns>
<GroupPattern>

<NamePattern>^x(\w[^\d|\.]+)\d*\..*</NamePattern>
<Group>$1-server</Group>

</GroupPattern>
</GroupPatterns>

Regex explanation:

1. !^x Match any hostname that begins with “x”

2. (w[!^d|.]+) followed by one or more word characters that are not a decimal digit or ”.” and save the
string to $1

3. d* followed by 0 or more decimal digit(s)

4. ..* followed by a ”.”

5. .* followed by 1 or more of anything else.

Metadata

The metadata mechanism has two types of information, client metadata and group metadata. The client
metadata describes which top level group a client is associated with.The group metadata describes groups
in terms of what bundles and other groups they include. Each aspect grouping and clients’ memberships are
reflected in the Metadata/groups.xml and Metadata/clients.xml files, respectively.

5.1. Plugins 21

Bcfg2 Documentation, Release 1.2.0

Usage of Groups in Metadata Clients are assigned membership of groups in the Metadata descriptions.
Clients can be directly assigned to ‘profile’ or ‘public’ groups. Client membership of all other groups is by
those groups being associated with the profile or public groups. This file can be indirectly modified from
clients through use of the -p flag to bcfg2.

Clients are associated with profile groups in Metadata/clients.xml as shown below.

Metadata/clients.xml The Metadata/clients.xml file contains the mappings of Profile Groups to clients.
The file is just a series of <Client /> tags, each of which describe one host. A sample file is below:

<Clients version="3.0">
<Client profile="backup-server" pingable="Y" pingtime="0" name="backup.example.com"/>
<Client profile="console-server" pingable="Y" pingtime="0" name="con.example.com"/>
<Client profile="kerberos-master" pingable="Y" pingtime="0" name="kdc.example.com"/>
<Client profile="mail-server" pingable="Y" pingtime="0" name="mail.example.com"/>
<Client name=’foo’ address=’10.0.0.1’ pingable=’N’ pingtime=’-1’>

<Alias name=’foo-mgmt’ address=’10.1.0.1’/>
</Client>

</Clients>

Clients Tag The Clients tag has the following possible attributes:

Name Description Values
version Client schema version String

Client Tag Each entry in clients.xml must have the following properties:

Name Description Val-
ues

name Host name of client. This needs to be the name (possibly a FQDN) returned by a reverse
lookup on the connecting IP address.

String

pro-
file

Profile group name to associate this client with. String

Additionally, the following properties can be specified:

Name Description Values
Alias Alternative name and address for the client. XML Element
address Establishes an extra IP address that resolves to this client. ip address
location Requires requests to come from an IP address that matches the client record. fixed|floating
password Establishes a per-node password that can be used instead of the global password. String
pingable If the client is pingable (deprecated; for old reporting system) Y|N
pingtime Last time the client was pingable (deprecated; for old reporting system) String
secure Requires the use of the per-client password for this client. true|false
uuid Establishes a per-node name that can be used to bypass dns-based client resolution. String

For detailed information on client authentication see authentication

22 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Metadata/groups.xml The Metadata/groups.xml file contains Group and Profile definitions.
Here’s a simple Metadata/groups.xml file:

<Groups version=’3.0’>
<Group name=’mail-server’ profile=’true’

public=’false’
comment=’Top level mail server group’ >

<Bundle name=’mail-server’/>
<Bundle name=’mailman-server’/>
<Group name=’apache-server’/>
<Group name=’rhel-as-4-x86’/>
<Group name=’nfs-client’/>
<Group name=’server’/>

</Group>
<Group name=’rhel-as-4-x86’>

<Group name=’rhel’/>
</Group>
<Group name=’apache-server’/>
<Group name=’nfs-client’/>
<Group name=’server’/>
<Group name=’rhel’/>

</Groups>

Nested/chained groups definitions are conjunctive (logical and). For instance, in the above example, a
client associated with the Profile Group mail-server is also a member of the apache-server,
rhel-as-4-x86, nfs-client, server and rhel groups.

Groups describe clients in terms for abstract, disjoint aspects. Groups can be combined to form complex
descriptions of clients that use configuration commonality and inheritance. Groups have several attributes,
described below:

Metadata Groups Tag The Groups tag has the following possible attributes:

Name Description Values
version Group schema version String
origin URL of master version (for common repository) String
revision Master version control revision String

Metadata Group Tag The Group Tag has the following possible attributes:

5.1. Plugins 23

Bcfg2 Documentation, Release 1.2.0

Name Description Val-
ues

name Name of the group String
pro-
file

If a client can be directly associated with this group True|False

pub-
lic

If a client can freely associate itself with this group. For use with the bcfg2 -p option on
the client.

True|False

cate-
gory

A group can only contain one instance of a group in any one category. This provides the
basis for representing groups which are conjugates of one another in a rigorous way. It
also provides the basis for negation.

String

de-
fault

Set as the profile to use for clients that are not associated with a profile in
clients.xml

True|False

com-
ment

English text description of group String

Groups can also contain other groups and bundles.

Use of XInclude XInclude is a W3C specification for the inclusion of external XML documents into
XML source files. Much like the use of #include in C, this allows complex definitions to be split into
smaller, more manageable pieces. As of bcfg2-0.9.0pre1, the Metadata plugin supports the use of XInclude
specifications to split the clients.xml and groups.xml files. This mechanism allows the following
specification to produce useful results:

<Groups version=’3.0’ xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:include href="my-groups.xml" />
<xi:include href="their-groups.xml" />

</Groups>

Each of the included groups files has the same format. These files are properly validated by
bcfg2-repo-validate. This mechanism is useful for composing group definitions from multiple
sources, or setting different permissions in an svn repository.

Probes The metadata plugin includes client-side probing functionality. This is fully documented here.

Each of these plugins has a corresponding subdirectory with the same name in the Bcfg2 repository.

Abstract Configuration (Structures)

Bundler

Bundler is used to describe groups of inter-dependent configuration entries, such as the combination of
packages, configuration files, and service activations that comprise typical Unix daemons. Bundles are used
to add groups of configuration entries to the inventory of client configurations, as opposed to describing par-
ticular versions of those entries. For example, a bundle could say that the configuration file /etc/passwd
should be included in a configuration, but will not describe the particular version of /etc/passwd that a
given client will receive.

24 Chapter 5. The Bcfg2 Server

http://www.w3.org/TR/xinclude/

Bcfg2 Documentation, Release 1.2.0

Groups can be used inside of bundles to differentiate which entries particular clients will recieve; this is
useful for the case where entries are named differently across systems; for example, one linux distro may
have a package called openssh while another uses the name ssh. Configuration entries nested inside of
Group elements only apply to clients who are a member of those groups; multiple nested groups must all
apply. Also, groups may be negated; entries included in such groups will only apply to clients who are not
a member of said group.

The following is an annotated copy of a bundle:

<Bundle name=’ssh’ version=’2.0’>
<Path name=’/etc/ssh/ssh_host_dsa_key’/>
<Path name=’/etc/ssh/ssh_host_rsa_key’/>
<Path name=’/etc/ssh/ssh_host_dsa_key.pub’/>
<Path name=’/etc/ssh/ssh_host_rsa_key.pub’/>
<Path name=’/etc/ssh/ssh_host_key’/>
<Path name=’/etc/ssh/ssh_host_key.pub’/>
<Path name=’/etc/ssh/sshd_config’/>
<Path name=’/etc/ssh/ssh_config’/>
<Path name=’/etc/ssh/ssh_known_hosts’/>
<Group name=’rpm’>

<Package name=’openssh’/>
<Package name=’openssh-askpass’/>
<Service name=’sshd’/>
<Group name=’fedora’ >

<Group name=’fc4’ negate=’true’>
<Package name=’openssh-clients’/>

</Group>
<Package name=’openssh-server’/>

</Group>
</Group>
<Group name=’deb’>

<Package name=’ssh’/>
<Service name=’ssh’/>

</Group>
</Bundle>

In this bundle, most of the entries are common to all systems. Clients in group deb get one extra package and
service, while clients in group rpm get two extra packages and an extra service. In addition, clients in group
fedora and group rpm get one extra package entries, unless they are not in the fc4 group, in which case,
they get an extra package. Notice that this file doesn’t describe which versions of these entries that clients
should get, only that they should get them. (Admittedly, this example is slightly contrived, but demonstrates
how group entries can be used in bundles)

5.1. Plugins 25

Bcfg2 Documentation, Release 1.2.0

Group Entry
all /etc/ssh/ssh_host_dsa_key
all /etc/ssh/ssh_host_rsa_key
all /etc/ssh/ssh_host_dsa_key.pub
all /etc/ssh/ssh_host_rsa_key.pub
all /etc/ssh/ssh_host_key
all /etc/ssh/ssh_host_key.pub
all /etc/ssh/sshd_config
all /etc/ssh/ssh_config
all /etc/ssh/ssh_known_hosts
rpm Package openssh
rpm Package openssh-askpass
rpm Service sshd
rpm and fedora Package openssh-server
rpm and fedora and not fc4 Package openssh-clients
deb Package ssh
deb Service ssh

Genshi templates Genshi templates are used by adding a Genshi xml-style template to the Bundler direc-
tory with a .genshi file extension. Version 0.4 or newer of genshi is required.

Important: The .genshi file extension is required in order for the server to know that the Bundle should
be rendered using Genshi.

Motivation Static Bundles have served us relatively well, but have a relatively weak set of interal per-
client differentiation mechanisms. In static Bundles, the group hierarchy (from the perspective of the current
client) is available for use via boolean constraints with negation. This notion does not mesh well with the
use of Probes, which can result in freeform data. In the presence of probe results, clients can have a wide
array of data, and rendering down to a boolean logic may not always be desirable. Moreover, while static
Bundles allow entry inclusion or exclusion based on group memberships, they do not allow programatic
entry rendering. Hence, Genshi templates not only provide more control options, but it also provide the
ability to perform new entry rendering operations.

The Genshi templating system is used internally.

Use Bcfg uses the Genshi API for templates, and performs a XML format stream rendering of the template
into an lxml entry, which is included in the client configuration. Client metadata is avilable inside of the
template using the ‘metadata’ name. Note that only the markup Genshi template format can be used, as the
target output format is XML.

A Genshi template looks much like a Bundler file, except the Bundle tag has an additional xmlns:py attribute.
See the examples.

Altsrc

26 Chapter 5. The Bcfg2 Server

http://genshi.edgewall.org/

Bcfg2 Documentation, Release 1.2.0

Fun and Profit using altsrc New in version 0.9.5. Altsrc is a generic, bcfg2-server-side mechanism for
performing configuration entry name remapping for the purpose of data binding. Altsrc can be used as a
parameter for any entry type, and can be used in any structure, including Bundler and Base.

Use Cases

• Equivalent configuration entries on different architectures with different names

• Mapping entries with the same name to different bind results in a configuration (two packages with
the same name but different types)

• A single configuration entry across multiple specifications (multi-plugin, or multi-repo)

Examples

• Consider the case of /etc/hosts on linux and /etc/inet/hosts on solaris. These files contain the same
data in the same format, and should typically be synchronized, however, exist in different locations.
Classically, one would need to create one entry for each in Cfg or TCheetah and perform manual
synchronization. Or, you could use symlinks and pray. Altsrc is driven from the bundle side. For
example:

<Bundle name=’netinfo’>
<Group name=’solaris’>
<Path name=’/etc/inet/hosts’ altsrc=’/etc/hosts’/>

</Group>
<Group name=’linux’>

<Path name=’/etc/hosts’/>
</Group>

</Bundle>

In this case, when a solaris host gets the ‘netinfo’ bundle, it will get the first Path entry, which in-
cludes an altsrc parameter. This will cause the server to bind the entry as if it were a Path called
/etc/hosts. This configuration entry is still called /etc/inet/hosts, and is installed as such.

• On encap systems, frequently multiple packages of the same name, but of different types will exist.
For example, there might be an openssl encap package, and an openssl rpm package. This can be dealt
with using a bundle like:

<Bundle name=’openssl’>
<Package name=’openssl’ altsrc=’openssl-encap’/>
<Package name=’openssl’ altsrc=’openssl-rpm’/>

</Bundle>

This bundle will bind data for the packages “openssl-encap” and “openssl-rpm”, but will be delivered
to the client with both packages named “openssl” with different types.

• Finally, consider the case where there exist complicated, but completely independent specifications
for the same configuration entry but different groups of clients. The following bundle will allow the
use of two different TCheetah templates /etc/firewall-rules-external and /etc/firewall-rules-internal for
different clients based on their group membership.

5.1. Plugins 27

Bcfg2 Documentation, Release 1.2.0

<Bundle name=’firewall’>
...
<Group name=’conduit’>

<Path name=’/etc/firewall-rules’ altsrc=’/etc/firewall-rules-external’/>
</Group>
<Group name=’internal’>

<Path name=’/etc/firewall-rules’ altsrc=’/etc/firewall-rules-internal’/>
</Group>

</Bundle>

• Consider the case where a variety of files can be constructed by a single template (TCheetah or TGen-
shi). It would be possible to copy this template into the proper location for each file, but that requires
proper synchronization upon modification and knowing up front what the files will all be called. In-
stead, the following bundle allows the use of a single template for all proper config file instances.

<Bundle name=’netconfig’>
<Path name=’/etc/sysconfig/network-scripts/ifcfg-eth0’ altsrc=’/etc/ifcfg-template’/>
<Path name=’/etc/sysconfig/network-scripts/ifcfg-eth1’ altsrc=’/etc/ifcfg-template’/>
<Path name=’/etc/sysconfig/network-scripts/ifcfg-eth2’ altsrc=’/etc/ifcfg-template’/>

</Bundle>

Examples In some cases, configuration files need to include the client’s hostname in their name. The
following template produces such a config file entry.

<Bundle name=’foo’ xmlns:py="http://genshi.edgewall.org/">
<Path name=’/etc/package-${metadata.hostname}’/>

</Bundle>

Depending on the circumstance, these configuration files can either be handled by individual entries in Cfg,
TCheetah, or TGenshi, or can be mapped to a single entry by using the Fun and Profit using altsrc feature.

In this example, configuration file names are built using probed results from the client. getmac is a probe
that gathers client MAC addresses and returns them in a newline delimited string.

<Bundle name=’networkinterfaces’ xmlns:py="http://genshi.edgewall.org/">
<?python

files = $metadata.Probes["getmacs"].split("\n")
?>
<Path py:for="file in files" name="/etc/sysconfig/network/ifcfg-eth-${file}" altsrc=’/etc/ifcfg-template’/>

</Bundle>

Note:

• The use of the altsrc directive causes all ifcfg files to be handled by the same plugin and entry.

• The <?python ?> blocks have only been available in genshi since 0.4
(http://genshi.edgewall.org/ticket/84)

If you want a file to be only on a per-client basis, you can use an if declaration:

<Bundle name=’bacula’ xmlns:py="http://genshi.edgewall.org/">
<Path name="/etc/bacula/bconsole.conf"/>
<Path name="/etc/bacula/bacula-fd.conf"/>

28 Chapter 5. The Bcfg2 Server

http://genshi.edgewall.org/ticket/84

Bcfg2 Documentation, Release 1.2.0

<Path name="/etc/bacula/bacula-sd.conf"/>
<Path py:if="metadata.hostname == ’foo.bar.com’" name="/etc/bacula/bacula-dir.conf"/>

</Bundle>

or alternately:

<Bundle name=’bacula’ xmlns:py="http://genshi.edgewall.org/">
<Path name="/etc/bacula/bconsole.conf"/>
<Path name="/etc/bacula/bacula-fd.conf"/>
<Path name="/etc/bacula/bacula-sd.conf"/>
<py:if test="metadata.hostname == ’foo.bar.com’">

<Path name="/etc/bacula/bacula-dir.conf"/>
</py:if>

</Bundle>

The latter form is preferred if the if block contains multiple files. While this example is simple, the test in
the if block can in fact be any python statement.

Other examples Some simple examples of Bundles can be found in the example repository at the locations
in the following table:

Bundle Name Description
atxml At bundle
bcfgxml Bcfg2 client bundle
ntpxml NTP bundle
sshxml OpenSSH bundle
syslogxml syslog bundle

In addition to the example repository, the following is a list of some more complex example Bundles.

kernel This is a rather complex Bundle for the Linux kernel from a system with a history of complexity.
There are two kernel versions present on the systems at all times (the current and the previous), so the pack-
age names all contain versioning information. This includes kernel-specific modules for various specialties
- gm for Myrinet boards, gpfs and pvfs for storage clients, and nvidia modules for machines with
Nvidia cards. Note that only the ia32 machines have Nvidia cards in them, and thus those entries only
exist in that section.

It is easy to see that there is duplication of effort between the two architectures - both have the same linux
package entry names, for example. This Bundle could be arranged in many different ways, some of which
might be better than this one. Feel free to hack as needed.

<Bundle name=’kernel’ version=’2.0’>
<Group name=’sles8’>

<!-- =================== ia32 ==================== -->
<Group name=’ia32’>

<Path name=’/etc/lilo.conf’/>
<Path name=’/boot/vmlinuz’/>
<Path name=’/boot/initrd’/>
<Path name=’/boot/vmlinuz.old’/>
<Path name=’/boot/initrd.old’/>
<PostInstall name=’/sbin/lilo’/>

5.1. Plugins 29

http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/repository/Bundler/at.xml
http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/repository/Bundler/bcfg.xml
http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/repository/Bundler/ntp.xml
http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/repository/Bundler/ssh.xml
http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/repository/Bundler/syslog.xml

Bcfg2 Documentation, Release 1.2.0

<!-- Current kernel -->
<Package name=’linux-2.4.21-314.tg1’/>
<Package name=’linux-2.4.21-314.tg1-source’/>
<!-- Old kernel -->
<Package name=’linux-2.4.21-309.tg1’/>
<Group name=’gm’>

<Package name=’gm-kernel-2.4.21-314.tg1’/>
<Package name=’gm-kernel-2.4.21-309.tg1’/>

</Group>
<Group name=’storage-client’>
<!-- Current kernel -->
<Package name=’gpfs-modules-2.4.21-314.tg1’/>
<Package name=’pvfs2-kernel-2.4.21-314.tg1’/>
<!-- Old kernel -->
<Package name=’gpfs-modules-2.4.21-309.tg1’/>
<Package name=’pvfs2-kernel-2.4.21-309.tg1’/>

</Group>
<Group name=’nvidia’>
<Package name=’NVIDIA-kernel-2.4.21-314.tg1’/>
<Package name=’NVIDIA-kernel-2.4.21-309.tg1’/>

</Group>
</Group>
<!-- =================== ia64 ==================== -->
<Group name=’ia64’>

<Path name=’/boot/efi/SuSE/elilo.conf’/>
<!-- Current kernel -->
<Package name=’linux-2.4.21-314.tg1’/>
<Package name=’linux-2.4.21-314.tg1-source’/>
<!-- Old kernel -->
<Package name=’linux-2.4.21-309.tg1’/>
<Group name=’gm’>

<Package name=’gm-kernel-2.4.21-314.tg1’/>
<Package name=’gm-kernel-2.4.21-309.tg1’/>

</Group>
<Group name=’storage-client’>
<!-- Current kernel -->
<Package name=’gpfs-modules-2.4.21-314.tg1’/>
<Package name=’pvfs2-kernel-2.4.21-314.tg1’/>
<!-- Old kernel -->
<Package name=’gpfs-modules-2.4.21-309.tg1’/>
<Package name=’pvfs2-kernel-2.4.21-309.tg1’/>

</Group>
</Group>

</Group>
</Bundle>

moab This is a fairly simple Bundle for the Moab workload manager.

<Bundle name=’moab’ version=’2.0’>
<Path name=’/var/spool/moab’/>
<Path name=’/var/spool/moab/moab.cfg’/>
<Group name=’moab-server’>

30 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

<Path name=’/etc/init.d/moab’/>
<Service name=’moab’/>

</Group>
</Bundle>

nagios A Bundle for the Nagios service. This Bundle installs all of our local Nagios plugins, takes into
account that the SNMP package changed names between SLES 8 and SLES 9, and works on both the Nagios
server and the clients.

<Bundle name=’nagios-client’ version=’2.0’>
<Group name=’sles8’>

<Package name=’ucdsnmp’/>
</Group>
<Group name=’sles9’>

<Package name=’net-snmp’/>
</Group>
<Package name=’nagios-plugins’/>
<Package name=’perl-SNMP’/>
<Package name=’radiusclient’ />
<Package name=’postgresql-libs’ />
<Package name=’mysql-shared’ />
<Path name=’/etc/hosts.deny’/>
<Path name=’/etc/services’/>
<Path name=’/etc/snmpd.conf’/>
<Path name=’/usr/lib/nagios/plugins/check_disks_scratchgpfs1.tg’/>
<Path name=’/usr/lib/nagios/plugins/check_fs.mds’/>
<Path name=’/usr/lib/nagios/plugins/check_gm_network.tg’/>
<Path name=’/usr/lib/nagios/plugins/check_gpfs_wan.tg’/>
<Path name=’/usr/lib/nagios/plugins/check_hung_jobs.tg’/>
<Path name=’/usr/lib/nagios/plugins/check_mem.mds’/>
<Path name=’/usr/lib/nagios/plugins/check_mem.tg’/>
<Path name=’/usr/lib/nagios/plugins/check_nvidia_acceleration.tg’/>
<Path name=’/usr/lib/nagios/plugins/check_os.mds’/>
<Path name=’/usr/lib/nagios/plugins/check_procinfo.mds’/>
<Path name=’/usr/lib/nagios/plugins/check_torque.tg’/>
<Path name=’/usr/lib/nagios/plugins/check_uname_r.tg’/>
<Path name=’/usr/lib/nagios/plugins/check_uname_r.tg.conf’/>
<Service name=’snmpd’/>
<Group name=’nagios-server’>
<Package name=’nagios’/>
<Package name=’nagios-devel’/>
<Package name=’nagios-www’/>
<Path name=’/etc/httpd/conf.d/nagios.conf’/>
<Path name=’/etc/nagios/cgi.cfg’/>
<Path name=’/etc/nagios/checkcommands.cfg’/>
<Path name=’/etc/nagios/nagios.cfg’/>
<Path name=’/etc/nagios/resource.cfg’/>

</Group>
</Bundle>

Note: You may also want to have a look at the NagiosGen plugin.

5.1. Plugins 31

Bcfg2 Documentation, Release 1.2.0

ntp Despite its lack of groups, this Bundle controls both ntp servers and clients. It does this through the
use of host-specific entries in the Cfg repository. It is left as an exercise for the reader to do this better
through use of groups.

<Bundle name=’ntp’>
<Package name=’xntp’/>
<Path name=’/etc/sysconfig/xntp’/>
<Path name=’/etc/sysconfig/clock’/>
<Path name=’/etc/ntp.conf’/>
<Service name=’xntpd’/>

</Bundle>

snmpd A simple bundle for a SNMP daemon with a package, a service and a configuration file.

<Bundle name="snmpd" version="3.0">
<Package name="snmpd"/>
<Service name="snmpd"/>
<Path name="/etc/snmp/snmpd.conf"/>

</Bundle>

torque = torque.xml =

A longer Bundle that includes many group-specific entries.

<Bundle name=’torque’ version=’1.0’>
<Service name=’nfs’/>
<Service name=’nfslock’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/spool’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/undelivered’/>
<Path name=’/var/spool/torque/pbs_environment’/>
<Path name=’/var/spool/torque/torque.server’/>
<Path name=’/var/spool/torque/server_name’/>
<Service name=’jumbo’/>
<Group name=’torque-mom’>
<Service name=’torque_mom’/>
<Path name=’/etc/init.d/torque_mom’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/aux’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/checkpoint’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/mom_logs’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/mom_priv’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/mom_priv/jobs’/>
<Path name=’/var/spool/torque/mom_priv/config’/>
<Path name=’/var/spool/torque/mom_priv/prologue’/>
<Path name=’/var/spool/torque/mom_priv/epilogue’/>

</Group>
<Group name=’torque-server’>

<Service name=’torque_server’/>
<Path name=’/etc/init.d/torque_server’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/server_logs’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/server_priv’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/server_priv/accounting’/>

32 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/server_priv/acl_groups’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/server_priv/acl_hosts’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/server_priv/acl_svr’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/server_priv/acl_users’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/server_priv/jobs’/>
<BoundPath type=’directory’ owner=’root’ group=’root’ perms=’0755’ name=’/var/spool/torque/server_priv/queues’/>

</Group>
</Bundle>

yp = yp.xml =

Note that this Bundle includes Group sections. Toplevel elements go to anybody that includes this Bundle,
but clients that belong to the yp-client and yp-server groups get their own specialized treatment too.

<Bundle name=’yp’ version=’2.0’>
<Package name=’yp-tools’/>
<Path name=’/etc/nsswitch.conf’/>
<Path name=’/etc/yp.conf’/>
<Path name=’/etc/defaultdomain’/>
<Group name=’yp-client’>

<Package name=’ypbind’/>
<Service name=’ypbind’/>
<Service name=’portmap’/>

</Group>
<Group name=’yp-server’>

<Package name=’ypserv’/>
<Service name=’ypserv’/>
<Path name=’/etc/ypserv.conf’/>

</Group>
</Bundle>

Fun and Profit using altsrc

New in version 0.9.5. Altsrc is a generic, bcfg2-server-side mechanism for performing configuration entry
name remapping for the purpose of data binding. Altsrc can be used as a parameter for any entry type, and
can be used in any structure, including Bundler and Base.

Use Cases

• Equivalent configuration entries on different architectures with different names

• Mapping entries with the same name to different bind results in a configuration (two packages with
the same name but different types)

• A single configuration entry across multiple specifications (multi-plugin, or multi-repo)

Examples

• Consider the case of /etc/hosts on linux and /etc/inet/hosts on solaris. These files contain the same
data in the same format, and should typically be synchronized, however, exist in different locations.

5.1. Plugins 33

Bcfg2 Documentation, Release 1.2.0

Classically, one would need to create one entry for each in Cfg or TCheetah and perform manual
synchronization. Or, you could use symlinks and pray. Altsrc is driven from the bundle side. For
example:

<Bundle name=’netinfo’>
<Group name=’solaris’>
<Path name=’/etc/inet/hosts’ altsrc=’/etc/hosts’/>

</Group>
<Group name=’linux’>

<Path name=’/etc/hosts’/>
</Group>

</Bundle>

In this case, when a solaris host gets the ‘netinfo’ bundle, it will get the first Path entry, which in-
cludes an altsrc parameter. This will cause the server to bind the entry as if it were a Path called
/etc/hosts. This configuration entry is still called /etc/inet/hosts, and is installed as such.

• On encap systems, frequently multiple packages of the same name, but of different types will exist.
For example, there might be an openssl encap package, and an openssl rpm package. This can be dealt
with using a bundle like:

<Bundle name=’openssl’>
<Package name=’openssl’ altsrc=’openssl-encap’/>
<Package name=’openssl’ altsrc=’openssl-rpm’/>

</Bundle>

This bundle will bind data for the packages “openssl-encap” and “openssl-rpm”, but will be delivered
to the client with both packages named “openssl” with different types.

• Finally, consider the case where there exist complicated, but completely independent specifications
for the same configuration entry but different groups of clients. The following bundle will allow the
use of two different TCheetah templates /etc/firewall-rules-external and /etc/firewall-rules-internal for
different clients based on their group membership.

<Bundle name=’firewall’>
...
<Group name=’conduit’>

<Path name=’/etc/firewall-rules’ altsrc=’/etc/firewall-rules-external’/>
</Group>
<Group name=’internal’>

<Path name=’/etc/firewall-rules’ altsrc=’/etc/firewall-rules-internal’/>
</Group>

</Bundle>

• Consider the case where a variety of files can be constructed by a single template (TCheetah or TGen-
shi). It would be possible to copy this template into the proper location for each file, but that requires
proper synchronization upon modification and knowing up front what the files will all be called. In-
stead, the following bundle allows the use of a single template for all proper config file instances.

<Bundle name=’netconfig’>
<Path name=’/etc/sysconfig/network-scripts/ifcfg-eth0’ altsrc=’/etc/ifcfg-template’/>
<Path name=’/etc/sysconfig/network-scripts/ifcfg-eth1’ altsrc=’/etc/ifcfg-template’/>
<Path name=’/etc/sysconfig/network-scripts/ifcfg-eth2’ altsrc=’/etc/ifcfg-template’/>

</Bundle>

34 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Base

The Base plugin is a structure plugin that provides the ability to add lists of unrelated entries into client
configuration entry inventories.

Base works much like Bundler in its file format. The main difference between Base and Bundler is that Base
files are included in all clients’ configuration whereas bundles must be included explicitly in your Metadata.
See the Bundler page for details.

If you have lots of unconnected items (for instance: software packages whose configuration wasn’t modified,
and that are also not depended on by other packages; or single directories or files not belonging to a package),
using Bundles in Metadata would clutter or enlarge your Metadata/groups.xml file, because they all
would need to be explicitly specified. Base/ on the other hand is the perfect place to put these items.

Without using Base, you would be forced to put them directly into your group definitions in
groups.xml, either as many small bundles (substantially enlarging it) or into something like
Bundler/unrelated-entries.xml. Using the latter is especially bad if you mix packages and
services in your Bundle, since for any updated package in that bundle, the now-related services would be
restarted.

The Base entries can still be assigned based on group membership, but when they aren’t part of a group,
each and every client gets the entry. So Base is also a great place to put entries that a large number of your
clients will get.

For example, you could have a file Base/packages.xml

<Base>
<Package name=’acpid’/>
<Package name=’auditd’/>
[...]
<Group name=’openSUSE11.2’>

<Package name=’syslog-ng’/>
</Group>
<Group name=’openSUSE11.3’>

<Package name=’rsyslog’/>
</Group>
[...]
<Package name=’zlib’/>

</Base>

Note: You don’t have to reference to the files in Base from anywhere. As long as you include Base in
your plugins = ... line in bcfg2.conf, these are included automatically.

Note: Your Base files have to match the pattern Base/*.xml to be included.

The decision when to use Base and when to use Bundler depends on the configuration entry in question, and
what you are trying to achieve.

Base is mainly used for cases where you don’t want/need to explicitly include particular configuration items.
Let’s say all your machines are various linux distributions. In this case, you may want to manage the
/etc/hosts file using Base instead of Bundler since you will not have to include any Bundles in your
Metadata. However, you could alternatively have a base ‘linux’ group that all the clients inherit which
includes a ‘linux’ Bundle with the /etc/hosts configuration entry.

5.1. Plugins 35

Bcfg2 Documentation, Release 1.2.0

Each of these plugins has a corresponding subdirectory with the same name in the Bcfg2 repository.

Literal Configuration (Generators)

TGenshi

This page documents the TGenshi plugin. This plugin works with version 0.4 and newer of the genshi
library.

The TGenshi plugin allows you to use the Genshi templating system to create files, instead of the various
diff-based methods offered by the Cfg plugin. It also allows you to include the results of probes executed
on the client in the created files.

To begin, you will need to download and install the Genshi templating engine.

To install on CentOS or RHEL 5, run:

sudo yum install python-genshi

Once it is installed, you can enable it by adding TGenshi to the generators line in /etc/bcfg2.conf
on your Bcfg server. For example:

generators = SSHbase,Cfg,Pkgmgr,Svcmgr,Rules,TGenshi

The TGenshi plugin makes use of a Cfg-like directory structure located in in a TGenshi subdirectory of your
repository, usually /var/lib/bcfg2/TGenshi. Each file has a directory containing two file types,
template and info. Templates are named according to the genshi format used; template.txt uses the genshi
text format, and template.xml uses the XML format.

If used with Genshi 0.5 or later the plugin also supports the new style text template format for files named
template.newtxt. One of the advantages of the new format is that it does not use # as a command delimiter,
making it easier to utilize for configuration files that use # as a comment character.

Only one template format may be used per file served. Info files are identical to those used in Cfg, and
info.xml files are supported.

Inside of templates

• metadata is the client’s metadata

• properties.properties is an xml document of unstructured data

See the genshi documentation for examples of Genshi syntax.

Examples: Old Genshi Syntax Genshi’s web pages recommend against using this syntax, as it may
disappear from future releases.

Group Negation Templates are also useful for cases where more sophisticated boolean operations than
those supported by Cfg are needed. For example, the template:

36 Chapter 5. The Bcfg2 Server

http://genshi.edgewall.org
http://genshi.edgewall.org/wiki/Documentation/0.5.x/text-templates.html
http://genshi.edgewall.org/wiki/Documentation

Bcfg2 Documentation, Release 1.2.0

#if "ypbound" in metadata.groups and "workstation" in metadata.groups
client is ypbound workstation
#end
#if "ubuntu" not in metadata.groups and "desktop" in metadata.groups
client is a desktop, but not an ubuntu desktop
#end

Produces:

<Path type="file" name="/bar.conf" owner="root" perms="0644" group="root">client is ypbound workstation
client is a desktop, but not an ubuntu desktop
</Path>

This flexibility provides the ability to build much more compact and succinct definitions of configuration
contents than Cfg can.

File permissions File permissions for entries handled by TGenshi are controlled via the use of Info files.
Note that you cannot use both a Permissions entry and a Path entry to handle the same file.

Error handling Situations may arrise where a templated file cannot be generated due to missing or incom-
plete information. A TemplateError can be raised to force a bind failure and prevent sending an incomplete
file to the client. For example, this template:

{% python
from genshi.template import TemplateError
grp = None
for g in metadata.groups:

if g.startswith(’ganglia-gmond-’):
grp = g
break

else:
raise TemplateError, "Missing group"

%}\

will fail to bind if the client is not a member of a group starting with “ganglia-gmond-”. The syslogs on the
server will contain this message:

bcfg2-server[5957]: Genshi template error: Missing group
bcfg2-server[5957]: Failed to bind entry: Path /etc/ganglia/gmond.conf

indicating the bind failure and message raised with the TemplateError.

FAQs Question

How do I escape the $ (dollar sign) in a TGenshi text template? For example, if I want to include SVN
(subversion) keywords like Id or $HeadURL$ in TGenshi-generated files, or am templating a bourne
shell (sh/bash) script or Makefile (make).

Answer

5.1. Plugins 37

Bcfg2 Documentation, Release 1.2.0

Use $$ (double dollar sign) to output a literal $ (dollarsign) in a TGenshi text template. So instead of Id,
you’d use $$Id$$. See also Genshi tickets #282: Document $$ escape convention and #283: Allow for
redefinition of template syntax per-file.

Examples

bcfg2-cron As submitted by Kamil Kisiel

The following is my /etc/cron.d/bcfg2 file. It uses the python random module seeded with the client
hostname to generate a random time for the client to check in. The hostname seed ensures the generated
file is the same each time the client checks in. This cron file helps to distribute the load on the Bcfg2 server
since not all machines are checking in at the same time.:

{% python
from genshi.builder import tag
import random
random.seed(metadata.hostname)
%}\
${random.randint(0,60)} * * * * root /usr/sbin/bcfg2 &> /dev/null

You can apply the same concept to the other time fields by adding another ${random.randint()} call.

clientsxml As submitted by dclark

Here is an example of maintaining the bcfg2 server’s /var/lib/bcfg2/Metadata/clients.xml
file using TGenshi.

There are two main advantages:

1. Password storage is centralized in the Properties/passwords.xml file this helps maintain
consistency, makes changing passwords easier, and also makes it easier to share your configurations
with other sites/people.

2. You can template the file using Genshi’s {% def %} syntax, which makes clients.xml much more
readable. An important thing to note is how the name variable is handled - when just referring
to it the standard ${name} syntax is used, but when it is used as a variable in the expression to
get the password, password=”${metadata.Properties[’passwords.xml’].find(‘password’).find(‘bcfg2-
client’).find(name).text}”, it is just referred to as name.

There is the disadvantage that sometimes 2 passes will be needed to get to a consistent state.

Possible improvements:

1. Wrapper for bcfg2 client runs on the bcfg2 server, perhaps using a call to bcfg2-info buildfile, so
clients.xml is always generated before everything else happens (since the state of clients.xml can
influence everything else bcfg2-server does).

2. We really don’t care what the client passwords are, just that they exist, so instead of listing them a
master password combined with some kind of one-way hash based on the name might make more
sense, and make Properties/passwords.xml easier to maintain.

• TGenshi/var/lib/bcfg2/Metadata/clients.xml/template.newtxt:

38 Chapter 5. The Bcfg2 Server

http://genshi.edgewall.org/ticket/282
http://genshi.edgewall.org/ticket/283
http://genshi.edgewall.org/ticket/283

Bcfg2 Documentation, Release 1.2.0

<!-- TGenshi/var/lib/bcfg2/Metadata/clients.xml/template.newtxt -->
<!-- Do not edit this file directly - edit only the above template -->

{# Doc: http://bcfg2.org/wiki/Authentication #}\
{% def static(profile,name,address) %}

<Client
profile="${profile}"
name="${name}"
uuid="${name}"
password="${metadata.Properties[’passwords.xml’].find(’password’).find(’bcfg2-client’).find(name).text}"
address="${address}"
location="fixed"
secure="true"

/>\
{% end %}\
{% def dynamic(profile,name) %}

<Client
profile="${profile}"
name="${name}"
uuid="${name}"
password="${metadata.Properties[’passwords.xml’].find(’password’).find(’bcfg2-client’).find(name).text}"
location="floating"
secure="true"

/>\
{% end %}\
<Clients version="3.0">\

${static(’group-server-collab’,’campaigns.example.com’,’192.168.111.1’)}
${static(’group-server-collab’,’info.office.example.com’,’192.168.111.2’)}
${static(’group-server-config’,’config.example.com’,’192.168.111.3’)}
${dynamic(’group-project-membercard’,’membercard’)}
${dynamic(’group-person-somename’,’somename.office.example.com’)}

</Clients>

• Properties/passwords.xml snippit:

<Properties>
<password>

<bcfg2-client>
<campaigns.example.com>FAKEpassword1</campaigns.example.com>
<info.office.example.com>FAKEpassword2</info.office.example.com>
<config.example.com>FAKEpassword3</config.example.com>
<membercard>FAKEpassword4</membercard>
<somename.office.example.com>FAKEpassword5</somename.office.example.com>

</bcfg2-client>
</password>

</Properties>

ganglia Another interesting example of TGenshi templating is to automatically generate gmond/gmetad
configuration files. The idea is that each cluster is headless: it communicates with the rest of the cluster
members on an isolated multicast IP address and port. Any of the cluster members is therefore isolated on
that particular ip/port pair. Additionally, each gmond instance also listens on UDP. This allows for any of
the cluster members to be polled for information on the entire cluster!

5.1. Plugins 39

Bcfg2 Documentation, Release 1.2.0

The second part of the trick is in gmetad.conf. Here, we dynamically generate a list of clusters (based
on profiles names) and a list of members to poll (based on the clients in said profiles). As the number of
profiles and client grows, this list will grow automatically as well. When a new host is added, gmetad will
receive an updated configuration and act accordingly.

There is one caveat though. The gmetad.conf parser is hard coded to read 16 arguments per
data_source line. If you have more than 15 nodes in a cluster, you will see a warning in the logs.
You can either ignore it, or truncate the list to the first 15 members.

In our environment, a profile is a one to one match with the role of that particular host. You can also do this
based on groups, or any other client property.

Bundler/ganglia.xml
<Bundle name=’ganglia’ version=’2.0’ revision=’$Revision$’ origin=’$HeadURL$’ >

<Package name=’ganglia-gmond’ />
<Package name=’ganglia-gmond-modules-python’ />
<Path name=’/etc/ganglia/gmond.conf’ />
<Service name=’gmond’ />
<Action name=’gmond-reload’ />

<Group name=’gmetad-server’>
<Package name=’ganglia-gmetad’/>
<Package name=’ganglia-web’/>
<Package name=’rrdtool’/>
<Path name=’/etc/ganglia/gmetad.conf’ />
<Service name=’gmetad’ />

</Group>
</Bundle>

Rules/services-ganglia.xml
<Rules priority=’10’ revision=’$Revision$’ origin=’$HeadURL$’ >

<Service name=’gmond’ type=’chkconfig’ status=’on’ />
<Group name=’gmetad-server’>

<Service name=’gmetad’ type=’chkconfig’ status=’on’ />
</Group>

</Rules>

TGenshi/etc/ganglia/gmetad.conf/template.newtxt
{% python

client_metadata = metadata.query.all()
profile_array = {}
seen = []
for item in client_metadata:

if item.profile not in seen:
seen.append(item.profile)
profile_array[item.profile]=[]

profile_array[item.profile].append(item.hostname)
seen.sort()

%}\

40 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

gridname "Our Grid"

{% for profile in seen %}
data_source "${profile}" \
{% for host in profile_array[profile] %}\
${host} \
{% end %}\
{% end %}

rrd_rootdir "/var/lib/ganglia/rrds"

TGenshi/etc/ganglia/gmond.conf/template.newtxt
{% python
from genshi.builder import tag
import random
random.seed(metadata.profile)
last_octet=random.randint(2,254)
%}\
/*
$$Id$$
$$HeadURL$$

*/

/* This configuration is as close to 2.5.x default behavior as possible
The values closely match ./gmond/metric.h definitions in 2.5.x */

globals {
daemonize = yes
setuid = yes
user = nobody
debug_level = 0
max_udp_msg_len = 1472
mute = no
deaf = no
host_dmax = 1800 /* 30 minutes */
cleanup_threshold = 604800 /*secs=1 week */
gexec = no
send_metadata_interval = 0

}

/* If a cluster attribute is specified, then all gmond hosts are wrapped inside

* of a <CLUSTER> tag. If you do not specify a cluster tag, then all <HOSTS> will

* NOT be wrapped inside of a <CLUSTER> tag. */
cluster {

name = "${metadata.profile}"
owner = "user@company.net"
latlong = "unspecified"
url = "unspecified"

}

/* The host section describes attributes of the host, like the location */
host {

5.1. Plugins 41

Bcfg2 Documentation, Release 1.2.0

location = "unspecified"
}

/* Feel free to specify as many udp_send_channels as you like. Gmond
used to only support having a single channel */

udp_send_channel {
host = ${metadata.hostname}
port = 8649

}
udp_send_channel {

mcast_join = 239.2.11.${last_octet}
port = 8649
ttl = 1

}

/* You can specify as many udp_recv_channels as you like as well. */
udp_recv_channel {

port = 8649
bind = ${metadata.hostname}

}
udp_recv_channel {

mcast_join = 239.2.11.${last_octet}
bind = 239.2.11.${last_octet}
port = 8649

}

/* You can specify as many tcp_accept_channels as you like to share
an xml description of the state of the cluster */

tcp_accept_channel {
port = 8649

}

/* Each metrics module that is referenced by gmond must be specified and
loaded. If the module has been statically linked with gmond, it does not
require a load path. However all dynamically loadable modules must include
a load path. */

modules {
/* [snip] */

grubconf Automate the build of grub.conf based on probe data. In this case, we take the results from three
probes, serial-console-speed, grub-serial-order, and current-kernel to fill in a few variables. In addition, we
want at least two entries set up for the kernel: a multiuser and a single user option.

grub.conf generated by anaconda
#
Note that you do not have to rerun grub after making changes to this file
NOTICE: You have a /boot partition. This means that
all kernel and initrd paths are relative to /boot/, eg.
root (hd0,0)
kernel /vmlinuz-version ro root=/dev/VolGroup00/LogVol00
initrd /initrd-version.img
#boot=/dev/sda

42 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

default=0
timeout=5
serial --unit=0 --speed=${metadata.Probes[’serial-console-speed’]}
terminal --timeout=5 ${metadata.Probes[’grub-serial-order’]}

{% for kernbootoption in ["", "single"] %}\
title Red Hat Enterprise Linux Server (${metadata.Probes[’current-kernel’]})) ${kernbootoption}

root (hd0,0)
kernel /vmlinuz-${metadata.Probes[’current-kernel’]} ro root=/dev/VolGroup00/LogVol00 console=ttyS0,${metadata.Probes[’serial-console-speed’]}n8 console=tty0 rhgb quiet ${kernbootoption}
initrd /initrd-${metadata.Probes[’current-kernel’]}.img

{% end %}\

hosts This is an example of creating /etc/hosts based on metadata.hostname:

Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
::1 localhost6.localdomain6 localhost6
{% python
import socket
import re
ip = socket.gethostbyname(metadata.hostname)

shortname = re.split("\.", metadata.hostname)
%}\
${ip} ${metadata.hostname} ${shortname[0]}

iptables

• Setup a TGenshi base iptables file that contains the basic rules you want every host to have

• Create a custom dir that has group and host specific rules you want to apply

• To be safe you should have a client side IptablesDeadmanScript if you intend on having bcfg2 bounce
iptables upon rule updates

Note: When updating files in the includes directory, you will need to touch the TGenshi template to
regenerate the template contents.

/repository/TGenshi/etc/sysconfig/iptables/template.newtxt
{% python

from genshi.builder import tag
import os,sys
import Bcfg2.Options

opts = { ’repo’: Bcfg2.Options.SERVER_REPOSITORY }
setup = Bcfg2.Options.OptionParser(opts)
setup.parse(’--’)
repo = setup[’repo’]
basedir = ’%s’ % (repo)

5.1. Plugins 43

Bcfg2 Documentation, Release 1.2.0

for instance: /var/lib/bcfg2/custom/etc/sysconfig/iptables/
bcfg2BaseDir = basedir + ’/includes’ + name + ’/’

def checkHostFile(hostName, type):
fileName = bcfg2BaseDir + type + ’.H_’ + hostName
if os.path.isfile(fileName)==True :

return fileName
else:

return fileName

def checkGroupFile(groupName, type):
fileName = bcfg2BaseDir + type + ’.G_’ + groupName
if os.path.isfile(fileName)==True :

return fileName
else:

return fileName

%}\
BCFG2 GENERATED IPTABLES
DO NOT CHANGE THIS
$$Id$$
$$HeadURL$$
Templates live in ${bcfg2BaseDir}
Manual customization of this file will get reverted.
----------------------------- FILTER ---------------------------------
Default CHAINS for FILTER:

*filter
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [0:0]
:NO-SMTP - [0:0]

#Default rules
#discard malicious packets
-A INPUT -p tcp --tcp-flags ALL ACK,RST,SYN,FIN -j DROP
-A INPUT -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP
-A INPUT -p tcp --tcp-flags SYN,RST SYN,RST -j DROP
#Allow incoming ICMP
-A INPUT -p icmp -m icmp -j ACCEPT
#Accept localhost traffic
-A INPUT -i lo -j ACCEPT
Allow already established sessions to remain
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

Deny inbound SMTP delivery (still allows outbound connections)
-A INPUT -m state --state NEW -m tcp -p tcp --tcp-flags FIN,SYN,RST,ACK SYN --dport 25 -j NO-SMTP
-A NO-SMTP -j LOG --log-prefix " Incoming SMTP (denied) "
-A NO-SMTP -j DROP

Allow SSH Access
-A INPUT -p tcp -m state --state NEW -m tcp --tcp-flags FIN,SYN,RST,ACK SYN --dport 22 -j SSH
-A SSH -s 192.0.0.0/255.0.0.0 -j ACCEPT

44 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Allow Ganglia Access
-A INPUT -m state --state NEW -m tcp -p tcp --tcp-flags FIN,SYN,RST,ACK SYN --src 192.168.1.1 --dport 8649 -j ACCEPT
Gmetad access to gmond
-A INPUT -m state --state NEW -m tcp -p tcp --tcp-flags FIN,SYN,RST,ACK SYN --src 192.168.1.1 --dport 8649 -j ACCEPT
Gmond UDP multicast
-A INPUT -m state --state NEW -m udp -p udp --dport 8649 -j ACCEPT

{% if metadata.groups %}\
group custom FILTER rules:
{% for group in metadata.groups %}\
{% include ${checkGroupFile(group,’custom-filter’)} %}\
{% end %}\
{% end %}\

host-specific FILTER rules:
{% include ${checkHostFile(metadata.hostname, ’custom-filter’)} %}\

COMMIT
------------------------------- NAT ----------------------------------

*nat

Default CHAINS for NAT:
:PREROUTING ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]

{% if metadata.groups %}\
group NAT for PREROUTING:
{% for group in metadata.groups %}\
{% include ${checkGroupFile(group,’nat-prerouting’)} %}\
{% end %}\
{% end %}\

{% if metadata.groups %}\
group NAT for OUTPUT:
{% for group in metadata.groups %}\
{% include ${checkGroupFile(group,’nat-output’)} %}\
{% end %}\
{% end %}\

{% if metadata.groups %}\
group NAT for POSTROUTING:
{% for group in metadata.groups %}\
{% include ${checkGroupFile(group,’nat-postrouting’)} %}\
{% end %}\
{% end %}\

{% if metadata.groups %}\
group custom NAT rules:
{% for group in metadata.groups %}\
{% include ${checkGroupFile(group,’custom-nat’)} %}\
{% end %}\
{% end %}\

5.1. Plugins 45

Bcfg2 Documentation, Release 1.2.0

host-specific NAT ruls:
{% include ${checkHostFile(metadata.hostname, ’custom-nat’)} %}\
COMMIT
----------------------------- MANGLE --------------------------------

*mangle

Default CHAINS for MANGLE:
:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]

{% if metadata.groups %}\
group MANGLE for PREROUTING:
{% for group in metadata.groups %}\
{% include ${checkGroupFile(group,’mangle-prerouting’)} %}\
{% end %}\
{% end %}\

{% if metadata.groups %}\
group MANGLE for INPUT:
{% for group in metadata.groups %}\
{% include ${checkGroupFile(group,’mangle-input’)} %}\
{% end %}\
{% end %}\

{% if metadata.groups %}\
group MANGLE for FORWARD:
{% for group in metadata.groups %}\
{% include ${checkGroupFile(group,’mangle-forward’)} %}\
{% end %}\
{% end %}\

{% if metadata.groups %}\
group MANGLE for OUTPUT:
{% for group in metadata.groups %}\
{% include ${checkGroupFile(group,’mangle-output’)} %}\
{% end %}\
{% end %}\

{% if metadata.groups %}\
group MANGLE for POSTROUTING rules:
{% for group in metadata.groups %}\
{% include ${checkGroupFile(group,’mangle-postrouting’)} %}\
{% end %}\
{% end %}\

{% if metadata.groups %}\
group custom MANGLE rules:
{% for group in metadata.groups %}\
{% include ${checkGroupFile(group,’custom-mangle’)} %}\
{% end %}\

46 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

{% end %}\

host-specific MANGLE rules:
{% include ${checkHostFile(metadata.hostname, ’custom-mangle’)} %}\
COMMIT

/var/lib/bcfg2/custom/etc/sysconfig/iptables/custom-filter.G_mysql-server
:MYSQL - [0:0]
-A INPUT -p tcp -m state --state NEW -m tcp --dport 3306 --tcp-flags FIN,SYN,RST,ACK SYN -j MYSQL
-A MYSQL -s 192.168.0.0/255.0.0.0 -j ACCEPT

For a host that is in the mysql-server group you get an iptables file that looks like the following:

BCFG2 GENERATED IPTABLES
DO NOT CHANGE THIS
$Id: template.newtxt 5402 2009-08-19 22:50:06Z unixmouse$
$HeadURL: https://svn.fakecompany.net/bcfg2/trunk/repository/TGenshi/etc/sysconfig/iptables/template.newtxt $
Templates live in /var/lib/bcfg2/custom/etc/sysconfig/iptables/
Manual customization of this file will get reverted.
----------------------------- FILTER ---------------------------------
Default CHAINS for FILTER:

*filter
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [0:0]
:NO-SMTP - [0:0]

#Default rules
#discard malicious packets
-A INPUT -p tcp --tcp-flags ALL ACK,RST,SYN,FIN -j DROP
-A INPUT -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP
-A INPUT -p tcp --tcp-flags SYN,RST SYN,RST -j DROP
Allow incoming ICMP
-A INPUT -p icmp -m icmp -j ACCEPT
Accept localhost traffic
-A INPUT -i lo -j ACCEPT
Allow already established sessions to remain
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

Deny inbound SMTP delivery (still allows outbound connections)
-A INPUT -m state --state NEW -m tcp -p tcp --tcp-flags FIN,SYN,RST,ACK SYN --dport 25 -j NO-SMTP
-A NO-SMTP -j LOG --log-prefix " Incoming SMTP (denied) "
-A NO-SMTP -j DROP

Allow SSH Access
:SSH - [0:0]
-A INPUT -p tcp -m state --state NEW -m tcp --tcp-flags FIN,SYN,RST,ACK SYN --dport 22 -j SSH
-A SSH -s 192.168.0.0/255.0.0.0 -j ACCEPT

Allow Ganglia Access
-A INPUT -m state --state NEW -m tcp -p tcp --tcp-flags FIN,SYN,RST,ACK SYN --src 192.168.1.1 --dport 8649 -j ACCEPT
#Gmetad access to gmond

5.1. Plugins 47

Bcfg2 Documentation, Release 1.2.0

-A INPUT -m state --state NEW -m tcp -p tcp --tcp-flags FIN,SYN,RST,ACK SYN --src 192.168.1.1 --dport 8649 -j ACCEPT
#Gmond UDP multicast
-A INPUT -m state --state NEW -m udp -p udp --dport 8649 -j ACCEPT

group custom FILTER rules:
:MYSQL - [0:0]
-A INPUT -p tcp -m state --state NEW -m tcp --dport 3306 --tcp-flags FIN,SYN,RST,ACK SYN -j MYSQL
-A MYSQL -s 192.168.0.0/255.0.0.0 -j ACCEPT

host-specific FILTER rules:

COMMIT
------------------------------- NAT ----------------------------------

*nat

Default CHAINS for NAT:
:PREROUTING ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]

group NAT for PREROUTING:

group NAT for OUTPUT:

group NAT for POSTROUTING:

group custom NAT rules:

host-specific NAT rules:
COMMIT
----------------------------- MANGLE --------------------------------

*mangle

Default CHAINS for MANGLE:
:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]

group MANGLE for PREROUTING:

group MANGLE for INPUT:
group MANGLE for FORWARD:

group MANGLE for OUTPUT:

group MANGLE for POSTROUTING rules:

group custom MANGLE rules:

host-specific MANGLE rules:
COMMIT

48 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

motd The following template automatically generates a MOTD (message of the day) file that describes
the system in terms of its Bcfg2 metadata and probe responses. It conditionally displays groups, categories,
and probe responses, if there exists any data for them.

New Style of TGenshi This is the preferred way of creating TGenshi contents. It requires Genshi 0.5 or
later.

On the Bcfg2 server Where, $bcfg2 is your Bcfg2 repository on your Bcfg2 server, the following files
need to be created:

$bcfg2/TGenshi/etc/motd/info.xml
$bcfg2/TGenshi/etc/motd/template.newtxt

The contents of motd/template.newtxt could be something like this:

--
GOALS FOR SERVER MANGED BY BCFG2

--
Hostname is ${metadata.hostname}

Groups:
{% for group in metadata.groups %}\

* ${group}
{% end %}\

{% if metadata.categories %}\
Categories:
{% for category in metadata.categories %}\

* ${category}
{% end %}\
{% end %}\

{% if metadata.Probes %}\
Probes:
{% for probe, value in metadata.Probes.iteritems() %}\

* ${probe} \
${value}

{% end %}\
{% end %}\

ITOPS MOTD

Please create a Ticket for any system level changes you need from IT.

This template gets the hostname, groups membership of the host, categories of the host (if any), and result
of probes on the host (if any). The template formats this in with a header and footer that makes it visually
more appealing.

A motd/info.xml file isn’t strictly needed, because /etc/motd has the Bcfg2 default permissions (i.e.
root:root 0644), but it can be included for completeness.

5.1. Plugins 49

Bcfg2 Documentation, Release 1.2.0

Output One possible output of this template would be the following:

--
GOALS FOR SERVER MANGED BY BCFG2

--
Hostname is cobra.example.com

Groups:

* oracle-server

* centos5-5.2

* centos5

* redhat

* x86_64

* sys-vmware

Categories:

* os-variant

* os

* database-server

* os-version

Probes:

* arch x86_64

* network intranet_network

* diskspace Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup00-LogVol00

18G 2.1G 15G 13% /
/dev/sda1 99M 13M 82M 13% /boot
tmpfs 3.8G 0 3.8G 0% /dev/shm
/dev/mapper/mhcdbo-clear

1.5T 198M 1.5T 1% /mnt/san-oracle

* virtual vmware

IT MOTD

Please create a Ticket for any system level changes you need from IT.

Taking it to the next level One way to make this even more useful, is to only include the result of certain
probes. It would also be a nice feature to be able to include customer messages on a host or group level.

Old Style of TGenshi The following is a way to do the same thing using the older, it-may-be-depreciated,
style of Genshi (pre-0.5).:

Hostname is $metadata.hostname

Groups:
#for group in metadata.groups

* $group
#end

50 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

#if metadata.categories
Categories:
#for category in metadata.categories

* $category
#end
#end

#if metadata.probes
Probes:
#for probe, value in metadata.probes.iteritems()

* $probe $value
#end
#end

This template results in:

> buildfile /bar.conf ubik3
<Path name="/bar.conf" type="file" owner="root" perms="0644" group="root">Hostname is ubik3

Groups:

* desktop

* computeserver

* mcs-base

* ypbound

* workstation

* mysql-4

* debian-sarge-base

* debian-sarge

* base

* debian

Categories:

* noyp

* mysql

</Path>

mycnf The following template generates a server-id based on the last two numeric parts of the IP
address. The “slave” portion of the configuration only applies to machines in the “slave” group.:

{% python
from genshi.builder import tag
import socket
parts = socket.gethostbyname(metadata.hostname).split(’.’)
server_id = parts[2] + parts[3]
%}\
[mysqld]

[snip]

server-id = ${server_id}

5.1. Plugins 51

Bcfg2 Documentation, Release 1.2.0

Replication configuration

{% if "slave" in metadata.groups %}\
relay-log = /data01/mysql/log/mysql-relay-bin
log-slave-updates = 1
{% end %}\
sync-binlog = 1
#read-only = 1
#report-host = <server fqdn>

[snip]

test FIXME: This example needs to be retested with new Properties plugin.

As submitted by dclark

This file just shows you what’s available. It assumes a /var/lib/bcfg2/Properties/test.xml
file with an entry like this:

#!text/xml
<Properties>

<password>
<bcfg2>fakeBCFG2password</bcfg2>

</password>
</Properties>

Hostname is ${metadata.hostname}

Groups:
{% for group in metadata.groups %}\
${group} \
{% end %}\

{% if metadata.categories %}\
Categories:
{% for category in metadata.categories %}\
${category} \
{% end %}\
{% end %}\

{% if metadata.Probes %}\
Probes:
{% for probe, value in metadata.Probes.iteritems() %}\
$probe $value
{% end %}\
{% end %}\

Two main ways to get the same property value:
${metadata.Properties[’test.xml’].find(’password’).find(’bcfg2’).text}
${metadata.Properties[’test.xml’].xpath(’password/bcfg2’)[0].text}

One way to get information about metadata and properties:

52 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

dir(metadata):
{% for var in dir(metadata) %}\
${var} \
{% end %}

dir(properties):
{% for var in dir(properties) %}\
${var} \
{% end %}

dir(properties.entries):
{% for var in dir(properties.entries) %}\
${var} \
{% end %}

dir(properties.label):
{% for var in dir(properties.label) %}\
${var} \
{% end %}

dir(properties.name):
{% for var in dir(properties.name) %}\
${var} \
{% end %}

dir(properties.properties):
{% for var in dir(properties.properties) %}\
${var} \
{% end %}

When the above file is saved as /var/lib/bcfg2/TGenshi/test/template.newtxt and gen-
erated with bcfg2-info buildfile /test test.hostname.org, the results look like this (be-
low reformatted a little bit to fit in 80 columns):

Failed to read file probed.xml
Processed 44 gamin events in 0.108 seconds. 0 collapsed
Processed 17 gamin events in 0.245 seconds. 0 collapsed
Processed 17 gamin events in 0.163 seconds. 0 collapsed
Processed 21 gamin events in 0.197 seconds. 0 collapsed
Processed 0 gamin events in 0.100 seconds. 0 collapsed
Processed 12 gamin events in 0.105 seconds. 0 collapsed
Processed 0 gamin events in 0.100 seconds. 0 collapsed
<?xml version=’1.0’ encoding=’UTF-8’?>
<Path type="file" name="/test" owner="root" perms="644" encoding="ascii" group="root" paranoid="false">
Hostname is test.hostname.org

Groups:
bcfg2-server

Two main ways to get the same property value:
fakeBCFG2password
fakeBCFG2password

5.1. Plugins 53

Bcfg2 Documentation, Release 1.2.0

One way to get information about metadata and properties:

dir(metadata):
__class__ __delattr__ __dict__ __doc__ __getattribute__ __hash__ __init__
__module__ __new__ __reduce__ __reduce_ex__ __repr__ __setattr__ __str__
__weakref__ all bundles categories get_clients_by_group get_clients_by_profile
groups hostname inGrouppassword probes uuid

dir(properties):
HandleEvent Index __class__ __delattr__ __dict__ __doc__ __getattribute__
__hash__ __identifier__ __init__ __iter__ __module__ __new__ __reduce__
__reduce_ex__ __repr__ __setattr__ __str__ __weakref__ entries label name
properties

dir(properties.entries):
__add__ __class__ __contains__ __delattr__ __delitem__ __delslice__ __doc__
__eq__ __ge__ __getattribute__ __getitem__ __getslice__ __gt__ __hash__
__iadd__ __imul__ __init__ __iter__ __le__ __len__ __lt__ __mul__ __ne__
__new__ __reduce__ __reduce_ex__ __repr__ __reversed__ __rmul__ __setattr__
__setitem__ __setslice__ __str__ append count extend index insert pop remove
reverse sort

dir(properties.label):
__add__ __class__ __contains__ __delattr__ __doc__ __eq__ __ge__
__getattribute__ __getitem__ __getnewargs__ __getslice__ __gt__ __hash__
__init__ __le__ __len__ __lt__ __mod__ __mul__ __ne__ __new__ __reduce__
__reduce_ex__ __repr__ __rmod__ __rmul__ __setattr__ __str__ capitalize center
count decode encode endswith expandtabs find index isalnum isalpha isdigit
islower isspace istitle isupper join ljust lower lstrip partition replace
rfind rindex rjust rpartition rsplit rstrip split splitlinesstartswith strip
swapcase title translate upper zfill

dir(properties.name):
__add__ __class__ __contains__ __delattr__ __doc__ __eq__ __ge__
__getattribute__ __getitem__ __getnewargs__ __getslice__ __gt__ __hash__
__init__ __le__ __len__ __lt__ __mod__ __mul__ __ne__ __new__ __reduce__
__reduce_ex__ __repr__ __rmod__ __rmul__ __setattr__ __str__ capitalize center
count decode encode endswith expandtabs find index isalnum isalpha isdigit
islower isspace istitle isupper join ljust lower lstrip partition replace
rfind rindex rjust rpartition rsplit rstrip split splitlinesstartswith strip
swapcase title translate upper zfill

dir(properties.properties):
__class__ __contains__ __copy__ __deepcopy__ __delattr__ __delitem__
__delslice__ __doc__ __getattribute__ __getitem__ __getslice__ __hash__
__init__ __iter__ __len__ __new__ __nonzero__ __reduce__ __reduce_ex__
__repr__ __reversed__ __setattr__ __setitem__ __setslice__ __str__ _init
addnext addprevious append attrib clear extend find findall findtext get
getchildren getiterator getnext getparent getprevious getroottree index insert
items iterancestors iterchildren iterdescendants itersiblings keys makeelement
nsmap prefix remove replace set sourceline tag tail text values xpath

</Path>

54 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Account

The account plugin manages authentication data, including

• /etc/passwd

• /etc/group

• /etc/security/limits.conf

• /etc/sudoers

• /root/.ssh/authorized_keys

User access data is stored in three files in the Account directory:

• superusers (a list of users who always have root privs)

• rootlist (a list of user:host pairs for scoped root privs)

• useraccess (a list of user:host pairs for login access)

SSH keys are stored in files named $username.key; these are installed into root’s authorized keys for users
in the superusers list as well as for the pertitent users in the rootlike file (for the current system).

Authentication data is read in from (static|dyn).(passwd|group) The static ones are for system local ones,
while the dyn. versions are for external synchronization (from ldap/nis/etc). There is also a static.limits.conf
that provides the limits.conf header and any static entries.

Cfg

The Cfg plugin provides a repository to describe configuration file contents for clients. In its simplest form,
the Cfg repository is just a directory tree modeled off of the directory tree on your client machines.

The Cfg Repository The Cfg plugin is enabled by including Cfg on the plugins line of the [server]
section of your Bcfg2 server config file. The repository itself lives in /var/lib/bcfg2/Cfg, assuming
you are using the default repository location of /var/lib/bcfg2. The contents of this directory are a
series of directories corresponding to the real-life locations of the files on your clients, starting at the root
level. For example:

lueningh@tg-prez:~/bcfg2/repository> ls Cfg
bin/ boot/ etc/ opt/ root/ usr/ var/

Specific config files go in like-named directories in this heirarchy. For example the password
file, /etc/passwd, goes in Cfg/etc/passwd/passwd, while the ssh pam module config file,
/etc/pam.d/sshd, goes in Cfg/etc/pam.d/sshd/sshd. The reason for the like-name directory
is to allow multiple versions of each file to exist, as described below. Note that these files are exact copies
of what will appear on the client machine - no templates, XML wrappers, etc.

5.1. Plugins 55

Bcfg2 Documentation, Release 1.2.0

Group-Specific Files It is often that you want one version of a config file for all of your machines except
those in a particular group. For example, /etc/fstab should look alike on all of your desktop machines,
but should be different on your file servers. Bcfg2 can handle this case through use of group-specific files.

As mentioned above, all Cfg entries live in like-named directories at the end of their directory tree. In the
case of fstab, the file at Cfg/etc/fstab/fstab will be handed out by default to any client that asks
for a copy of /etc/fstab. Group-specific files are located in the same directory and are named with the
syntax:

/path/to/filename/filename.GNN_groupname

in which NN is a priority number where 00 is lowest and 99 is highest, and groupname is the
name of a group defined in Metadata/groups.xml. Back to our fstab example, we might have a
Cfg/etc/fstab/ directory that looks like:

fstab
fstab.G50_server
fstab.G99_fileserver

By default, clients will receive the plain fstab file when they request /etc/fstab. Any machine that is in
the server group, however, will instead receive the fstab.G50_server file. Finally, any machine that is
in the fileserver group will receive the fstab.G99_fileserver file, even if they are also in the server
group.

Host-Specific Files Similar to the case with group-specific files, there are cases where a specific machine
should have a different version of a file than all others. This can be accomplished with host-specific files.
The format of a host-specific file name is:

/path/to/filename/filename.H_host.example.com

Host-specific files have a higher priority than group specific files. Again, the fstab example:

fstab
fstab.G50_server
fstab.G99_fileserver
fstab.H_host.example.com

In this case, host.example.com will always get the host-specific version, even if it is part of the server or
fileserver (or both) classes.

Note: If you have the ability to choose between using a group-specific and a host-specific file, it is almost
always best to use a group-specific one. That way if a hostname changes or an extra copy of a particular
client is built, it will get the same changes as the original.

Deltas Bcfg2 has finer grained control over how to deliver configuration files to a host. Let’s say we have
a Group named file-server. Members of this group need the exact same /etc/motd as all other hosts
except they need one line added. We could copy motd to motd.G01_file-server, add the one line to
the Group specific version and be done with it, but we’re duplicating data in both files. What happens if we
need to update the motd? We’ll need to remember to update both files then. Here’s where deltas come in. A
delta is a small change to the base file. There are two types of deltas: cats and diffs. The cat delta simply

56 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

adds or removes lines from the base file. The diff delta is more powerful since it can take a unified diff and
apply it to the base configuration file to create the specialized file. Diff deltas should be used very sparingly.

Cat Files Continuing our example for cat files, we would first create a file named
motd.G01_file-server.cat. The .cat suffix designates that the file is a diff. We would then
edit that file and add the following line:

+This is a file server

The + at the begining of the file tells Bcfg2 that the line should be appended to end of the file. You can also
start a line with - to tell Bcfg2 to remove that exact line wherever it might be in the file. How do we know
what base file Bcfg2 will choose to use to apply a delta? The same rules apply as before: Bcfg2 will choose
the highest priority, most specific file as the base and then apply deltas in the order of most specific and then
increasing in priority. What does this mean in real life. Let’s say our machine is a web server, mail server,
and file server and we have the following configuration files:

motd
motd.G01_web-server
motd.G01_mail-server.cat
motd.G02_file-server.cat
motd.H_foo.example.cat

If our machine isn’t foo.example.com then here’s what would happen:

Bcfg2 would choose motd.G01_web-server as the base file. It is the most specific base file for this
host. Bcfg2 would apply the motd.G01_mail-server.cat delta to the motd.G01_web-server
base file. It is the least specific delta. Bcfg2 would then apply the motd.G02_file-server.cat delta
to the result of the delta before it. If our machine is foo.example.com then here’s what would happen:

Bcfg2 would choose motd.G01_web-server as the base file. It is the most specific base file for this host.
Bcfg2 would apply the motd.H_foo.example.com.cat delta to the motd.G01_web-server base
file. The reason the other deltas aren’t applied to foo.example.com is because a .H_ delta is more specific
than a .G##_ delta. Bcfg2 applies all the deltas at the most specific level.

File permissions File permissions for entries handled by Cfg are controlled via the use of Info files. Note
that you cannot use both a Permissions entry and a Path entry to handle the same file.

Decisions

This page describes the Decisions plugin. The client has support for a centralized set of per-entry installation
decisions. This approach is needed when particular changes are deemed “high risk”; this gives the ability to
centrally specify these changes, but only install them on clients when administrator supervision is available.
Because collaborative configuration is one of the remaining hard issues in configuration management, these
issues typically crop up in environments with several administrators and much configuration variety.

In these cases, the client can be configured to run in either a whitelist or blacklist mode, wherein a list of
entries is downloaded from the server. The client uses this list to determine which incorrect entries should
be corrected during the current run of the installation tool. The Decisions plugin is the only stock plugin
that generates entries for client’s whitelists or blacklists.

5.1. Plugins 57

Bcfg2 Documentation, Release 1.2.0

The Decisions plugin uses a directory in the Bcfg2 repository called Decisions. Files in the Decisions
subdirectory are named similarly to files managed by Cfg, probes, TCheetah, and TGenshi (so you can use
host- and group-specific files and the like after their basename). File basenames are either whitelist or
blacklist. These files have a simple format; the following is an example.

$ cat Decisions/whitelist
<Decisions>

<Decision type=’Service’ name=’*’/>
<Decision type=’Path’ name=’/etc/apt/apt.conf’/>

</Decisions>

Note: To add syntax highlighting in vim, you can add a modeline such as this:

<!– vim: ft=xml –>

This example, included as a whitelist due to its name, enables all services, and the path entry named
/etc/apt/apt.conf. All these entries must already be present in your repository, the Decisions plu-
gin just references them. In whitelist mode, only the given items are applied to the client; all other entry
installation will be surpressed.

In blacklist mode, every entry that is not blacklisted will be installed.

When a client asks for its whitelist or blacklist, all of the files pertaining to that client of the correct type are
aggregated into a single list. This list is sent to the client.

Note: This list is only generated when a client is explicitly run with the appropriate option (-l
(whitelist|blacklist)); client behavior is not controlled unless this option is used. If you do not
use Decisions, all your entries will be installed normally.

Note: Also, using this plugin does not present additional prompts or safety nets to the administrator running
the client, you have to control these via their respective options (-I or -n, for example).

Deps

The Deps Plugin allows you to make a series of assertions like “Package X requires Package Y (and option-
ally also Package Z etc). Note that only configuration entries, like Package, Path, etc can be used. Groupings
(like Bundle) are not supported.

Here are some examples:

Note: These particular examples are not extremely useful when using the Packages plugin as Packages will
handle the dependency resolution for you. However, there are certainly other use cases for the Deps plugin.

Deps/bcfg2.xml
<Dependencies priority=’0’>

<Package name=’bcfg2’>
<Package name=’python-lxml’/>
<Package name=’isprelink’/>

</Package>
</Dependencies>

58 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

This basically causes any configuration specification that includes Package bcfg2 to include python-lxml
and isprelink, in a second base clause.

Deps/bcfg2-server.xml
<Dependencies priority=’0’>

<Package name=’bcfg2-server’>
<Package name=’python-cheetah’/>
<Package name=’gamin-python’/>
<Package name=’sqlite’/>
<Package name=’python-sqlite’/>
<Package name=’Django’/>
<Package name=’mod_python’/>
<Package name=’graphviz’/>
<Package name=’xorg-x11-font-utils’/>
<Package name=’chkfontpath’/>
<Package name=’ttmkfdir’/>
<Package name=’xorg-x11-xfs’/>
<Package name=’urw-fonts’/>

</Package>
</Dependencies>

This states that the bcfg2-server package (it’s a separate package on some distros) depends on a long list of
other packages.

Hostbase

IP management system built on top of Bcfg2. It has four main parts: a django data model, a web frontend,
command-line utilities, and a Bcfg2 plugin that generates dhcp, dns, and yp configuration files.

Installation Installation of Hostbase requires installation of a python module, configuration of database
(mysql or postgres), and configuration of an Apache webserver with mod_python. Hostbase was developed
using MySQL, so this document is aimed at MySQL users.

Prerequisites

• mysql

• python-mysqldb

• Django

Configure the database Create the hostbase database and a user. For MySQL users:

mysql> CREATE DATABASE hostbase
mysql> quit

systemprompt#: mysql -u root hostbase
mysql> GRANT ALL PRIVILEGES ON *.* TO hostbaseuser@mycomputer.private.net IDENTIFIED

5.1. Plugins 59

http://www.mysql.com/
http://mysql-python.sourceforge.net/MySQLdb.html
http://www.djangoproject.com

Bcfg2 Documentation, Release 1.2.0

BY ’password’ WITH GRANT OPTION;
mysql> quit

As of Bcfg2 v0.8.7 configuration options for Hostbase have moved to
/etc/bcfg2.conf. There is an example bcfg2.conf with Hostbase options located at
bcfg2-tarball/examples/bcfg2.confHostbase. Edit the hostbase options to correspond to
the database you’ve initialized and copy the configuration to /etc/bcfg2.conf. To finish creating
the database, from your path to python/Bcfg2/Server/Hostbase directory, run python
manage.py syncdb to do all table creation.

Configure the web interface Now it’s possible to explore the Hostbase web interface. For curios-
ity, you can run Django’s built-in development server to take a peek. Do this by running python
manage.py runserver [servername:port] from your Hostbase directory. Django will default
to localhost:8000 if no server or port is entered. Now you can explore the web interface. Try adding a
host and a zone. You’ll see that a ”.rev” zone already exists. This is where information for reverse files will
go.

For production, you’ll want to have this configured for Apache with mod_python. Here is an example of
how to configure Hostbase as a virtual host.

<VirtualHost hostbase.mcs.anl.gov:80>
ServerAdmin systems@mcs.anl.gov

DocumentRoot /var/www/hostbase/
<Directory />

AllowOverride None
</Directory>

Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
LogLevel warn

ServerSignature Off

Stop TRACE/TRACK vulnerability
<IfModule mod_rewrite.c>

RewriteEngine on
RewriteCond %{REQUEST_METHOD} ^(TRACE|TRACK)
RewriteRule .* - [F]

</IfModule>

Redirect / https://hostbase.mcs.anl.gov/
</VirtualHost>

<VirtualHost hostbase.mcs.anl.gov:443>
ServerAdmin systems@mcs.anl.gov

DocumentRoot /var/www/hostbase/
<Directory />

AllowOverride None
</Directory>

60 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
LogLevel warn

ServerSignature Off

Stop TRACE/TRACK vulnerability
<IfModule mod_rewrite.c>

RewriteEngine on
RewriteCond %{REQUEST_METHOD} ^(TRACE|TRACK)
RewriteRule .* - [F]

</IfModule>

SSLEngine On
SSLCertificateFile /etc/apache2/ssl/hostbase_server.crt
SSLCertificateKeyfile /etc/apache2/ssl/hostbase_server.key

<Location "/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE Bcfg2.Server.Hostbase.settings
PythonDebug On

</Location>
<Location "/site_media/">

SetHandler None
</Location>
</VirtualHost>

You’ll need to copy the contents of Hostbase/media into /var/www/hostbase/site_media in
this configuration to serve the correct css files.

Enable the Hostbase plugin Now that the database is accessible and there is some data in it, you can
enable the Hostbase plugin on your Bcfg2 server to start generating some configuration files. All that needs
to be done is to add Hostbase to the end of the list of generators in your bcfg2.conf file. To see what’s
being generated by Hostbase, fire up a Bcfg2 development server: bcfg2-info. For more information on
how to use the Bcfg2 development server, type help at the prompt. For our purposes, type debug. This will
bring you to an interactive python prompt where you can access bcfg’s core data.

for each in bcore.plugins[’Hostbase’].filedata:
print each

The above loop will print out the name of each file that was generated by Hostbase. You can see the contents
of any of these by typing print bcore.plugins[’Hostbase’].filedata[filename].

Create a bundle Bcfg2 needs a way to distribute the files generated by Hostbase. We’ll do this with a
bundle. In bcfg’s Bundler directory, touch hostbase.xml.

<Bundle name=’hostbase’ version=’0.1’>
<Package name=’dhcp3-server’/>
<Package name=’bind9’/>

5.1. Plugins 61

Bcfg2 Documentation, Release 1.2.0

<Service name=’dhcp3-server’/>
<Service name=’bind9’/>
<Path name=’/etc/dhcp3/dhcpd.conf’/>
<Path name=’/etc/bind/[your domain]’/>
<Path name=’/etc/bind/xxx.xxx.xxx.rev’/>

</Bundle>

The above example is a bundle that will deliver both dhcp and dns files. This can be trivially split into
separate bundles. It is planned that Hostbase will eventually be able to generate the list of Paths in its
bundles automatically.

Do a Hostbase push You’ll want to be able to trigger the Hostbase plugin to rebuild it’s config files and
push them out when data has been modified in the database. This can be done through and XMLRPC
function available from the Bcfg2 server. From a client that is configured to receive one or more hostbase
bundles, you’ll need to first edit your python/site-packages/Bcfg2/Client/Proxy.py file.
Add ’Hostbase.rebuildState’ to the list of methods in the Bcfg2 client proxy object. The modified
list is shown below:

class bcfg2(ComponentProxy):
’’’bcfg2 client code’’’
name = ’bcfg2’
methods = [’AssertProfile’, ’GetConfig’, ’GetProbes’, ’RecvProbeData’, ’RecvStats’, ’Hostbase.rebuildState’]

Now copy the file hostbasepush.py from bcfg2/tools in the Bcfg2 source to your machine. When
this command is run as root, it triggers the Hostbase to rebuild it’s files, then runs the Bcfg2 client on your
local machine to grab the new configs.

NIS Authentication Django allows for custom authentication backends to its login procedure. Hostbase
has an NIS authentication backend that verifies a user to be in the unix group allowed to modify Hostbase.

To enable this feature:

• first edit your Hostbase/settings.py file and uncomment the line Host-
base.backends.NISBackend in the list of AUTHENTICATION_BACKENDS

• enter the name of the unix group you want to give access to Hostbase in the AUTHORIZED_GROUP
variable

• in your Hostbase/hostbase/views.py file at the very bottom, uncomment the block(s) of
lines that give you the desired level of access

Hostbase will now direct the user to a login page if he or she is not authorized to view a certain page. Users
should log in with their regular Unix username and password.

NagiosGen

This page describes the installation and use of the NagiosGen plugin.

Update /etc/bcfg2.conf, adding NagiosGen to plugins:

62 Chapter 5. The Bcfg2 Server

http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/bcfg2/src/lib/Server/Plugins/NagiosGen.py

Bcfg2 Documentation, Release 1.2.0

plugins = SSHbase,Cfg,Pkgmgr,Rules,TCheetah,TWbase,NagiosGen

Create the NagiosGen directory:

$ mkdir /var/lib/bcfg2/NagiosGen

Create default host, and group specs in:

• /var/lib/bcfg2/NagiosGen/default-host.cfg:

define host{
name default
check_command check-host-alive
check_interval 5
check_period 24x7
contact_groups admins
event_handler_enabled 1
failure_prediction_enabled 1
flap_detection_enabled 1
initial_state o
max_check_attempts 10
notification_interval 0
notification_options d,u,r
notification_period workhours
notifications_enabled 1
process_perf_data 0
register 0
retain_nonstatus_information 1
retain_status_information 1
retry_interval 1
}

• /var/lib/bcfg2/NagiosGen/default-group.cfg:

define service{
name default-service
active_checks_enabled 1
passive_checks_enabled 1
obsess_over_service 0
check_freshness 0
notifications_enabled 1
event_handler_enabled 1
flap_detection_enabled 1
process_perf_data 0
retain_status_information 1
retain_nonstatus_information 1
is_volatile 0

check_period 24x7
max_check_attempts 4
check_interval 5
retry_interval 1
contact_groups admins
notification_options w,u,c,r

5.1. Plugins 63

Bcfg2 Documentation, Release 1.2.0

notification_interval 0
notification_period workhours
}

Create group configuration files (Named identical to Bcfg2 groups) and add services, and commands specific
to the hostgroup (Bcfg2 group) in

• /var/lib/bcfg2/NagiosGen/base-group.cfg:

define hostgroup{
hostgroup_name base
alias base
notes Notes

}

define service{
service_description NTP
check_command check_ntp!
use default-service
hostgroup_name base
}

define command{
command_name check_ssh
command_line $USER1$/check_ssh $ARG1$ $HOSTADDRESS$
}

define service{
service_description SSH
check_command check_ssh!
use default-service
hostgroup_name base
}

• /var/lib/bcfg2/NagiosGen/web-server-group.cfg:

define hostgroup{
hostgroup_name web-server
alias Port 80 Web Servers
notes UC/ANL Teragrid Web Servers Running on Port 80

}

define command{
command_name check_http_80
command_line $USER1$/check_http $HOSTADDRESS$
}

define service{
service_description HTTP:80
check_command check_http_80!
use default-service
hostgroup_name web-server
}

64 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Create a nagios Bcfg2 bundle /var/lib/bcfg2/Bundler/nagios.xml

<Bundle name=’nagios’ version=’2.0’>
<Path name=’/etc/nagiosgen.status’/>
<Group name=’rh’>

<Group name=’nagios-server’>
<Path name=’/etc/nagios/nagiosgen.cfg’/>
<Package name=’libtool-libs’/>
<Package name=’nagios’/>
<Package name=’nagios-www’/>
<Service name=’nagios’/>

</Group>
</Group>
<Group name=’debian-lenny’>

<Group name=’nagios-server’>
<Path name=’/etc/nagios3/nagiosgen.cfg’

altsrc=’/etc/nagios/nagiosgen.cfg’/>
<Package name=’nagios3’/>
<Package name=’nagios3-common’/>
<Package name=’nagios3-doc’/>
<Package name=’nagios-images’/>
<Service name=’nagios3’/>

</Group>
</Group>

</Bundle>

Assign clients to nagios groups in /var/lib/bcfg2/Metadata/groups.xml

<Group name=’nagios’>
<Bundle name=’nagios’/>

</Group>

<Group name=’nagios-server’>
<Bundle name=’nagios’/>

</Group>

Update nagios configuration file to use nagiosgen.cfg:

cfg_file=/etc/nagios/nagiosgen.cfg

Note that some of these files are built on demand, each time a client in group “nagios-server” checks in with
the Bcfg2 server. Local nagios instances can be configured to use the NagiosGen directory in the Bcfg2
repository directly.

Packages

New in version 1.0.0. This page documents the Packages plugin. Packages is an alternative to Pkgmgr
for specifying package entries for clients. Where Pkgmgr explicitly specifies package entry information,
Packages delegates control of package version information to the underlying package manager, installing
the latest version available through those channels.

5.1. Plugins 65

Bcfg2 Documentation, Release 1.2.0

“Magic Groups” Packages is the only plugin that uses “magic groups”. Most plugins operate based on
client group memberships, without any concern for the particular names chosen for groups by the user. The
Packages plugin is the sole exception to this rule. Packages needs to “know” two different sorts of facts
about clients. The first is the basic OS/distro of the client, enabling classes of sources. The second is the
architecture of the client, enabling sources for a given architecture. In addition to these magic groups, each
source may also specify a non-magic group to limit the source’s applicability to group member clients.

Source OS Group Architecture
APTSource debian i386
APTSource ubuntu amd64
APTSource nexenta
YUMSource redhat i386
YUMSource centos x86_64
YUMSource fedora x86_64

Limiting sources to groups Each source can also specify explicit group memberships. In the following
example, the ubuntu-hardy group is also required. Finally, clients must be a member of the appropriate
architecture group, in this case, either i386 or amd64. In total, in order for this source to be associated with
a client is for the client to be in one of the sentinel groups (debian, ubuntu, or nexenta), the explicit group
ubuntu-hardy, and any of the architecture groups (i386 or amd64).

Memberships in architecture groups is needed so that Packages can map software sources to clients. There
is no other way to handle this than to impose membership in the appropriate architecture group.

When multiple sources are specified, clients are associated with each source to which they apply (based
on group memberships, as described above). Packages and dependencies are resolved from all applicable
sources.

Note: To recap, a client needs to be a member of the OS Group, Architecture group, and any other
groups defined in your Packages/config.xml file in order for the client to be associated to the proper
sources.

Setup Three basic steps are required for Packages to work properly.

1. Create Packages/config.xml. This file should look approximately like the example below, and de-
scribes both which software repositories should be used, and which clients are eligible to use each
one.

2. Ensure that clients are members of the proper groups. Each client should be a member of one of
the sentinel groups listed above (debian/ubuntu/redhat/centos/nexenta), all of the groups listed in the
source (like ubuntu-intrepid or centos-5.2 in the following examples), and one of the architecture
groups listed in the source configuration (i386, amd64 or x86_64 in the following examples). ‘’‘Fail-
ure to do this will result in the source either not applying to the client, or only architecture independent
packages being made available to the client.’‘’

3. Add Package entries to bundles.

4. Sit back and relax, as dependencies are resolved, and automatically added to client configurations.

66 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Prerequisite Resolution Packages provides a prerequisite resolution mechanism which has no analogue
in Pkgmgr. During configuration generation, all structures are processed. After this phase, but before entry
binding, a list of packages and the client metadata instance is passed into Packages’ resolver. This process
determines a superset of packages that will fully satisfy dependencies of all package entries included in
structures, and reports any prerequisites that cannot be satisfied. This facility should largely remove the
need to use the Base plugin.

Disabling dependency resolution New in version 1.1.0. Dependency resolution can now be disabled by
adding this to Sources in config.xml:

<Sources>
<Config resolver="disabled" />
...

</Sources>

All metadata processing can be disabled as well:

<Sources>
<Config metadata="disabled" />
...

</Sources>

Example usage Create a config.xml file in the Packages directory that looks something like this:

<Sources>
<APTSource>

<Group>ubuntu-intrepid</Group>
<URL>http://us.archive.ubuntu.com/ubuntu</URL>
<Version>intrepid</Version>
<Component>main</Component>
<Component>universe</Component>
<Arch>i386</Arch>
<Arch>amd64</Arch>

</APTSource>
</Sources>

Note: The default behavior of the Packages plugin is to not make any assumptions about which packages
you want to have added automatically. For that reason, neither Recommended nor Suggested packages are
added as dependencies by default. You will notice that the default behavior for apt is to add Recommended
packages as dependencies. You can configure the Packages plugin to add recommended packages by adding
the following: New in version 1.1.0.

<Recommended>True</Recommended>

Yum sources can be similarly specified:

<Sources>
<YUMSource>

<Group>centos-5.2</Group>
<URL>http://mirror.centos.org/centos/</URL>
<Version>5.2</Version>
<Component>os</Component>

5.1. Plugins 67

Bcfg2 Documentation, Release 1.2.0

<Component>updates</Component>
<Component>extras</Component>
<Arch>i386</Arch>
<Arch>x86_64</Arch>

</YUMSource>
</Sources>

Note: There is also a RawURL syntax for specifying APT or YUM sources that don’t follow the conven-
tional layout:

<Sources>
<!-- CentOS (5.4) sources -->
<YUMSource>

<Group>centos5.4</Group>
<RawURL>http://mrepo.ices.utexas.edu/centos5-x86_64/RPMS.os</RawURL>
<Arch>x86_64</Arch>

</YUMSource>
<YUMSource>

<Group>centos5.4</Group>
<RawURL>http://mrepo.ices.utexas.edu/centos5-x86_64/RPMS.updates</RawURL>
<Arch>x86_64</Arch>

</YUMSource>
<YUMSource>

<Group>centos5.4</Group>
<RawURL>http://mrepo.ices.utexas.edu/centos5-x86_64/RPMS.extras</RawURL>
<Arch>x86_64</Arch>

</YUMSource>
</Sources>

<Sources>
<APTSource>

<Group>ubuntu-lucid</Group>
<RawURL>http://hudson-ci.org/debian/binary</RawURL>
<Arch>amd64</Arch>

</APTSource>
<APTSource>

<Group>ubuntu-lucid</Group>
<RawURL>http://hudson-ci.org/debian/binary</RawURL>
<Arch>i386</Arch>

</APTSource>
</Sources>

Configuration Updates Packages will reload its configuration upon an explicit command via bcfg2-
admin.:

[0:3711] bcfg2-admin xcmd Packages.Refresh
True

During this command (which will take some time depending on the quantity and size of the sources listed
in the configuration file), the server will report information like:

68 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Packages: Updating http://mirror.anl.gov/ubuntu//dists/jaunty/main/binary-i386/Packages.gz
Packages: Updating http://mirror.anl.gov/ubuntu//dists/jaunty/main/binary-amd64/Packages.gz
Packages: Updating http://mirror.anl.gov/ubuntu//dists/jaunty/universe/binary-i386/Packages.gz
Packages: Updating http://mirror.anl.gov/ubuntu//dists/jaunty/universe/binary-amd64/Packages.gz
...
Packages: Updating http://mirror.centos.org/centos/5/extras/x86_64/repodata/filelists.xml.gz
Packages: Updating http://mirror.centos.org/centos/5/extras/x86_64/repodata/primary.xml.gz

Once line per file download needed. Packages/config.xml will be reloaded at this time, so any source
specification changes (new or modified sources in this file) will be reflected by the server at this point.

Soft reload New in version 1.1.0. A soft reload can be performed to reread the configuration file and
download only missing sources.:

[0:3711] bcfg2-admin xcmd Packages.Reload
True

Availability Support for clients using yum and apt is currently available. Support for other package man-
agers (Portage, Zypper, IPS, etc) remain to be added.

Validation A schema for Packages/config.xml is included; config.xml can be validated using
bcfg2-repo-validate.

Note: The schema requires that elements be specified in the above order.

Limitations Packages does not do traditional caching as other plugins do. Changes to the Packages config
file require a server restart for the time being.

Package Verification In order to do disable per-package verification Pkgmgr style, you will need to use
BoundEntries like below

<BoundPackage name="mem-agent" priority="1" version="auto" type="yum" verify="false"/>

Generating Client APT/Yum Configurations New in version 1.1.0. Client repository information can
be generated automatically from software sources using TGenshi or TCheetah. A list of source urls are
exposed in the client’s metadata as metadata.Packages.sources.

An example TGenshi APT template:

bcfg2 maintained apt

{% for s in metadata.Packages.sources %}\
deb ${s.url}${s.version} ${s.groups[0]} {% for comp in s.components %}$comp {% end %}

{% end %}\

An example TGenshi YUM template:

5.1. Plugins 69

Bcfg2 Documentation, Release 1.2.0

bcfg2 maintained yum

% for s in metadata.Packages.sources %}\
[${s.groups[0]}_${s.component}]
name=${s.groups[0]}_${s.component}
baseurl=${s.url}

{% end %}\

Debugging unexpected behavior

Using bcfg2-info The dependency resolver used in Packages can be run in debug mode:

$ bcfg2-info
...
Handled 20 events in 0.004s
> debug
dropping to python interpreter; press ^D to resume
...
(debug_shell)
>>> m = self.build_metadata(’ubik3’)
>>> self.plugins[’Packages’].complete(m, [’ssh’], debug=True)
Package ssh: adding new deps [’openssh-client’, ’openssh-server’]
Package openssh-server: adding new deps [’libc6’, ’libcomerr2’, ’libkrb53’, ’libpam0g’, ’libselinux1’, ’libssl0.9.8
’, ’libwrap0’, ’zlib1g’, ’debconf’, ’libpam-runtime’, ’libpam-modules’, ’adduser’, ’dpkg’, ’lsb-base’]
Package debconf: adding new deps [’debconf-i18n’]
Package libpam-modules: adding new deps [’libdb4.7’]
Package openssh-client: adding new deps [’libedit2’, ’libncurses5’, ’passwd’]
Package lsb-base: adding new deps [’sed’, ’ncurses-bin’]
Package adduser: adding new deps [’perl-base’]
Package debconf-i18n: adding new deps [’liblocale-gettext-perl’, ’libtext-iconv-perl’, ’libtext-wrapi18n-perl’, ’libtext-charwidth-perl’]
Package passwd: adding new deps [’debianutils’]
Package libtext-charwidth-perl: adding new deps [’perlapi-5.10.0’]
VPackage perlapi-5.10.0: got provides [’perl-base’]
Package libkrb53: adding new deps [’libkeyutils1’]
Package libtext-iconv-perl: adding new deps [’perlapi-5.10.0’]
Package libc6: adding new deps [’libgcc1’, ’findutils’]
Package libgcc1: adding new deps [’gcc-4.3-base’]
(set([’debconf’, ’libgcc1’, ’lsb-base’, ’libtext-wrapi18n-perl’, ’libtext-iconv-perl’, ’sed’, ’passwd’, ’findutils’, ’libpam0g’, ’openssh-client’, ’debconf-i18n’, ’libselinux1’, ’zlib1g’, ’adduser’, ’libwrap0’, ’ncurses-bin’, ’libssl0.9.8’, ’liblocale-gettext-perl’, ’libkeyutils1’, ’libpam-runtime’, ’libpam-modules’, ’openssh-server’, ’libkrb53’, ’ssh’, ’libncurses5’, ’libc6’, ’libedit2’, ’libcomerr2’, ’dpkg’, ’perl-base’, ’libdb4.7’, ’libtext-charwidth-perl’, ’gcc-4.3-base’, ’debianutils’]), set([]), ’deb’)

This will show why the resolver is acting as it is. Replace “ubik3” and [’ssh’] with a client name and list of
packages, respectively. Also, a more polished interface to this functionality is coming as well.

Each line starting with Package: <name> describes a set of new prerequisites pulled in by a package. Lines
starting with VPackage <vname> describe provides entries and their mappings to required names. The last
line describes the overall results of the resolver, with three fields: a list of packages that should be installed,
a list of unresolved requirements, and a type for these packages.

Using bcfg2-server Once the server is started, enable debugging via bcfg2-admin:

70 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

$ bcfg2-admin xcmd Packages.toggle_debug

TODO list

• Zypper support

• Portage support

• Explicit version pinning (a la Pkgmgr)

Developing for Packages In order to support a given client package tool driver, that driver must support
use of the auto value for the version attribute in Package entries. In this case, the tool driver views the
current state of available packages, and uses the underlying package manager’s choice of correct package
version in lieu of an explicit, centrally-specified, version. This support enables Packages to provide a list of
Package entries with version=’auto’. Currently, the APT and YUMng drivers support this feature. Note that
package management systems without any network support cannot operate in this fashion, so RPMng and
SYSV will never be able to use Packages. Emerge, Zypper, IPS, and Blastwave all have the needed features
to be supported by Packages, but support has not yet been written.

Packages fills two major functions in configuration generation. The first is to provide entry level binding
support for Package entries included in client configurations. This function is quite easy to implement;
Packages determines (based on client group membership) if the package is available for the client system,
and which type it has. Because version=’auto’ is used, no version determination needs to be done.

The second major function is more complex. Packages ensures that client configurations include all
package-level prerequisites for package entries explicitly included in the configuration. In order to sup-
port this, Packages needs to directly process network data for package management systems (the network
sources for apt or yum, for examples), process these files, and build data structures describing prerequi-
sites and the providers of those functions/paths. To simplify implementations of this, there is a generic
base class (Bcfg2.Server.Plugins.Packages.Source) that provides a framework for fetching network data via
HTTP, processing those sources (with subclass defined methods for processing the specific format provided
by the tool), a generic dependency resolution method, and a caching mechanism that greatly speeds up
server/bcfg2-info startup.

Each source type must define:

• a get_urls attribute (and associated urls property) that describes the URLS where to get data from.

• a read_files method that reads and processes the downloaded files

Sources may define a get_provides method, if provides are complex. For example, provides in rpm can be
either rpm names or file paths, so multiple data sources need to be multiplexed.

The APT source in src/lib/Server/Plugins/Packages.py provides a relatively simple imple-
mentation of a source.

Pkgmgr

Note: See [wiki:ClientTools/RPMng#PackageTagNewStyleandAttributes
RPMng#PackageTagNewStyleandAttributes].’‘’ The way of showing the architecture of the RPM has

5.1. Plugins 71

Bcfg2 Documentation, Release 1.2.0

changed. The new way is “arch”. The old way is “multiarch”. ‘’‘This document needs to be updated and
include version of Bcfg2 where change took place.’‘’

The Pkgmgr plugin resolves the Abstract Configuration Entity “Package” to a package specification that the
client can use to detect, verify and install the specified package.

For a package specification to be included in the Literal configuration the name attribute from an Abstract
Package Tag (from Base or Bundler) must match the name attribute of a Package tag in Pkgmgr, along with
the appropriate group associations of course.

Each file in the Pkgmgr directory has a priority. This allows the same package to be served by multiple files.
The priorities can be used to break ties in the case that multiple files serve data for the same package.

Usage of Groups in Pkgmgr Groups are used by the Pkgmgr plugin, along with host metadata, for se-
lecting the package entries to include in the clients literal configuration. They can be thought of as:

if client is a member of group1 then
assign to literal config

Nested groups are conjunctive (logical and).:

if client is a member of group1 and group2 then
assign to literal config

Group membership may be negated.

Tag Attributes in Pkgmgr

PackageList Tag The PackageList Tag may have the following attributes:

Name Description Values
pri-
or-
ity

Sets the priority for packages in the package list. The higher value wins. Integer

type Package type that applies to all packages in the list. This value is inherited
by all packages without an explicit type attribute.

deb|rpm|blast|
encap|sysv|
portage|yum

uri URI to prepend to filename sto fetch packages in this list. String
mul-
ti-
arch

Comma-separated list of architectures that apply to all packages in this list.
Inherited by all package entries in the file that does not have this attribute
explicitly.

String

srcs To be used with multiarch support. Inherited by all Package entries without
this attribute

String

Pkgmgr Group Tag The Pkgmgr Group Tag may have the following attributes:

Name Description Values
name Group Name String
negate Negate group membership (is not a member of) True|False

72 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Package Tag The Package Tag may have the following attributes:

Name Description Val-
ues

name Package Name String
ver-
sion

Package version, set to auto to install the latest version in the client’s cache, or any
to verify that any version of the package is installed on the client

String

file Package file name. Several other attributes (name, version) can be automatically
defined based on regular expressions defined in the Pkgmgr plugin.

String

sim-
ple-
file

Package file name. No name parsing is performed, so no extra fields get set String

ver-
ify

Whether package verification should be done True|False

mul-
tiarch

Comma-separated list of the architectures of this package that should be installed.
(Temporary work-around)

String

srcs File name creation rules for multiarch packages. (Temporary work-around) String
type Package type (rpm, yum, apt, sysv, blast) String

Client Tag The Client Tag is used in a PackageList for selecting the package entries to include in the
clients literal configuration. Its function is similar to the Group tag in this context. It can be thought of as:

if client is name then
assign to literal config

The Client Tag may have the following attributes:

Name Description Values
name Client Name String
negate Negate client selection (if not client name) True|False

Pkgmgr Directory The Pkgmgr/ directory keeps the XML files that define what packages are available
for a host or image and where to find those packages. All the files in the directory are processed.

The names of the XML files have no special meaning to Bcfg2; they are simply named so it’s easy for the
administrator to know what the contents hold. All Packages could be kept in a single file if so desired.
Bcfg2 simply uses the Groups in the files and priorities to determine how to assign Packages to a host’s
literal configuration.

Listed detailed below is one possible structure for the Pkgmgr directory.

The files are structured to contain particular portions of distribution repositories.

The files in the directory are:

$ ls Pkgmgr/
centos-4-noarch-updates.xml
centos-4-x86_64-updates.xml
centos-4-x86_64.xml
backup.example.com.xml
fedora-core-4-noarch-updates.xml

5.1. Plugins 73

Bcfg2 Documentation, Release 1.2.0

fedora-core-4-x86-updates.xml
fedora-core-4-x86.xml
rhel-as-4-noarch-updates.xml
rhel-as-4-x86-updates.xml
rhel-as-4-x86.xml
rhel-es-4-noarch-updates.xml
rhel-es-4-x86-updates.xml
rhel-es-4-x86.xml
rhel-ws-4-noarch-udpates.xml
rhel-ws-4-x86_64-updates.xml
rhel-ws-4-x86_64.xml
rhel-ws-4-x86-updates.xml
rhel-ws-4-x86.xml

As can be seen the file names have been selected to indicate what the contents are and have been split by
Vendor, product and repository area.

A partial listing of the centos-4-x86_64.xml is below

$ cat centos-4-x86_64.xml
<PackageList uri=’http://www.example.com/yam/Centos44-x86_64/RPMS.os/’ type=’yum’ priority=’0’>

<Group name=’Centos4.4-Standard’>
<Group name=’x86_64’>

<Package name=’audit-libs’ version=’1.0.13-1.EL4’ type=’yum’/>
<Package name=’audit’ version=’1.0.13-1.EL4’ type=’yum’/>
<Package name=’basesystem’ version=’8.0-2’ type=’yum’/>
<Package name=’bash’ version=’3.0-18.1’ type=’yum’/>
<Package name=’bcfg2’ version=’0.9.1-0.1’ type=’yum’/>
<Package name=’beecrypt’ version=’3.1.0-3’ type=’yum’/>
...
<Package name=’VMwareTools’ version=’6530-29996’ type=’yum’/>
<Package name=’yum’ version=’2.4.2-1’ type=’yum’/>
<Package name=’zlib’ version=’1.2.1.2-1.2’ type=’yum’/>

</Group>
</Group>

</PackageList>

$ cat centos-4-x86_64-updates.xml
<PackageList uri=’http://www.example.com/yam/Centos44-x86_64/RPMS.updates/’ type=’yum’ priority=’5’>

<Group name=’Centos4.4-Standard’>
<Group name=’x86_64’>

<Package name=’audit-libs’ version=’1.0.14-1.EL4’ type=’yum’/>
<Package name=’audit’ version=’1.0.14-1.EL4’ type=’yum’/>
<Package name=’basesystem’ version=’8.0-4’ type=’yum’/>
<Package name=’bash’ version=’3.0-19.3’ type=’yum’/>
<Package name=’bcfg2’ version=’0.9.2-0.1’ type=’yum’/>
<Package name=’beecrypt’ version=’3.1.0-6’ type=’yum’/>
...
<Package name=’VMwareTools’ version=’6530-29996’ type=’yum’/>
<Package name=’yum’ version=’2.4.3-1’ type=’yum’/>
<Package name=’zlib’ version=’1.2.1.2-1.2’ type=’yum’/>

</Group>
</Group>

</PackageList>

74 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Here it can be seen that the data is encapsulated in a !PackageList Tag which describes the URI of the files
described, the type of package, and the priority of the files in this list.

The priority is used to decide which specific file to use when there are multiple files that could be used for a
particular host. The highest priority file is the one that is used.

Using this system, it is possible to have a file that contains all the Packages from the original installation,
centos-4-x86_64.xml in this case, and then create a new file that contains updates that are made available
afterwards, centos-4-x86_64-updates.xml and centos-4-noarch-updates.xml in this case. The priority of the
update PackageLists just needs to be higher so that they will be selected instead of the original installation
Packages.

The backup.example.com.xml contains a packalist for a specific host which is qualified by the Client tag.
Its Packages have a higher priority than the update Packages. This is because this particular host requires
special Packages that are older than the ones available in the updates.

<PackageList uri=’http://www.example.com/yam/Centos44-x86_64/RPMS.os/’ type=’yum’ priority=’1000’>
<Client name=’server86.example.com’>

<Package name=’audit-libs’ version=’1.0.13-1.EL4’ type=’yum’/>
<Package name=’audit’ version=’1.0.13-1.EL4’ type=’yum’/>
<Package name=’basesystem’ version=’8.0-2’ type=’yum’/>
<Package name=’bash’ version=’3.0-18.1’ type=’yum’/>
<Package name=’bcfg2’ version=’0.9.1-0.1’ type=’yum’/>
<Package name=’beecrypt’ version=’3.1.0-3’ type=’yum’/>
...
<Package name=’VMwareTools’ version=’6530-29996’ type=’yum’/>
<Package name=’yum’ version=’2.4.2-1’ type=’yum’/>
<Package name=’zlib’ version=’1.2.1.2-1.2’ type=’yum’/>

</Client>
</PackageList>

Simplifying Multi-Architecture Environments with Altsrc Frequently multi-architecture environments
(typically x86_64) will run into problems needing to specify different architectures on different groups for
clients. For example, desktop machines may install 32-bit compatibility packages in addition to 64-bit ones,
while servers may install only 64-bit packages. Specifying this in the Pkgmgr was onerous, because different
package targets (64bit, 32+64, etc) needed to be specified on a package by group basis. Two features have
been implemented that should ease this situation considerably.

• The Altsrc feature adds the ability to add a “bind as” directive to entries. For example, the following
entry, in a bundle:

<Package name=’foo’ altsrc=’bar’/>

would bind as if it were named bar, while the entry would still appear named "foo" in the client configuration specification.

• Pkgmgr now builds virtual package targets for any package with Instance client elements. This means
that if a client attempts to bind:

<Package name=’libfoo:x86_64,i686’/>
It will only include the instances listed in the package.
By using these features together, a bundle can include:

5.1. Plugins 75

Bcfg2 Documentation, Release 1.2.0

<Package name=’libfoo’ altsrc=’libfoo:i386,i686’/>

This in conjunction with a Pkgmgr entry that looks like:

<Package name=’libfoo’>
<Instance arch=’i386’ version=’1.0.4-12’/>
<Instance arch=’i586’ version=’1.0.4-12’/>
<Instance arch=’i686’ version=’1.0.4-12’/>
<Instance arch=’x86_64’ version=’1.0.4-12’/>

</Package>

Will result in a bound entry that looks like:

<Package name=’libfoo’>
<Instance arch=’i386’ version=’1.0.4-12’/>
<Instance arch=’i686’ version=’1.0.4-12’/>

</Package>

Altogether, this should move policy decisions about package architectures to bundles/base.

Client Driver (Plugins) Specific Attributes Not all the attributes that are available in Pkgmgr are hon-
oured by all the client drivers. The following client drivers (plugins) have driver specific attributes:

• RPMng

Rules

The Rules plugin resolves the following Abstract Configuration Entities:

• Service

• Package

• Path

• Action

to literal configuration entries suitable for the client drivers to consume.

For an entity specification to be included in the Literal configuration the name attribute from an Abstract
Entity Tag (from Base or Bundler) must match the name attribute of an Entity tag in Rules, along with the
appropriate group associations of course.

Each file in the Rules directory has a priority. This allows the same Entities to be served by multiple files.
The priorities can be used to break ties in the case that multiple files serve data for the same Entity.

Usage of Groups in Rules Groups are used by the Rules plugin, along with host metadata, for selecting
the Configuration Entity entries to include in the clients literal configuration. They can be thought of as:

if client is a member of group1 then
assign to literal config

76 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Nested groups are conjunctive (logical and).:

if client is a member of group1 and group2 then
assign to literal config

Group membership may be negated.

Tag Attributes in Rules

Rules Tag The Rules Tag may have the following attributes:

Name Description Values
priority Sets the priority for Rules in this Rules list.The higher value wins. String

Rules Group Tag The Rules Group Tag may have the following attributes:

Name Description Values
name Group Name String
negate Negate group membership (is not a member of) (True|False)

Package Tag The Package Tag may have the following attributes:

Name Description Val-
ues

name Package Name String
ver-
sion

Package Version or version=’noverify’ to not do version checking in the Yum driver
only (temporary work a round).

String

file Package file name. Several other attributes (name, version) can be automatically defined
based on regular expressions defined in the Pkgmgr plugin.

String

sim-
ple-
file

Package file name. No name parsing is performed, so no extra fields get set String

verify verify=’false’ - do not do package verification String
reloc RPM relocation path. String
mul-
tiarch

Comma separated list of the architectures of this package that should be installed. String

srcs Filename creation rules for multiarch packages. String
type Package type. (rpm, yum, apt,sysv,blast) String

Action Tag See Actions

5.1. Plugins 77

Bcfg2 Documentation, Release 1.2.0

Service Tag

Name Description Values
mode Per Service Mode (New in 1.0) (man-

ual|default|supervised|custom)
name Service Name String
status Should the service be on or off (default: off). (on|off)
target Service command for restart, modified targets require

mode=”custom” (default: restart)
String

type Driver to use on the client to manage this service. (chkconfig|deb|rc-
update|smf|upstart)

se-
quence

Order for service startup (debian services only) integer

Service mode descriptions New in version 1.0.0.

• manual

– do not start/stop/restart this service

• default

– perform appropriate service operations

• supervised

– default and ensure service is running (or stopped) when verification is performed

– deprecates supervised=’true’

• custom

– set non-default service command for restart (use in conjunction with target attribute)

Client Tag The Client Tag is used in Rules for selecting the package entries to include in the clients literal
configuration. Its function is similar to the Group tag in this context. It can be thought of as:

if client is name then
assign to literal config

The Client Tag may have the following attributes:

Name Description Values
name Client Name String
negate Negate client selection (if not client name) (True|False)

Path Tag The Path tag has different values depending on the type attribute of the path specified in your
configuration. Below is a set of tables which describe the attributes available for various Path types.

78 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

device

Name Description Values
name Name of the device String
dev_type Type of device (block|char|fifo)
owner Device owner String
group Device group String
major Major number (block or char devices) integer
minor Minor number (block or char devices) integer

directory

Name Description Values
name Directory Name String
perms Permissions of the directory String
owner Owner of the directory String
group Group Owner of the directory String
prune prune unspecified entries from the Directory true|false

hardlink
Name Description Values
name Name of the hardlink String
to File to link to String

nonexistent
Name Description Values
name Name of the (nonexistent) file String
type Type of file nonexistent

permissions

Name Description Values
name Name of the file. String
perms Permissions of the file. String
owner Owner of the file. String
group Group of the file. String

symlink
Name Description Values
name Name of the symlink. String
to File to link to String

Rules Directory The Rules/ directory keeps the XML files that define what rules are available for a host.
All the files in the directory are processed.

The names of the XML files have no special meaning to Bcfg2; they are simply named so it’s easy for
the administrator to know what the contents hold. All Rules could be kept in a single file if so desired.
Bcfg2 simply uses the Groups in the files and priorities to determine how to assign Rules to a host’s literal
configuration.

<Rules priority="0">
<Path type=’directory’ group="root" name="/autonfs" owner="root" perms="0755"/>
<Path type=’directory’ group="utmp" name="/var/run/screen" owner="root" perms="0775"/>

5.1. Plugins 79

Bcfg2 Documentation, Release 1.2.0

<Path type=’directory’ group="root" name="/autonfs/stage" owner="root" perms="0755"/>
<Path type=’directory’ group="root" name="/exports" owner="root" perms="0755"/>
<Path type=’directory’ name="/etc/condor" owner="root" group="root" perms="0755"/>
<Path type=’directory’ name="/logs" group="wwwtrans" owner="root" perms="0775"/>
<Path type=’directory’ name="/mnt" group="root" owner="root" perms="0755"/>
<Path type=’directory’ name="/my" owner="root" group="root" perms="0755"/>
<Path type=’directory’ name="/my/bin" owner="root" group="root" perms="0755"/>
<Path type=’directory’ name="/nfs" owner="root" group="root" perms="0755"/>
<Path type=’directory’ name="/sandbox" perms="0777" owner="root" group="root"/>
<Path type=’directory’ name="/software" group="root" owner="root" perms="0755"/>
<Path type=’permissions’ perms="0555" group="audio" owner="root" name="/dev/dsp"/>
<Path type=’permissions’ perms="0555" group="audio" owner="root" name="/dev/mixer"/>
<Path type=’symlink’ name="/bin/whatami" to="/mcs/adm/bin/whatami"/>
<Path type=’symlink’ name="/chibahomes" to="/nfs/chiba-homefarm"/>
<Path type=’symlink’ name="/home" to="/nfs/mcs-homefarm"/>
<Path type=’symlink’ name="/homes" to="/home"/>
<Path type=’symlink’ name="/mcs" to="/nfs/mcs"/>
<Path type=’symlink’ name="/my/bin/bash" to="/bin/bash"/>
<Path type=’symlink’ name="/my/bin/tcsh" to="/bin/tcsh"/>
<Path type=’symlink’ name="/my/bin/zsh" to="/bin/zsh"/>
<Path type=’symlink’ name="/software/common" to="/nfs/software-common"/>
<Path type=’symlink’ name="/software/linux" to="/nfs/software-linux"/>
<Path type=’symlink’ name="/software/linux-debian_sarge" to="/nfs/linux-debian_sarge"/>
<Path type=’symlink’ name="/usr/bin/passwd" to="/usr/bin/yppasswd"/>
<Path type=’symlink’ name="/usr/bin/yppasswd" to="/mcs/bin/passwd"/>
<Path type=’symlink’ name="/usr/lib/libgd.so.1.8" to="/usr/lib/libgd.so.1.8.4"/>
<Path type=’symlink’ name="/usr/lib/libtermcap.so.2" to="/usr/lib/libtermcap.so"/>
<Path type=’symlink’ name="/usr/local/bin/perl" to="/usr/bin/perl"/>
<Path type=’symlink’ name="/usr/local/bin/perl5" to="/usr/bin/perl"/>
<Path type=’symlink’ name="/usr/local/bin/tcsh" to="/bin/tcsh"/>
<Service name=’ntpd’ status=’on’ type=’chkconfig’/>
<Service name=’haldaemon’ status=’on’ type=’chkconfig’/>
<Service name=’messagebus’ status=’on’ type=’chkconfig’/>
<Service name=’netfs’ status=’on’ type=’chkconfig’/>
<Service name=’network’ status=’on’ type=’chkconfig’/>
<Service name=’rawdevices’ status=’on’ type=’chkconfig’/>
<Service name=’sshd’ status=’on’ type=’chkconfig’/>
<Service name=’syslog’ status=’on’ type=’chkconfig’/>
<Service name=’vmware-tools’ status=’on’ type=’chkconfig’/>

</Rules>

SSHbase

SSHbase is a purpose-built Bcfg2 plugin for managing ssh host keys. It is responsible for making ssh
keys persist beyond a client rebuild and building a proper ssh_known_hosts file, including a correct
localhost record for the current system.

It has two functions:

• Generating new ssh keys – When a client requests a dsa, rsa, or v1 key, and there is no existing key in
the repository, one is generated.

80 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

• Maintaining the ssh_known_hosts file – all current known public keys (and extra public key
stores) are integrated into a single ssh_known_hosts file, and a localhost record for the current
client is added. The ssh_known_hosts file data is updated whenever any keys change, are added,
or deleted.

Interacting with SSHbase

• Pre-seeding with existing keys – Currently existing keys will be overwritten by new, sshbase-
managed ones by default. Pre-existing keys can be added to the repository by putting them in
<repo>/SSHbase/<key filename>.H_<hostname>

• Pre-seeding can also be performed using bcfg2-admin pull ConfigFile /name/of/ssh/key

• Revoking existing keys – deleting <repo>/SSHbase/*.H_<hostname> will remove keys for an existing
client.

Aliases SSHbase has support for Aliases listed in clients.xml. The address for the entries are specified
either through DNS (e.g. a CNAME), or via the address attribute to the Alias.

Getting started

1. Add SSHbase to the plugins line in /etc/bcfg2.conf and restart the server – This enables the
SSHbase plugin on the Bcfg2 server.

2. Add Path entries for /etc/ssh/ssh_known_hosts, and /etc/ssh/ssh_host_dsa_key,
etc to a bundle or base.

3. Enjoy.

At this point, SSHbase will generate new keys for any client without a recorded key in the repository, and
will generate an ssh_known_hosts file appropriately.

Adding public keys for unmanaged hosts If you have some hosts which are not managed by Bcfg2, but
you would still like to have their public ssh keys available in ssh_known_hosts, you can add their public
keys to the SSHbase directory with a .static ending.

Example:

a.static:

TEST1

b.static:

TEST2

The generated ssh_known_hosts file:

TEST1
TEST2

5.1. Plugins 81

Bcfg2 Documentation, Release 1.2.0

Blog post http://www.ducea.com/2008/08/24/using-the-bcfg2-sshbase-plugin/

SSLCA

SSLCA is a generator plugin designed to handle creation of SSL private keys and certificates on request.

Borrowing ideas from the TGenshi and SSHbase plugins, SSLCA automates the generation of SSL certifi-
cates by allowing you to specify key and certificate definitions. Then, when a client requests a Path that
contains such a definition within the SSLCA repository, the matching key/cert is generated, and stored in
a hostfile in the repo so that subsequent requests do not result in repeated key/cert recreation. In the event
that a new key or cert is needed, the offending hostfile can simply be removed from the repository, and the
next time that host checks in, a new file will be created. If that file happens to be the key, any dependent
certificates will also be regenerated.

Getting started In order to use SSLCA, you must first have at least one CA configured on your system.
For details on setting up your own OpenSSL based CA, please see http://www.openssl.org/docs/apps/ca.html
for details of the suggested directory layout and configuration directives.

For SSLCA to work, the openssl.cnf (or other configuration file) for that CA must contain full (not relative)
paths.

1. Add SSLCA to the plugins line in /etc/bcfg2.conf and restart the server – This enabled the
SSLCA plugin on the Bcfg2 server.

#. Add a section to your /etc/bcfg2.conf called sslca_foo, replacing foo with the name you wish to
give your CA so you can reference it in certificate definitions.

#. Under that section, add an entry for config that gives the location of the openssl configuration file for
your CA.

#. If necessary, add an entry for passphrase containing the passphrase for the CA’s private key. We store
this in /etc/bcfg2.conf as the permissions on that file should have it only readable by the bcfg2 user.
If no passphrase is entry exists, it is assumed that the private key is stored unencrypted.

#. Add an entry chaincert that points to the location of your ssl chaining certificate. This is used when
preexisting certifcate hostfiles are found, so that they can be validated and only regenerated if they no longer
meet the specification.

#. Once all this is done, you should have a section in your /etc/bcfg2.conf that looks similar to the
following:

[sslca_default] config = /etc/pki/CA/openssl.cnf passphrase = youReallyThinkIdShareThis?
chaincert = /etc/pki/CA/chaincert.crt

#. You are now ready to create key and certificate definitions. For this example we’ll assume you’ve
added Path entries for the key, /etc/pki/tls/private/localhost.key, and the certificate,
/etc/pki/tls/certs/localhost.crt to a bundle or base.

#. Defining a key or certificate is similar to defining a TGenshi template. Under your Bcfg2’s SSLCA
directory, create the directory structure to match the path to your key. In this case this would be something
like /var/lib/bcfg2/SSLCA/etc/pki/tls/private/localhost.key.

82 Chapter 5. The Bcfg2 Server

http://www.ducea.com/2008/08/24/using-the-bcfg2-sshbase-plugin/
http://www.openssl.org/docs/apps/ca.html

Bcfg2 Documentation, Release 1.2.0

1. Within that directory, create a key.xml file containing the following:

<KeyInfo>
<Key type="rsa" bits="2048" />

</KeyInfo>

#. This will cause the generation of an 2048 bit RSA key when a client requests that Path. Alternatively you
can specify dsa as the keytype, or a different number of bits.

#. Similarly, create the matching directory structure for the certificate path, and a cert.xml containinng
the following:

<CertInfo>
<Cert format="pem" key="/etc/pki/tls/private/localhost.key" ca="default" days="365" c="US" l="New York" st="New York" o="Your Company Name" />

</CertInfo>

#. When a client requests the cert path, a certificate will be generated using the key hostfile at the specified
key location, using the CA matching the ca attribute. ie. ca=”default” will match [sslca_default] in your
/etc/bcfg2.conf

TODO

1. Add generation of pkcs12 format certs

TCheetah

This document reflects the TCheetah plugin.

The TCheetah plugin allows you to use the cheetah templating system to create files, instead of the various
diff-based methods offered by the Cfg plugin. It also allows you to include the results of probes executed
on the client in the created files.

To begin, you will need to download and install the Cheetah templating engine from
http://www.cheetahtemplate.org/. Once it is installed, you can enable it by adding TCheetah to the
plugins line in /etc/bcfg2.conf on your Bcfg server. For example:

plugins = Cfg,Metadata,Pkgmgr,Rules,SSHbase,TCheetah

The TCheetah plugin makes use of a Cfg-like directory structure located in in a TCheetah subdirectory
of your repository, usually /var/lib/bcfg2/TCheetah. Each file has a directory containing two files,
template and info. The template is a standard Cheetah template with two additions:

• self.metadata is the client’s metadata

• self.properties is an xml document of unstructured data

The info file is formatted like :info files from Cfg.

Mostly, people will want to use client metadata.

File permissions File permissions for entries handled by TCheetah are controlled via the use of Info files.
Note that you cannot use both a Permissions entry and a Path entry to handle the same file.

5.1. Plugins 83

http://www.cheetahtemplate.org/
http://www.cheetahtemplate.org/

Bcfg2 Documentation, Release 1.2.0

self.metadata variables The following variables are available for self.metadata:

• hostname

• bundles

• groups

• categories

• probes

• uuid

• password

self.metadata is an instance of the class ClientMetadata of file Bcfg2/Server/Plugins/Metadata.py.

self.properties Properties is a python ElementTree object, loaded from the data in
/var/lib/bcfg2/Properties/<properties file>.xml. That file should have a
Properties node at its root.

Example Properties/example.xml:

<Properties>
<host>

<www.example.com>
<rootdev>/dev/sda</rootdev>

</www.example.com>
</host>

</Properties>

You may use any of the ElementTree methods to access data in your template. Several examples follow,
each producing an identical result on the host ‘www.example.com’:

$self.Properties[’example.xml’].find(’host’).find(’www.example.com’).find(’rootdev’).text
$self.Properties[’example.xml’].find(’host’).find($self.metadata.hostname).find(’rootdev’).text
${self.Properties[’example.xml’].xpath(’host/www.example.com/rootdev’)[0].text}
${self.Properties[’example.xml’].xpath(’host/’ + self.metadata.hostname + ’/rootdev’)[0].text}
#set $path = ’host/’ + $self.metadata.hostname + ’/rootdev’
${self.Properties[’example.xml’].xpath($path)[0].text}
${self.Properties[’example.xml’].xpath(path)[0].text}

Simple Example TCheetah works similar to Cfg in that you define all literal information about a particular
file in a directory rooted at TGenshi/path_to_file. The actual file contents are placed in a file named template
in that directory. Below is a simple example a file /foo.

/var/lib/bcfg2/TCheetah/foo/template

> buildfile /foo <clientname>
Hostname is $self.metadata.hostname
Groups:
#for $group in $self.metadata.groups:

* $group

84 Chapter 5. The Bcfg2 Server

http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/bcfg2/src/lib/Server/Plugins/Metadata.py
http://codespeak.net/lxml/

Bcfg2 Documentation, Release 1.2.0

#end for
Categories:
#for $category in $self.metadata.categories:

* $category -- $self.metadata.categories[$category]
#end for

Probes:
#for $probe in $self.metadata.Probes:

* $probe -- $self.metadata.Probes[$probe]
#end for

/var/lib/bcfg2/TCheetah/foo/info

perms: 624

Output The following output can be generated with bcfg2-info. Note that probe information is not persis-
tent, hence, it only works when clients directly query the server. For this reason, bcfg2-info output doesn’t
reflect current client probe state.

<Path type="file" name="/foo" owner="root" perms="0624" group="root">
Hostname is topaz.mcs.anl.gov
Groups:

* desktop

* mcs-base

* ypbound

* workstation

* xserver

* debian-sarge

* debian

* a
Categories:

* test -- a

Probes:
</Path>

Example: Replace the crontab plugin In many cases you can use the TCheetah plugin to avoid writing
custom plugins in Python. This example randomizes the time of cron.daily execution with a stable result.
Cron.daily is run at a consistent, randomized time between midnight and 7am.:

#import random
#silent random.seed($self.metadata.hostname)

/etc/crontab: system-wide crontab
Unlike any other crontab you don’t have to run the ‘crontab‘
command to install the new version when you edit this file.
This file also has a username field, that none of the other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin://bin

5.1. Plugins 85

Bcfg2 Documentation, Release 1.2.0

m h dom mon dow user command
17 * * * * root run-parts --report /etc/cron.hourly
$random.randrange(0,59) $random.randrange(0,6) * * * root test -x /usr/sbin/anacron || run-parts --report /etc/cron.daily
47 6 * * 7 root test -x /usr/sbin/anacron || run-parts --report /etc/cron.weekly
52 6 1 * * root test -x /usr/sbin/anacron || run-parts --report /etc/cron.monthly.

Note: Comments and Cheetah As Cheetah processes your templates it will consider hash “#” style com-
ments to be actual comments in the template and will strip them from the final config file. If you would like
to preserve the comment in the final config file you need to escape the hash character ‘#’ which will tell
Cheetah (and Python) that you do in fact want the comment to appear in the final config file.:

This is a comment in my template which will be stripped when it’s processed through Cheetah
\# This comment will appear in the generated config file.

Each of these plugins has a corresponding subdirectory with the same name in the Bcfg2 repository.

Statistics Plugins

DBStats

DBStats can be enabled by adding DBStats to the plugins line in /etc/bcfg2.conf:

plugins = DBStats

For more information on how to use DBStats to setup reporting, see Bcfg2 Dynamic Reporting System.

Statistics

DBStats can be enabled by adding it to the plugins line in /etc/bcfg2.conf.

Version Plugins

Bzr

Why use the Bazaar plugin The Bazaar plugin is useful if you would like to track changes to your
bcfg2 repository using a Bazaar backend. Currently, it enables you to get revision information out of your
repository for reporting purposes. Future plans are to commit changes to the repo which are made by the
server.

How to enable the Bazaar plugin Simply add “Bzr” to your plugins line in /etc/bcfg2.conf:

[server]
plugins = Base,Bundler,Cfg,...,Bzr

86 Chapter 5. The Bcfg2 Server

http://bazaar-vcs.org/

Bcfg2 Documentation, Release 1.2.0

Usage notes Unlike other VCS plugins for Bcfg2, the Bazaar plugin checks whether there are uncommit-
ted changes to the repository. If there are, this plugin appends a “+” after the version number. Essentially,
this means you’re using that version, “plus” some changes.

CVS

Why use the CVS plugin The CVS plugin is useful if you would like to track changes to your Bcfg2
repository using a CVS backend. Currently, it enables you to get revision information out of your repository
for reporting purposes. Future plans are to commit changes to the repo which are made by the server.

How to enable the CVS plugin Simply add “Cvs” to your plugins line in /etc/bcfg2.conf:

[server]
plugins = Base,Bundler,Cfg,...,Cvs

Darcs

This page describes the new Darcs plugin which is experimental.

Why use the Darcs plugin The Darcs plugin is useful if you would like to track changes to your Bcfg2
repository using a Darcs backend. Currently, it enables you to get revision information out of your repository
for reporting purposes. Once the plugin is enabled, every time a client checks in, it will include the current
repository revision in the reports/statistics.

How to enable the Darcs plugin You will need to install Darcs on the Bcfg2 server first. Once installed,
simply add Darcs to your plugins line in /etc/bcfg2.conf:

[server]
plugins = Base,Bundler,Cfg,...,Darcs

Fossil

Why use the Fossil plugin The Fossil plugin is useful if you would like to track changes to your bcfg2
repository using a Fossil SCM backend. Currently, It enables you to get revision information out of your
repository for reporting purposes. Future plans are to commit changes to the repo which are made by the
server.

How to enable the Fossil plugin Simply add “Fossil” to your plugins line in /etc/bcfg2.conf:

[server]
plugins = Base,Bundler,Cfg,...,Fossil

5.1. Plugins 87

http://www.nongnu.org/cvs/
http://darcs.net/
http://fossil-scm.org

Bcfg2 Documentation, Release 1.2.0

Git

Why use the Git plugin The Git plugin is useful if you would like to track changes to your bcfg2 repos-
itory using a Git backend. Currently, It enables you to get revision information out of your repository for
reporting purposes. Once the plugin is enabled, every time a client checks in, it will include the current
repository revision in the reports/statistics.

Future plans are to commit changes to the repo which are made by the server (adding clients, ssh keys, etc).

How to enable the Git plugin The Git plugin uses Dulwich to interface with git repositories. Therefore,
you will need to install Dulwich on the Bcfg2 server first. Once installed, simply add Git to your plugins
line in /etc/bcfg2.conf:

[server]
plugins = Base,Bundler,Cfg,...,Git

Mercurial (Hg)

Why use the Mercurial plugin The Hg plugin is useful if you would like to track changes to your Bcfg2
repository using Hg backend. Currently, it enables you to get revision information out of your repository for
reporting purposes.

How to enable the Mercurial plugin You will need to install Mercurial on the Bcfg2 server first.

Simply add Hg to your plugins line in /etc/bcfg2.conf:

[server]
plugins = Base,Bundler,Cfg,...,Hg

Svn

The Svn plugin is useful if you would like to track changes to your bcfg2 repository us-
ing a Subversion backend. It deprecates the previous Subversion integration mentioned here at
ftp://ftp.mcs.anl.gov/pub/bcfg/papers/directing-change-with-bcfg2.pdf.

Currently, It enables you to get revision information out of your repository for reporting purposes. Once
the plugin is enabled, every time a client checks in, it will include the current repository revision in the
reports/statistics.

Future plans are to commit changes to the repo which are made by the server (adding clients, ssh keys, etc).

How to enable the Svn plugin Simply add Svn to your plugins line in /etc/bcfg2.conf:

[server]
plugins = Base,Bundler,Cfg,..,Svn

88 Chapter 5. The Bcfg2 Server

http://git-scm.com/
http://samba.org/~jelmer/dulwich/
http://mercurial.selenic.com/
http://subversion.tigris.org/
ftp://ftp.mcs.anl.gov/pub/bcfg/papers/directing-change-with-bcfg2.pdf

Bcfg2 Documentation, Release 1.2.0

5.1.3 Plugin Roles (in 1.0)

In version 1.0, plugins have been refactored into a series of roles. This are fine-grained plugin capabilities
that govern how the server core interacts with plugins.

More details can be found in Plugin Roles

Plugin Roles

This documents available plugin roles.

1. list of plugin roles

Role Class Status
Metadata Metadata done
Connector Connector done
Probing Probing done
Structure Structure done
Structure Val StructureValidator done
Generator Generator done
Goals Val GoalValidator done
Statistics Statistics done
Pull Source PullSource done
Pull Target PullTarget done
Version Version done
Decision Decision done
Remote Remote none
Syncing Syncing none

2. Plugin Capabilities

• Metadata

– Initial metadata construction

– Connector data accumulation

– ClientMetadata instance delivery

– Introspection interface (for bcfg2-info & co)

• Connector

– Provide additional data for ClientMetadata instances

• Probing

– send executable probes to clients and receive data responses

• Structure

– Produce a list of configuration entries that should be included in client configurations

– Each structure plugin is produces a list of structures

5.1. Plugins 89

Bcfg2 Documentation, Release 1.2.0

– Core verifies that each bundle listed has been constructed

• Structure Validation

– Validate a client entry list’s internal consistency, modifying if needed

• Generator

• Goals Validation

– Validate client goals, modifying if needed

• Pull Source

– Plugin can provide entry information about clients

• Pull Target

– Plugin can accept entry data and merge it into the specification

• Version

– Plugin can read revision information from VCS of choice

– Will provide an interface for producing commits made by the bcfg2-server

• Decision

3. Configuration of plugins

Plugin configuration will be simplified substantially. Now, a single list of plugins (including plugins
of all capabilities) is specified upon startup (either via bcfg2.conf or equivalent). This mechanism
replaces the current split configuration mechanism where generators, structures, and other plugins are
listed independently. Instead, all plugins included in the startup list will be initialized, and each will
be enabled in all roles that it supports. This will remove a current source of confusion and potential
configuration errors, wherein a plugin is enabled for an improper set of goals. (ie Cfg enabled as
a structure, etc) This does remove the possibility of partially enabling a plugin for one of its roles
without activating it across the board, but I think this is a corner case, which will be poorly supported
by plugin implementers. If needed, this use case can be explicitly supported by the plugin author,
through use of a config file directive.

4. User Visible Changes

Connector data is added to ClientMetadata instances using the name of the connector plugin. This
means that the dictionary of key/val probe pairs included with metadata is now available as meta-
data.Probes (instead of metadata.probes). Once properties are available the same way, they will like-
wise change names to metadata.Properties from their current name.

Plugin configuration will change. A single field “plugins” in bcfg2.conf will supercede the combina-
tion of the “generators” and “structures” fields.

Default loading of needed plugins is now explicit; this means that Statistics (if used) should be listed
in the plugins line of bcfg2.conf.

5. Notes

• Need to ensure bundle accumulation occurs with connector groups

90 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Probes

At times you need to gather information from a client machine before you can generate its configuration.
For example, if some of your machines have both a local scratch disk and a system disk while others only
have the system disk, you would want to know this information to correctly generate an /etc/auto.master
autofs config file for each type. Here we will look at how to do this.

First you will need to set up the TCheetah plugin, as described on the TCheetah page.

Next, we need to create a Probes directory in our toplevel repository location:

mkdir /var/lib/bcfg2/Probes

This directory will hold any small scripts we want to use to grab information from client ma-
chines. These scripts can be in any scripting language; the shebang line (the #!/usr/bin/env
some_interpreter_binary line at the very top of the script) is used to determine the script’s in-
terpreter.

Note: Bcfg2 uses python mkstemp to create the Probe scripts on the client. If your /tmp directory is
mounted noexec, you will likely need to modify the TMPDIR environment variable so that the bcfg2 client
creates the temporary files in a directory from which it can execute.

Now we need to figure out what exactly we want to do. In this case, we want to hand out an
/etc/auto.master file that looks like:

/software /etc/auto.software --timeout 3600
/home /etc/auto.home --timeout 3600
/hometest /etc/auto.hometest --timeout 3600
/nfs /etc/auto.nfs --timeout 3600
/scratch /etc/auto.scratch --timeout 3600

for machines that have a scratch disk. For machines without an extra disk, we want to get rid of that last
line:

/software /etc/auto.software --timeout 3600
/home /etc/auto.home --timeout 3600
/hometest /etc/auto.hometest --timeout 3600
/nfs /etc/auto.nfs --timeout 3600

So, from the Probes standpoint we want to create a script that counts the number of SCSI disks in a client
machine. To do this, we create a very simple Probes/scratchlocal script:

cat /proc/scsi/scsi | grep Vendor | wc -l

Running this on a node with n disks will return the number n+1, as it also counts the controller as a device.
To differentiate between the two classes of machines we care about, we just need to check the output of this
script for numbers greater than 2. We do this in the template.

The TCheetah/ directory is laid out much like the Cfg/ directory. For this example we will want to
create a TCheetah/etc/auto.master directory to hold the template of the file in question. Inside
of this template we will need to check the result of the Probe script that got run and act accordingly. The
TCheetah/etc/auto.master/template file looks like:

5.1. Plugins 91

Bcfg2 Documentation, Release 1.2.0

/software /etc/auto.software --timeout 3600
/home /etc/auto.home --timeout 3600
/hometest /etc/auto.hometest --timeout 3600
/nfs /etc/auto.nfs --timeout 3600
#if int($self.metadata.Probes["scratchlocal"]) > 2
/scratch /etc/auto.scratch --timeout 3600
#end if

Any Probe script you run will store its output in $self.metadata.Probes["scriptname"], so we
get to our scratchlocal script’s output as seen above. Note that we had to wrap the output in an int() call; the
script output is treated as a string, so it needs to be converted before it can be tested numerically.

With all of these pieces in place, the following series of events will happen when the client is run:

1. Client runs

2. Server hands down our scratchlocal probe script

3. Client runs the scratchlocal probe script and hands its output back up to the server

4. Server generates /etc/auto.master from its template, performing any templating substitu-
tions/actions needed in the process.

5. Server hands /etc/auto.master down to the client

6. Client puts file contents in place.

Now we have a nicely dynamic /etc/auto.master that can gracefully handle machines with different
numbers of disks. All that’s left to do is to add the /etc/auto.master to a Bundle:

<Path name=’/etc/auto.master’/>

Host and Group Specific probes

Bcfg2 has the ability to alter probes based on client hostname and group membership. These files work
similarly to files in Cfg.

If multiple files with the same basename apply to a client, the most specific one is used. Only one instance
of a probe is served to a given client, so if a host-specific version and generic version apply, only the client-
specific one will be used.

Other examples

current-kernel Probe the currently running kernel.

#!/bin/sh
#
PROBE_NAME : current-kernel
echo ‘uname -r‘

92 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

group Probe used to dynamically set client groups based on OS/distro.

Note: Some parts of this script may depend on having lsb-release installed.

#!/bin/bash

OUTPUT=""

if [-e /etc/release]; then
Solaris
OUTPUT=$OUTPUT’\n’‘echo group:solaris‘

elif [-e /etc/debian_version]; then
debian based
OUTPUT=$OUTPUT’\n’‘echo group:deb‘
if [-e /etc/lsb-release]; then

variant
. /etc/lsb-release
OS_GROUP=$DISTRIB_CODENAME
DEBIAN_VERSION=$(echo "$DISTRIB_ID" | tr ’[A-Z’ ’[a-z]’)
case "$OS_GROUP" in

"lucid")
OUTPUT=$OUTPUT’\n’‘echo group:$DISTRIB_CODENAME‘
OUTPUT=$OUTPUT’\n’‘echo group:$DEBIAN_VERSION‘
;;

esac
else

debian
OS_GROUP=‘cat /etc/debian_version‘
OUTPUT=$OUTPUT’\n’‘echo group:debian‘
case "$OS_GROUP" in

5.*)
OUTPUT=$OUTPUT’\n’‘echo group:lenny‘
;;
"sid")
OUTPUT=$OUTPUT’\n’‘echo group:sid‘
;;

esac
fi

elif [-e /etc/redhat-release]; then
redhat based
OUTPUT=$OUTPUT’\n’‘echo group:rpm‘
OS_GROUP=‘cat /etc/redhat-release | cut -d’ ’ -f1 | tr ’[A-Z]’ ’[a-z]’‘
REDHAT_VERSION=‘cat /etc/redhat-release | cut -d’ ’ -f3‘
case "$OS_GROUP" in

"centos" | "fedora")
OUTPUT=$OUTPUT’\n’‘echo group:$OS_GROUP‘
OUTPUT=$OUTPUT’\n’‘echo group:$OS_GROUP$REDHAT_VERSION‘
;;

esac
elif [-e /etc/gentoo-release]; then

gentoo
OUTPUT=$OUTPUT’\n’‘echo group:gentoo‘

elif [-x /usr/sbin/system_profiler]; then
os x

5.1. Plugins 93

Bcfg2 Documentation, Release 1.2.0

NOTE: Think about using system_profiler SPSoftwareDataType here
OUTPUT=$OUTPUT’\n’‘echo group:osx‘
OSX_VERSION=‘sw_vers | grep ’ProductVersion:’ | egrep -o ’[0-9]+\.[0-9]+’‘
if ["$OSX_VERSION" == "10.6"]; then

OUTPUT=$OUTPUT’\n’‘echo group:osx-snow‘
elif ["$OSX_VERSION" == "10.5"]; then

OUTPUT=$OUTPUT’\n’‘echo group:osx-leo‘
fi
echo $OUTPUT

else
exit 0

fi
get the proper architecture
ARCH=‘uname -m‘
case "$ARCH" in

"x86_64")
if ["$OS_GROUP" == ’centos’]; then

OUTPUT=$OUTPUT’\n’‘echo group:$ARCH‘
else

OUTPUT=$OUTPUT’\n’‘echo group:amd64‘
fi
;;
"i386" | "i686")
OUTPUT=$OUTPUT’\n’‘echo group:i386‘
;;
"sparc64")
OUTPUT=$OUTPUT’\n’‘echo group:sparc64‘
;;

esac

output the result of all the group probing
(interpreting the backslashed newlines)
echo -e $OUTPUT

vserver Detect if the server is a Linux-VServer host.

#!/bin/sh

Test the proc
TEST=‘cat /proc/self/status|grep s_context| cut -d":" -f2|cut -d" " -f 2‘

case "$TEST" in
"")

Not a vserver kernel
echo group:host
;;

"0")
Vserver kernel but it is the HOST
echo group:host
;;

[0-9]*)
Vserver

94 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

echo group:vserver
;;

esac

grub-serial-order A basic hardware probe to determine if you should change the default serial ordering
in grub.conf. This pre-supposes that you know your hardware is broken. You can tell something is wrong
with your hardware if it takes lots of time to iterate through the “Press a key” option and present you with
the grub menu. In some cases, I’ve seen this take as long as 20 minutes.

#!/bin/sh
#
#
We need to modify the order of the --serial line in grub
in order to fix silly hardware bugs. In some cases, having
this in the wrong order causes grub to take an inordinate
amount of time to do anything before it actually auto-picks
the default menu option to boot.
#

PATH=/bin:/usr/bin:/sbin:/usr/sbin; export PATH
let’s figure out what product type this is
os=‘uname -s‘
productname="product-no-dmidecode"

if [$os = "Linux"] ; then
productname=‘dmidecode -s system-product-name 2>&1‘
case $productname in
"PowerEdge M600")

echo "console serial"
;;

*)
echo "serial console"
;;

esac
fi
if [$os = "SunOS"] ; then

Bcfg2 server is unhappy with null output from probes
echo "console"

fi

manufacturer Probe to output some standardized group names based on the manufacturer information.

#!/bin/sh
#
PATH=/bin:/usr/bin:/sbin:/usr/sbin; export PATH

manufacturer=manuf-no-demidecode

os=‘uname -s‘
if [$os = "Linux"] ; then

manufacturer=‘dmidecode -s system-manufacturer 2>&1| sed -e ’s/[]\+$//g’‘

5.1. Plugins 95

Bcfg2 Documentation, Release 1.2.0

case $manufacturer in
"Dell Inc.")

manufacturer="manuf-dell"
;;

"Sun Microsystems")
manufacturer="manuf-sun"
;;

"VMware, Inc.")
manufacturer="manuf-vmware"
;;

*)
manufacturer="manuf-unknown"
;;

esac
fi

if [$os = "SunOS"]; then
case ‘uname -i‘ in
SUNW,*)

manufacturer="manuf-sun"
;;

*)
manufacturer="manuf-unknown"
;;

esac
fi

echo group:$manufacturer

producttype A probe to set up dynamic groups based on the producttype and possibly some internal
components of the system.

Defined products are product-name.

Defined component information is has_some_component. In the example below, we can infer that we have
Emulex Lightpulse gear and set the group has_hardware_emulex_lightpulse.

!/bin/sh
#
#

PATH=/bin:/usr/bin:/sbin:/usr/sbin; export PATH
let’s figure out what product type this is
os=‘uname -s‘
productname="product-no-dmidecode"

if [$os = "Linux"] ; then
productname=‘dmidecode -s system-product-name 2>&1‘
case $productname in
"PowerEdge M600")

productname="product-bladem600"
;;

"Sun Fire X4100 M2")

96 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

productname="product-x4100m2"
;;

"Sun Fire X4440")
productname="product-x4440"
;;

"VMware Virtual Platform")
productname="product-vmware-vm"
;;

*)
productname="product-unknown"
;;

esac

check for emulex lightpulse fiber channel HBA
check_emulex_lightpulse=‘lspci -d 10df: | grep -c LightPulse‘
if [$check_emulex_lightpulse -gt 0]; then

echo group:has_hardware_emulex_lightpulse
fi

check for broadcom nics
check_broadcom_nic=‘lspci -d 14e4: | grep -c NetXtreme‘
if [$check_broadcom_nic -gt 0]; then

echo group:has_hardware_broadcom_nic
fi

check for intel pro/1000 MT nics
check_intel_pro1000mt_nic=‘lspci -d 8086:1010 | wc -l‘
if [$check_intel_pro1000mt_nic -gt 0]; then

echo group:has_hardware_intel_pro1000mt_nic
fi

fi

if [$os = "SunOS"] ; then
case ‘uname -i‘ in
SUNW,*)

productname=‘uname -i‘
;;

*)
productname=product-unknown
;;

esac
fi

echo group:$productname

serial-console-speed A probe to tell us what the serial console speed should be for a given piece of hard-
ware. This pre-supposed some knowledge of the hardware because you define the speeds in here instead of
attempting to probe bios or something in the hardware in most cases (like x86).

#!/bin/sh
#

5.1. Plugins 97

Bcfg2 Documentation, Release 1.2.0

#
figure out what serial speed we should tell bcfg2 to use.
since there’s no way to probe, we need to set this up by external
knowledge of the system hardware type (and just make sure we
standardize on that serial speed for that hardware class)

PATH=/bin:/usr/bin:/sbin:/usr/sbin; export PATH
let’s figure out what product type this is
os=‘uname -s‘
productname="product-no-dmidecode"

if [$os = "Linux"] ; then
productname=‘dmidecode -s system-product-name 2>&1‘
case $productname in
"PowerEdge M600")

echo "115200"
;;

*)
echo "9600"
;;

esac
fi
if [$os = "SunOS"]; then

platform=‘uname -i‘
case $platform in
SUNW,*)
eeprom ttya-mode | sed ’s/ttya-mode=//’|awk -F, ’{print $1}’
;;

*)
echo "9600"
;;
esac

fi

Ohai probes

The Ohai plugin is used to detect information about the client operating system. The data is reported back
to the server using JSON.

Client prerequisites

On the client, you need to install Ohai. See Ohai-Install for more information.

Server prerequisites

If you have python 2.6 or later installed, you can continue on to Setup. Otherwise, you will need to install
the python-simplejson module found packaged in most distributions.

98 Chapter 5. The Bcfg2 Server

http://wiki.opscode.com/display/ohai/Home
http://wiki.opscode.com/display/ohai/Home
http://wiki.opscode.com/display/ohai/Installation

Bcfg2 Documentation, Release 1.2.0

Setup

To enable the Ohai plugin, you need to first create an Ohai directory in your Bcfg2 repository (e.g.
/var/lib/bcfg2/Ohai). You then need to add Ohai to the plugins line in bcfg2.conf. Once
this is done, restart the server and start a client run. You will have the JSON output from the client in the
Ohai directory you created previously.

Trigger

Trigger is a plugin that calls external scripts (on the server) when clients are configured.

Setup

First, add Trigger to the plugins line in bcfg2.conf. Then do the following:

mkdir /var/lib/bcfg2/Trigger
echo "#!/bin/sh\necho $1\n" > /var/lib/bcfg2/Trigger/test.sh
chmod +x /var/lib/bcfg2/Trigger/test.sh

Use cases

1. Completing network builds (ie resetting from the build target to the boot pxe target)

2. Integration with external systems

Trigger Arguments

Triggers are run with a series of arguments.

1. client hostname

2. -p

3. client profile

4. -g

5. group1:group2:..:groupN (all client groups)

5.2 Admin

The bcfg2-admin command provides you an interface which allows you to interact with your Bcfg2
repository in an administrative fashion. To get started, run bcfg2-admin help. You will be presented
with a list of different modes which each provide various administrative functionality. Available modes are
listed below.

FIXME: Need examples for each command listed below.

5.2. Admin 99

Bcfg2 Documentation, Release 1.2.0

5.2.1 client

Create, delete, or modify client entries.

5.2.2 compare

Determine differences between files or directories of client specification instances.

5.2.3 init

Interactively initialize a new repository.

5.2.4 minestruct

Extract extra entry lists from statistics.

5.2.5 perf

Query server for performance data.

5.2.6 pull

Integrate configuration information from clients into the server repository.

5.2.7 query

Query clients.

The default result format is suitable for consumption by pdsh. This example queries the server for all clients
in the ubuntu group:

bcfg2-admin query g=ubuntu

5.2.8 snapshots

Interact with the Snapshots system.

5.2.9 tidy

Clean up useless files in the repo.

100 Chapter 5. The Bcfg2 Server

http://sourceforge.net/projects/pdsh/

Bcfg2 Documentation, Release 1.2.0

5.2.10 viz

Produce graphviz diagrams of metadata structures.

The following command will produce a graphviz image which includes hosts, bundles, and a key:

bcfg2-admin viz -H -b -k -o ~/bcfg2.png

Note: The graphviz package available via DAG/RPMforge has been known to have dependency issues. We
recommend installing the package from EPEL.

5.2.11 xcmd

XML-RPC Command Interface.

5.3 Configuration Entries

This page describes the names and semantics of each of the configuration entries used by Bcfg2.

5.3.1 Non-POSIX entries

TagName Description Attributes
Action Command name, command, when, timing
Package Software Packages name, type, version, url
PostInstall PostInstall command name
Service System Services name, type, status, reload

5.3.2 POSIX entries

New in version 1.0.0. The unified POSIX Path entries prevent inconsistent configuration specifications of
multiple entries for a given path. The following table describes the various types available for new Path
entries.

The abstract specification of these entries (i.e. In Bundler) will only contain a name attribute. The type
will be added by the plugin that handles the entry in the case of Cfg, TGenshi, or TCheetah. If the entry is
handled by the Rules plugin (i.e. it is a device, directory, hardlink, symlink, etc), then you will specify both
the type and any other necessary attributes in Rules.

Running bcfg2-repo-validate will check your configuration specification for the presence of any
mandatory attributes that are necessary for the Path type specified.

Note: A tool for converting old POSIX entries is available in the Bcfg2 source directory at
tools/posixunified.py

5.3. Configuration Entries 101

Bcfg2 Documentation, Release 1.2.0

Type Replace-
ment/New

Description Attributes

de-
vice

New Create block, character, and fifo
devices

name, owner, group, dev_type (block,
char, fifo), major/minor (for
block/char devices)

di-
rec-
tory

Replaces
Directory
entries

Directories name, owner, group, perms, prune

file Replaces
ConfigFile
entries

Configuration File name, owner, group, perms, encoding,
empty

hardlinkNew Create hardlinks name, to
sym-
link

Replaces
SymLink
entries

SymLinks name, to

ig-
nore

New Ignore files that cause package
verification failures (currently applies
to only YUMng)

name

nonex-
is-
tent

New Specify a path that should not exist name

per-
mis-
sions

Replaces
Permissions
entries

Permissions of POSIX entities name, owner, group, perms

Keep in mind that permissions for files served up by Cfg/TGenshi/TCheetah are still handled via the tradi-
tional Info mechanisms.

5.3.3 Bound Entries

This feature is a mechanism to specify a full entry at once from a bundle. Traditionally, entries are defined
in two stages. First, an abstract entry is defined in a bundle. This entry includes a type (the XML tag) and
a name attribute. Then this entry is bound for a client, providing the appropriate instance of that entry for
the client. Specifying a bound entry short-circuits this process; the only second stage processing on Bound
entries is to remove the “Bound” prefix from the element tag. The use of a bound entry allows the single
stage definition of a complete entry. Bound entries can be used for any type.

Example:

<Bundle name=’ntp’>
<BoundPackage name=’ntp’ type=’deb’ version=’1:4.2.4p4+dfsg-3ubuntu2.1’/>

</Bundle>

5.3.4 Fun and Profit using altsrc

Altsrc is a generic, bcfg2-server-side mechanism for performing configuration entry name remapping for
the purpose of data binding.

102 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

Use Cases

• Equivalent configuration entries on different architectures with different names

• Mapping entries with the same name to different bind results in a configuration (two packages with
the same name but different types)

• A single configuration entry across multiple specifications (multi-plugin, or multi-repo)

Examples

• Consider the case of /etc/hosts on linux and /etc/inet/hosts on solaris. These files contain
the same data in the same format, and should typically be synchronized, however, exist in different
locations. Classically, one would need to create one entry for each in Cfg or TCheetah and perform
manual synchronization. Or, you could use symlinks and pray. Altsrc is driven from the bundle side.
For example:

<Bundle name=’netinfo’>
<Group name=’solaris’>
<Path name=’/etc/inet/hosts’ altsrc=’/etc/hosts’/>

</Group>
<Group name=’linux’>

<Path name=’/etc/hosts’/>
</Group>

</Bundle>

In this case, when a solaris host gets the ‘netinfo’ bundle, it will get the first Path entry, which in-
cludes an altsrc parameter. This will cause the server to bind the entry as if it were a Path called
/etc/hosts. This configuration entry is still called /etc/inet/hosts, and is installed as such.

• On encap systems, frequently multiple packages of the same name, but of different types will exist.
For example, there might be an openssl encap package, and an openssl rpm package. This can be dealt
with using a bundle like:

<Bundle name=’openssl’>
<Package name=’openssl’ altsrc=’openssl-encap’/>
<Package name=’openssl’ altsrc=’openssl-rpm’/>

</Bundle>

This bundle will bind data for the packages “openssl-encap” and “openssl-rpm”, but will be delivered
to the client with both packages named “openssl” with different types.

• Finally, consider the case where there exist complicated, but completely independent specifica-
tions for the same configuration entry but different groups of clients. The following bundle will
allow the use of two different TCheetah templates /etc/firewall-rules-external and
/etc/firewall-rules-internal for different clients based on their group membership.

<Bundle name=’firewall’>
...
<Group name=’conduit’>

<Path name=’/etc/firewall-rules’ altsrc=’/etc/firewall-rules-external’/>
</Group>

5.3. Configuration Entries 103

Bcfg2 Documentation, Release 1.2.0

<Group name=’internal’>
<Path name=’/etc/firewall-rules’ altsrc=’/etc/firewall-rules-internal’/>

</Group>
</Bundle>

• Consider the case where a variety of files can be constructed by a single template (TCheetah or TGen-
shi). It would be possible to copy this template into the proper location for each file, but that requires
proper synchronization upon modification and knowing up front what the files will all be called. In-
stead, the following bundle allows the use of a single template for all proper config file instances.

<Bundle name=’netconfig’>
<Path name=’/etc/sysconfig/network-scripts/ifcfg-eth0’ altsrc=’/etc/ifcfg-template’/>
<Path name=’/etc/sysconfig/network-scripts/ifcfg-eth1’ altsrc=’/etc/ifcfg-template’/>
<Path name=’/etc/sysconfig/network-scripts/ifcfg-eth2’ altsrc=’/etc/ifcfg-template’/>

</Bundle>

altsrc can be used as a parameter for any entry type, and can be used in any structure, including
Bundler and Base.

5.4 Info

Various file properties for entries served by the Cfg, TGenshi, and TCheetah plugins are controlled through
the use of :info, info, or info.xml files.

By default, these plugins are set to write files to the filesystem with owner root, group root, and mode 644
(read and write for owner, read only for group and other). These options, and a few others, can be overridden
through use of :info or info files. Each config file directory can have a :info or info file if needed.
The possible fields in an info file are:

Field Possible values Description Default
encoding: ascii | base64 Encoding of the file. Use base64 for non-ASCII files ascii
group: Any valid group Sets group of the file root
important: true | false Important entries are installed first during client execution root
owner: Any valid user Sets owner of the file root
paranoid: yes | no Backup file before replacement? no
perms: Numeric file mode Sets the permissions of the file 0644

A sample info file for CGI script on a web server might look like:

owner: www
group: www
perms: 0755

Back to the fstab example again, our final Cfg/etc/fstab/ directory might look like:

:info
fstab
fstab.G50_server
fstab.G99_fileserver
fstab.H_host.example.com

104 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

5.4.1 Important attribute

New in version 1.1.0. Having important entries hardcoded into the various client tools has worked relatively
well so far. However, this method allows for a bit more flexibility as the entries can be controlled via the
configuration specification.

Field Possible values Description Default
important: true | false Important entries are installed first during client execution root

5.4.2 info.xml files

info.xml files add the ability to specify different sets of file metadata on a group by group basis. These
files are XML, and work similarly to those used by Rules or Pkgmgr.

The following specifies a different global set of permissions (root/sys/0651) than on clients in group web-
server (root/root/0652)

<FileInfo>
<Group name=’webserver’>

<Info owner=’root’ group=’root’ perms=’0652’/>
</Group>
<Info owner=’root’ group=’sys’ perms=’0651’/>

</FileInfo>

5.5 Bcfg2 Snapshots

New in version 1.0.0. This page describes the Snapshots plugin. This plugin is meant to replace the older
Bcfg2 Dynamic Reporting System. It stores various aspects of a client’s state when the client checks into the
server.

5.5.1 Before you begin

Make sure you have version 0.5 or greater of sqlalchemy.

On CentOS/RHEL 5

• Download a tarball of SQLAlchemy.

• Extract and build the RPM:

tar xzf SQLAlchemy-0.5.6.tar.gz
cd SQLAlchemy-0.5.6
python setup.py bdist_rpm

• Copy the RPM in SQLAlchemy-0.5.6/dist/ to your Yum repository, and rebuild the repository
using createrepo.

• Clear the Yum cache:

5.5. Bcfg2 Snapshots 105

Bcfg2 Documentation, Release 1.2.0

sudo yum clean all

• Install SQLAlchemy:

sudo yum install SQLAlchemy

• Manage the package in Bcfg2 as you would any other package.

5.5.2 Configuration

• A database location needs to be added to bcfg2.conf. Three drivers are currently supported; mysql,
postgres, and sqlite. When using the sqlite driver, only the driver and database lines are required.

– For MySQL:

[snapshots]
driver = mysql
database = snapshots
user = snapshots
password = snapshots
host = dbserver

– For SQLite:

[snapshots]
driver = sqlite
database = /var/lib/bcfg2/var/snapshots.sqlite

• The database needs to be initialized.:

$ bcfg2-admin snapshots init
2009-03-22 21:40:24,683 INFO sqlalchemy.engine.base.Engine.0x...3e2c PRAGMA table_info("connkeyval")
PRAGMA table_info("connkeyval")
2009-03-22 21:40:24,684 INFO sqlalchemy.engine.base.Engine.0x...3e2c ()
()
2009-03-22 21:40:24,686 INFO sqlalchemy.engine.base.Engine.0x...3e2c PRAGMA table_info("package")
PRAGMA table_info("package")
2009-03-22 21:40:24,687 INFO sqlalchemy.engine.base.Engine.0x...3e2c ()
()
.....
COMMIT

• The Snapshots plugin needs to be enabled for the bcfg2-server (by adding Snapshots to the plugins
line in /etc/bcfg2.conf). Once done, this will cause the the server to store statistics information
when clients run.

5.5.3 Using the reports interface

All hosts:

106 Chapter 5. The Bcfg2 Server

Bcfg2 Documentation, Release 1.2.0

$ bcfg2-admin snapshots reports -a

============= ========= == ============================
Client Correct Revision Time
============= ========= == ============================
bcfg2client True f46ac7773712bd3c3cfb765ae5d2a3b2a37ac9b7 2009-04-23 11:27:54.378941
============= ========= == ============================

List bad entries for a single host:

$ bcfg2-admin snapshots reports -b bcfg2client
Bad entries:
Package:nscd
Package:cupsys
File:/etc/ldap.conf

List extra entries for a single host:

$ bcfg2-admin snapshots reports -e bcfg2client
Extra entries:
Package:python-pyxattr
Package:librsync1
Package:python-pylibacl
Package:gcc-4.2-multilib
Package:nxlibs
Package:freenx-session-launcher
Package:dx-doc
Package:dirdiff
Package:libhdf4g
Package:nxclient
Package:freenx-rdp
Package:freenx-vnc
Package:libxml2-dev
Package:mysql-client
Package:mysql-client-5.0
Package:libxcompext3
Package:lib32gomp1
Package:dx
Package:freenx-media
Package:dxsamples
Package:gcc-multilib
Package:rdiff-backup
Package:libdbd-mysql-perl
Package:libxcomp3
Package:freenx-server
Package:smbfs
Package:planner
Package:nxagent
Package:libc6-dev-i386
Package:libfltk1.1-dev
Package:freenx
Package:libdx4
Package:libxcompshad3
Service:freenx-server

5.5. Bcfg2 Snapshots 107

Bcfg2 Documentation, Release 1.2.0

Detailed view of hosts for a particular date:

$ bcfg2-admin snapshots reports --date 2009 5 30
============= ========= == ============================
Client Correct Revision Time
============= ========= == ============================
bcfg2client False 10c1a12c62c57c0861cc453b8d2640c4839a7357 2009-05-29 10:52:34.701056

5.5.4 TODO/Wishlist

• Identify per-client changes in correctness over time

• Detailed view for a particular date

• Track entry changes over time (glibc updated on these dates to these versions)

108 Chapter 5. The Bcfg2 Server

CHAPTER

SIX

THE BCFG2 CLIENT

The Bcfg2 client attempts to reconcile the current configuration state with the configuration passed down
from the server using various client tools. It does not perform any processing of the target configuration
description. We chose this architecture, as opposed to one with a smarter client, for a few reasons:

• Client failure forces administrators to perform an O(n) reconfiguration operation. Simpler code is
easier to debug and maintain.

• Minimize the bootstrap size; a complicated client can require more aspects of the system to function
in order for reconfiguration to work.

• Isolate configuration generation functionality on the server, where it can be readily observed. This is
the most complicated task that Bcfg2 performs.

• The results of the configuration process fit a fairly simple model. We wanted to validate it. The result
is that Bcfg2 has a programmable deployment engine that can be driven by anything that writes a
compatible configuration description.

6.1 Available client tools

6.1.1 Actions

This page describes use of the Action configuration entry. Action entries are commands that are executed
either before bundle installation, after bundle installation or both. If exit status is observed, a failing pre-
action will cause no modification of the enclosing bundle to be performed; all entries in included in that
bundle will not be modified. Failing actions are reported through Bcfg2’s reporting system, so they can be
centrally observed. Actions look like:

<Action timing=’pre|post|both’
name=’name’
command=’cmd text’
when=’always|modified’
status=’ignore|check’/>

109

Bcfg2 Documentation, Release 1.2.0

At-
tribute

Values Meaning

timing pre, post, both When the action is run
name freeform action name
command freeform command text
when always,

modified
If the action is always run, or only when a bundle should be or has been
modified

status ignore, check If the return code of the action should be reported or not

Note that the status attribute tells the bcfg2 client to ignore return status, causing failures to still not be
centrally reported. If central reporting of action failure is desired, set this attribute to ‘check’. Also note that
Action entries included in Base will not be executed.

Actions cannot be completely defined inside of a bundle; they are a bound entry, much like Packages,
Services or Paths. The Rules plugin can bind these entries. For example to include the above action in a
bundle, first the Action entry must be included in the bundle:

<Bundle name=’bundle_name’>
...
<Action name=’action_name’/>

</Bundle>

Then a corresponding entry must be included in the Rules directory, like:

<Rules priority=’0’>
<Action timing=’post’ when=’modified’ name=’action_name’ command=’/path/to/command arg1 arg2’ status=’ignore’/>
</Rules>

This allows different clients to get different actions as a part of the same bundle based on group membership.

Example Action (add APT keys)

This example will add the ‘0C5A2783’ for aptitude. It is useful to run this during the client bootstrap process
so that the proper keys are installed prior to the bcfg2 client trying to install a package which requires this
key.

<Rules priority=’0’>
<Group name=’ubuntu’>

<Action timing=’post’ name=’apt-key-update’ command=’apt-key adv --recv-keys --keyserver hkp://pgp.mit.edu 0C5A2783’ when=’modified’ status=’check’/>
</Group>

</Rules>

6.1.2 APT Client Tool

The APT tool allows you to configure custom options in bcfg2.conf for systems where the tools reside
in non-standard locations. The available options (and their corresponding default values) are:

[APT]
install_path = ’/usr’
var_path = ’/var’
etc_path = ’/etc’

110 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

6.1.3 Blast

Blastwave Packages. This tool driver is for blastwave packages on solaris.

6.1.4 Chkconfig

Tool to manage services (primarily on Red Hat based distros).

Note: Start and stop are standard arguments, but the one for reload isn’t consistent across services.
You can specify which argument to use with the restart property in Service tags. Example: <Service
name="ftp" restart="condrestart" status="on" type="chkconfig">

6.1.5 DebInit

Debian Service Support; exec’s update-rc.d to configure services.

6.1.6 Encap

Encap Packages.

6.1.7 FreeBSDInit

FreeBSD Service Support. Only bundle updates will work.

6.1.8 FreeBSDPackage

FreeBSD Packages. Verifies packages and their version numbers but can’t install packages.

6.1.9 Available client tools

Client tool drivers allow Bcfg2 to execute configuration operations by interfacing with platform and distri-
bution specific tools.

Tool drivers handle any reconfiguration or verification operation. So far we have tools that primarily deal
with packaging systems and service management. The POSIX tool also handles file system and permis-
sions/groups operations. To write your own tool driver, to handle a new packaging format, or new service
architecture see Writing A Client Tool Driver.

When the Bcfg2 client is run, it attempts to instantiate each of these drivers. The succeeding list of drivers
are printed as a debug message after this process has completed. Drivers can supercede one another, for
example, the Yum driver conflicts (and unloads) the RPM driver. This behavior can be overridden by running
the Bcfg2 client with the -D flag. This flag takes a colon delimited list of drivers to use on the system.

Currently these are the tool drivers that are distributed with Bcfg2:

6.1. Available client tools 111

http://www.encap.org

Bcfg2 Documentation, Release 1.2.0

Actions

This page describes use of the Action configuration entry. Action entries are commands that are executed
either before bundle installation, after bundle installation or both. If exit status is observed, a failing pre-
action will cause no modification of the enclosing bundle to be performed; all entries in included in that
bundle will not be modified. Failing actions are reported through Bcfg2’s reporting system, so they can be
centrally observed. Actions look like:

<Action timing=’pre|post|both’
name=’name’
command=’cmd text’
when=’always|modified’
status=’ignore|check’/>

At-
tribute

Values Meaning

timing pre, post, both When the action is run
name freeform action name
command freeform command text
when always,

modified
If the action is always run, or only when a bundle should be or has been
modified

status ignore, check If the return code of the action should be reported or not

Note that the status attribute tells the bcfg2 client to ignore return status, causing failures to still not be
centrally reported. If central reporting of action failure is desired, set this attribute to ‘check’. Also note that
Action entries included in Base will not be executed.

Actions cannot be completely defined inside of a bundle; they are a bound entry, much like Packages,
Services or Paths. The Rules plugin can bind these entries. For example to include the above action in a
bundle, first the Action entry must be included in the bundle:

<Bundle name=’bundle_name’>
...
<Action name=’action_name’/>

</Bundle>

Then a corresponding entry must be included in the Rules directory, like:

<Rules priority=’0’>
<Action timing=’post’ when=’modified’ name=’action_name’ command=’/path/to/command arg1 arg2’ status=’ignore’/>
</Rules>

This allows different clients to get different actions as a part of the same bundle based on group membership.

Example Action (add APT keys)

This example will add the ‘0C5A2783’ for aptitude. It is useful to run this during the client bootstrap process
so that the proper keys are installed prior to the bcfg2 client trying to install a package which requires this
key.

112 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

<Rules priority=’0’>
<Group name=’ubuntu’>

<Action timing=’post’ name=’apt-key-update’ command=’apt-key adv --recv-keys --keyserver hkp://pgp.mit.edu 0C5A2783’ when=’modified’ status=’check’/>
</Group>

</Rules>

APT Client Tool

The APT tool allows you to configure custom options in bcfg2.conf for systems where the tools reside
in non-standard locations. The available options (and their corresponding default values) are:

[APT]
install_path = ’/usr’
var_path = ’/var’
etc_path = ’/etc’

Blast

Blastwave Packages. This tool driver is for blastwave packages on solaris.

Chkconfig

Tool to manage services (primarily on Red Hat based distros).

Note: Start and stop are standard arguments, but the one for reload isn’t consistent across services.
You can specify which argument to use with the restart property in Service tags. Example: <Service
name="ftp" restart="condrestart" status="on" type="chkconfig">

DebInit

Debian Service Support; exec’s update-rc.d to configure services.

Encap

Encap Packages.

FreeBSDInit

FreeBSD Service Support. Only bundle updates will work.

FreeBSDPackage

FreeBSD Packages. Verifies packages and their version numbers but can’t install packages.

6.1. Available client tools 113

http://www.encap.org

Bcfg2 Documentation, Release 1.2.0

launchd

Mac OS X Services. To use this tool, you must maintain a standard launch daemon
.plist file in /Library/LaunchDaemons/ (example ssh.plist) and setup a <Service
name="com.openssh.sshd" type="launchd" status="on" /> entry in your config to
load or unload the service. Note the name is the ‘’Label” specified inside of the .plist file

Portage

Support for Gentoo Packages.

POSIX

Files and Permissions are handled by the POSIX driver. Usage well documented other places.

RcUpdate

Uses the rc-update executable to manage services on distributions such as Gentoo.

RPM

Warning: Deprecated in favor of RPMng

Executes rpm to manage packages most often on redhat based systems.

RPMng

Next-generation RPM tool, will be default in upcoming release. Handles RPM sublties like epoch and
prelinking and 64-bit platforms better than RPM client tool.

SMF

Solaris Service Support.

Example legacy run service (lrc):

<BoundService name=’/etc/rc2_d/S47pppd’ FMRI=’lrc:/etc/rc2_d/S47pppd’ status=’off’ type=’smf’/>

SYSV

Handles System V Packaging format that is available on Solaris.

114 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

Upstart

Upstart service support. Uses Upstart to configure services.

Yum

Warning: Deprecated in favor of YUMng

Handles RPMs using the YUM package manager.

Bcfg2 RPMng/YUMng Client Drivers

Introduction

The goal of this driver is to resolve the issues that exist with the RPM and Yum client tool drivers.

For the most part, the issues are due to RPM being able to have multiple packages of the same name installed.
This is an issue on all Red Hat and SUSE based distributions.

Examples of this are:

• SLES10 and openSUSE 10.2 both install six GPG keys. From an RPM perspective this means that
there are six packages with the name gpg-pubkey.

• YUM always installs, as opposed to upgrades, kernel packages. This is hard coded in YUM (actually it
can be overridden in yum.conf), so systems using YUM will eventually have multiple kernel packages
installed.

• Red Hat family x86_64 based systems frequently have both an x86_64 and an i386 version of the
same package installed.

The new Pkgmgr format files with Instances are therefore the only way to accurately describe an RPM based
system. It is recommended that all RPM based systems be changed to use the new format configuration files
and the RPMng driver. Alternatively, you can use the newer Packages plugin.

Development Status

Initial development of the drivers was done on Centos 4.4 x86_64, with testing on openSUSE 10.2 x86_64.
Centos has been tested with a new style Pkgmgr file and openSUSE with an old style file (see the Config-
uration section below for what this means). Testing has now moved to Centos 5 x86_64 and old style files
are no longer being tested.

RPMng/YUMng are the default RPM drivers.

Features

• Limited support for 0.9.4 and earlier Pkgmgr configuration files. See Configuration below for details.

6.1. Available client tools 115

http://upstart.ubuntu.com/

Bcfg2 Documentation, Release 1.2.0

• Full RPM package identification using epoch, version, release and arch.

• Support for multiple instances of packages with the Instance tag.

• Better control of the RPM verification using the pkg_checks, pkg_verify and verify_flags attributes.

• Support for install only packages such as the kernel packages.

• Support for per instance ignoring of individual files for the RPM verification with the Ignore tag.

• Multiple package Instances with full version information listed in interactive mode.

• Support for installation and removal of gpg-pubkey packages.

• Support for controlling what action is taken on package verification failure with the install_action,
version_fail_action and verify_fail_action attributes.

RPMng Driver Overview

The RPMng driver uses a mixture of rpm commands and rpm-python as detailed in the sections below.

rpmtools module The rpmtools module conatins most of the rpm-python code and is imported by
RPMng.py and YUMng.py.

RPMng.RefreshPackages() The RPMng.RefreshPackages method generates the installed dict using rpm-
python code from the rpmtools module. Full name, epoch, version, release and arch information is stored.

RPMng.VerifyPackages() The RPMng.VerifyPackages method generates a number of structures that
record the state of the of the system compared to the Bcfg2 literal configuration retrieved from the server.
These structures are mainly used by the RPMng.Install method.

AS part of the verification process an rpm package level verification is carried out using rpm-python code
from the rpmtools module. Full details of the failures are returned in a complicated dict/list structure for
later use.

RPMng.Install() The RPMng.Install method attempts to fix what the RPMng.VerifyPackages method
found wrong. It does this by installing, reinstalling, deleting and upgrading RPMs. RPMng.Install does not
use rpm-python. It does use the following rppm commands as appropriate:

rpm -install

rpm --import

rpm -upgrade

A method (RPMng.to reinstall_check()) to decide whether to do a reinstall of a package instance or not has
been added, but is very simple at this stage. Currently it will prevent a reinstall if the only reason for a
verification failure was due to an RPM configuration (%config) file. A package reinstall will not replace
these, so there is no point reinstalling.

116 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

RPMng.Remove() The RPMng.Remove method is written using rpm-python code in the rpmtools mod-
ule. Full nevra information is used in the selection of the package removal.

Installation

isprelink This is a Python C extension module that checks to see if a file has been prelinked or not. It
should be built and installed on systems that have the prelink package installed (only Red Hat family systems
as far as I can tell). rpmtools will function without the isprelink module, but performance is not good.

Source can be found here ftp://ftp.mcs.anl.gov/pub/bcfg/isprelink-0.1.2.tar.gz

To compile and install prelink, execute:

python setup.py install

in the rpmtools directory. The elfutils-libelf-devel package is required for the compilation.

There are Centos x86_64 RPMs here ftp://ftp.mcs.anl.gov/pub/bcfg/redhat/

Configuration and Usage

Loading of RPMng The RPMng driver can be loaded by command line options, client configuration file
options or as the default driver for RPM packages.

From the command line:

bcfg2 -n -v -d -D Action,POSIX,Chkconfig,RPMng

This produces quite a bit of output so you may want to redirect the output to a file for review.

In the bcfg2.conf file:

[client]
#drivers = Action,Chkconfig,POSIX,YUMng
drivers = Action,Chkconfig,POSIX,RPMng

Note: Note that loading this driver will unload the RPM driver, so the Yum driver will not work.

Configuration File Options A number of paramters can be set in the client configuration for both the
RPMng and YUMng drivers. Each driver has its own section. A full client configuration file with all the
options specified is below:

[communication]
protocol = xmlrpc/ssl
password = xxxxxx
user = yyyyyyy

[components]
bcfg2 = https://bcfg2:6789

[client]

6.1. Available client tools 117

ftp://ftp.mcs.anl.gov/pub/bcfg/isprelink-0.1.2.tar.gz
ftp://ftp.mcs.anl.gov/pub/bcfg/redhat/

Bcfg2 Documentation, Release 1.2.0

#drivers = Action,Chkconfig,POSIX,YUMng
drivers = Action,Chkconfig,POSIX,RPMng

[RPMng]
pkg_checks = true
pkg_verify = true
erase_flags = allmatches
installonlypackages = kernel, kernel-bigmem, kernel-enterprise, kernel-smp, kernel-modules, kernel-debug, kernel-unsupported, kernel-source, kernel-devel, kernel-default, kernel-largesmp-devel, kernel-largesmp, kernel-xen, gpg-pubkey
install_action = install
version_fail_action = upgrade
verify_fail_action = reinstall

[YUMng]
pkg_checks = True
pkg_verify = true
erase_flags = allmatches
autodep = true
installonlypackages = kernel, kernel-bigmem, kernel-enterprise, kernel-smp, kernel-modules, kernel-debug, kernel-unsupported, kernel-source, kernel-devel, kernel-default, kernel-largesmp-devel, kernel-largesmp, kernel-xen, gpg-pubkey
install_action = install
version_fail_action = upgrade
verify_fail_action = reinstall

installOnlyPkgs Install only packages are packages that should only ever be installed or deleted, not
upgraded.

The only packages for which this is an absolute on, are the gpg-pubkey packages. It is however ‘best’
practice to only ever install/delete kernel packages. The wisdom being that the package for the currently
running kernel should always be installed. Doing an upgrade would delete the running kernel package.

The RPMng driver follows the YUM practice of having a list of install only packages. A default list is hard
coded in RPMng.py. This maybe over ridden in the client configuration file.

Note that except for gpg-pubkey packages (which are always added to the list by the driver) the list in the
client configuration file completely replaces the default list. An empty list means that there are no install
only packages (except for gpg-pubkey), which is the behaviour of the old RPM driver.

Example - an empty list:

[RPMng]
installonlypackages =

Example - The default list:

[RPMng]
installonlypackages = kernel, kernel-bigmem, kernel-enterprise, kernel-smp, kernel-modules, kernel-debug, kernel-unsupported, kernel-source, kernel-devel, kernel-default, kernel-largesmp-devel, kernel-largesmp, kernel-xen, gpg-pubkey

erase_flags erase_flags are rpm options used by ‘rpm -erase’ in the client Remove() method. The RPMng
erase is written using rpm-python and does not use the rpm command.

The erase flags are specified in the client configuration file as a comma separated list and apply to all RPM
erase operations. The default is:

118 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

[RPMng]
erase_flags = allmatches

The following rpm erase options are supported, see the rpm man page for details.:

noscripts
notriggers
repackage
allmatches
nodeps

Note: Note that specifying erase_flags in the configuration file completely replaces the default.

pkg_checks The RPMng/YUMng drivers do the following three checks/status:

1. Installed

2. Version

3. rpm verify

Setting pkg_checks = true (the default) in the client configuration file means that all three checks will be
done for all packages.

Setting pkg_checks = false in the client configuration file means that only the Installed check will be done
for all packages.

The true/false value can be any combination of upper and lower case.

Note:

1. pkg_checks must evaluate true for both the client (this option) and the package (see the Package Tag
pkg_checks attribute below) for the action to take place.

2. If pkg_checks = false then the Pkgmgr entries do not need the version information. See the examples
towards the bottom of the page.

pkg_verify The RPMng/YUMng drivers do the following three checks/status:

1. Installed

2. Version

3. rpm verify

Setting pkg_verify = true (the default) in the client configuration file means that all three checks will be done
for all packages as long as pkg_checks = true.

Setting pkg_verify = false in the client configuration file means that the rpm verify wil not be done for all
packages on the client.

The true/false value can be any combination of upper and lower case.

Note:

6.1. Available client tools 119

Bcfg2 Documentation, Release 1.2.0

1. pkg_verify must evaluate true for both the client (this option) and the package instance (see the In-
stance Tag pkg_verify attribute below) for the action to take place.

install_action The RPMng/YUMng drivers do the following three checks/status:

1. Installed

2. Version

3. rpm verify

install_action controls whether or not a package instance will be installed if the installed check fails (i.e. if
the package instance isn’t installed).

If install_action = install then the package instance is installed. If install_action = none then the package
instance is not installed.

Note:

1. install_action must evaluate true for both the client (this option) and the package instance (see the
Instance Tag install_action attribute below) for the action to take place.

version_fail_action The RPMng/YUMng drivers do the following three checks/status:

1. Installed

2. Version

3. rpm verify

version_fail_action controls whether or not a package instance will be updated if the version check fails (i.e.
if the installed package instance isn’t the same version as specified in the configuration).

If version_fail_action = upgrade then the package instance is upgraded (or downgraded).

If version_fail_action = none then the package instance is not upgraded (or downgraded).

Note:

1. verion_fail_action must evaluate true for both the client (this option) and the package instance (see
the Instance Tag version_fail_action attribute below) for the action to take place.

verify_fail_action The RPMng/YUMng drivers do the following three checks/status:

1. Installed

2. Version

3. rpm verify

verify_fail_action controls whether or not a package instance will be reinstlled if the version check fails (i.e.
if the installed package instance isn’t the same version as specified in the configuration).

If verify_fail_action = reinstall then the package instance is reinstalled. If verify_fail_action = none then the
package instance is not reinstalled.

120 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

Note:

1. verify_fail_action must evaluate true for both the client (this option) and the package instance (see the
Instance Tag verify_fail_action attribute below) for the action to take place.

2. yum cannot reinstall packages, so this option is really only relevant to RPMng.

3. RPMng will not attempt to reinstall a package instance if the only failure is an RPM configuration
file.

4. RPMng will not attempt to reinstall a package instance if the only failure is an RPM dependency
failure.

Interactive Mode Running the client in interactive mode (-I) prompts for the actions to be taken as before.
Prompts are per package and may apply to multiple instances of that package. Each per package prompt
will contain a list of actions per instance.

Actions are encoded as

D - Delete

I - Install

R - Reinstall

U - Upgrade/Downgrade

An example is below. The example is from a system that is still using the old Pkgmgr format, so the epoch
and arch appear as ‘*’.:

Install/Upgrade/delete Package aaa_base instance(s) - R(*:10.2-38.*) (y/N)
Install/Upgrade/delete Package evms instance(s) - R(*:2.5.5-67.*) (y/N)
Install/Upgrade/delete Package gpg-pubkey instance(s) - D(*:9c800aca-40d8063e.*) D(*:0dfb3188-41ed929b.*) D(*:7e2e3b05-44748aba.*) D(*:a1912208-446a0899.*) D(*:9c777da4-4515b5fd.*) D(*:307e3d54-44201d5d.*) (y/N)
Install/Upgrade/delete Package module-init-tools instance(s) - R(*:3.2.2-62.*) (y/N)
Install/Upgrade/delete Package multipath-tools instance(s) - R(*:0.4.7-29.*) (y/N)
Install/Upgrade/delete Package pam instance(s) - R(*:0.99.6.3-29.1.*) (y/N)
Install/Upgrade/delete Package perl-AppConfig instance(s) - U(None:1.52-4.noarch -> *:1.63-17.*) (y/N)
Install/Upgrade/delete Package postfix instance(s) - R(*:2.3.2-28.*) (y/N)
Install/Upgrade/delete Package sysconfig instance(s) - R(*:0.60.4-3.*) (y/N)
Install/Upgrade/delete Package udev instance(s) - R(*:103-12.*) (y/N)

GPG Keys GPG is used by RPM to ‘sign’ packages. All vendor packages are signed with the vendors
GPG key. Additional signatures maybe added to the rpm file at the users discretion.

It is normal to have multiple GPG keys installed. For example, SLES10 out of the box has six GPG keys
installed.

To the RPM database all GPG ‘packages’ have the name ‘gpg-pubkey’, which may be nothing like the name
of the file specified in the rpm -import command. For example on Centos 4 the file name is RPM-GPG-
KEY-centos4. For SLES10 this means that there are six packages with the name ‘gpg-pubkey’ installed.

RPM does not check GPG keys at package installation, YUM does.

RPMng uses the rpm command for installation and does not therefore check GPG signatures at package
install time. RPMng uses rpm-python for verification and does by default do signature checks as part of the

6.1. Available client tools 121

Bcfg2 Documentation, Release 1.2.0

client Inventory process. To do the signature check the appropriate GPG keys must be installed. rpm-python
is not very friendly if the required key(s) is not installed (it crashes the client).

The RPMng driver detects, on a per package instance basis, if the appropriate key is installed. If it is not, a
warning message is printed and the signature check is disabled for that package instance, for that client run
only.

GPG keys can be installed and removed by the RPMng driver. To install a GPG key configure it in Pkg-
mgr/Rules as a package and add gpg-pubkey to the clients abstract configuration. The gpg-pubkey pack-
age/instance is treated as an install only package. gpg-pubkey packages are installed by the RPMng driver
with the rpm -import command.

gpg-pubkey packages will be removed by bcfg2 -r packages if they are not in the clients configura-
tion.

<PackageList uri=’http://fortress/’ priority=’0’ type=’rpm’>
<Group name=’Centos4.4-Standard’>

<Group name=’x86_64’>
<Package name=’gpg-pubkey’ type=’rpm’>

<Instance simplefile=’mrepo/Centos44-x86_64/disc1/RPM-GPG-KEY-centos4’ version=’443e1821’ release=’421f218f’/>
<Instance simplefile=’RPM-GPG-KEY-mbrady’ version=’9c777da4’ release=’4515b5fd’/>

</Package>
</Group>

</Group>
</PackageList>

Example gpg-pubkey Pkgmgr configuration file.

Pkgmgr Configuration Also see the general Pkgmgr and Fun and Profit using altsrc pages.

Package Tag (Old style) Old style (meaning no Instance tag) Pkgmgr files have limited support. Specifi-
cally the multiarch and verify attributes are ignored.

If multiarch type support is needed a new style format file must be used.

If some control over the verification is needed, replace the verify attribute with the pkg_checks or ver-
ify_flags attributes. The pkg_checks and verify_flags attributes are detailed under the Instance tag heading.

Package Tag (New Style) and Attributes The new style package tag supports the name and pkg_checks
attributes and requires the use of Instance tag entries.

New style configuration files must be generated from the RPM headers. Either from RPM files or from the
RPM DB.

The included pkgmgr_gen.py can be used as a starting point for generating configuration files from directo-
ries of RPM package files. pkgmgr_gen.py –help for the options.

The included pkgmgr_update.py can be used to update the package instance versions in configuration files
from directories of package files. pkgmgr_update.py –help for the options.

122 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

Attribute Description Values
name Package name. String
pkg_checks Do the version and rpm verify checks. true(default) or false

Instance Tag and Attributes The instance tag supports the following attributes:

At-
tribute

Description Values

simple-
file

Package file name. String (see Notes below)

epoch Package epoch. String (numeric only) (optional)
version Package version. String
release Package release. String
arch Package architecture. Architecture String e.g. (i386|i586|i686|x86_64)
ver-
ify_flags

Comma separated list of rpm –verify
options. See the rpm man page for
their details.

nodeps, nodigest, nofiles, noscripts, nosignature,
nolinkto, nomd5, nosize, nouser, nogroup, nomtime,
nomode, nordev

pkg_verify Do the rpm verify true(default) or false
in-
stall_action

Install package instance if it is not
installed.

install(default) or none

ver-
sion_fail_action

Upgrade package if the incorrect
version is installed.

upgrade(default) or none

ver-
ify_fail_action

Reinstall the package instance if the
rpm verify failed

reinstall(default) or none

Note: The simplefile attribute doesn’t need to be just the filename, meaning the basename. It is joined with
the uri attribute from the PackageList Tag to form the URL that the client will use to download the package.
So the uri could just be the host portion of the url and simple file could be the directory path.

e.g.

<PackageList uri=’http://fortress/’ priority=’0’ type=’rpm’>
<Group name=’Centos4.4-Standard’>

<Group name=’x86_64’>
<Package name=’gpg-pubkey’ type=’rpm’>

<Instance simplefile=’mrepo/Centos44-x86_64/disc1/RPM-GPG-KEY-centos4’ version=’443e1821’ release=’421f218f’/>
<Instance simplefile=’RPM-GPG-KEY-mbrady’ version=’9c777da4’ release=’4515b5fd’/>

</Package>
</Group>

</Group>
</PackageList>

The values for epoch, version, release and arch attributes must come from the RPM header, not the RPM
file name.

Epoch is a strange thing. In short:

epoch not set == epoch=None < epoch=’0’ < epoch=’1’

and it is an int, but elementtree attributes have to be str or unicode, so the driver is constantly converting.

6.1. Available client tools 123

Bcfg2 Documentation, Release 1.2.0

Ignore Tag The Ignore tag is used to “mask out” individual files from the RPM verification. This is done
by comparing the verification failure results with the Ignore tag name. If there is a match, that entry is not
used by the client to determine if a package has failed verification.

Ignore tag entries can be specified at both the Package level, in which case they apply to all Instances, and/or
at the Instance level, in which case they only apply to that instance.

Ignore tag entries are used by the RPMng driver. They can be specified in both old and new style Pkgmgr
files.

The Ignore Tag supports the following attributes:

Attribute Description Values
name File name. String

Example

<Package name=’glibc’ type=’rpm’>
<Ignore name=’/etc/rpc’/>
<Instance simplefile=’glibc-2.3.4-2.25.x86_64.rpm’ version=’2.3.4’ release=’2.25’ arch=’x86_64’/>

</Package>

POSIX ‘ignore’ Path entries The YUMng analog to the Ignore Tag used by RPMng is the use of Path
entries of type ‘ignore’. The following shows an example for the centos-release package which doesn’t
verify if you remove the default repos and replace them with a custom repo.

<!-- Ignore verification failures for centos-release -->
<BoundPath name=’/etc/yum.repos.d/CentOS-Base.repo’ type=’ignore’/>
<BoundPath name=’/etc/yum.repos.d/CentOS-Media.repo’ type=’ignore’/>

Automated Generation of Pkgmgr Configuration Files The two utilities detailed below are provided in
the tools directory of the source tarball.

Also see the general Pkgmgr and Fun and Profit using altsrc pages.

pkgmgr_gen.py pkgmgr_gen will generate a Pkgmgr file from a list of directories containing RPMs or
from a list of YUM repositories.:

[root@bcfg2 Pkgmgr]# pkgmgr_gen.py --help usage: pkgmgr_gen.py
[options]

options:
-h, --help show this help message and exit
-aARCHS, --archs=ARCHS

Comma separated list of subarchitectures to include.
The highest subarichitecture required in an
architecture group should specified. Lower
subarchitecture packages will be loaded if that
is all that is available. e.g. The higher of i386,
i486 and i586 packages will be loaded if -a i586
is specified. (Default: all).

124 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

-dRPMDIRS, --rpmdirs=RPMDIRS
Comma separated list of directories to scan for RPMS.
Wilcards are permitted.

-eENDDATE, --enddate=ENDDATE
End date for RPM file selection.

-fFORMAT, --format=FORMAT
Format of the Output. Choices are yum or rpm.
(Default: yum)

-gGROUPS, --groups=GROUPS
List of comma separated groups to nest Package
entities in.

-iINDENT, --indent=INDENT
Number of leading spaces to indent nested entries in
the output.
(Default:4)

-oOUTFILE, --outfile=OUTFILE
Output file name.

-P, --pkgmgrhdr Include PackageList header in output.
-pPRIORITY, --priority=PRIORITY

Value to set priority attribute in the PackageList Tag.
(Default: 0)

-rRELEASE, --release=RELEASE
Which releases to include in the output. Choices are
all or latest. (Default: latest).

-sSTARTDATE, --startdate=STARTDATE
Start date for RPM file selection.

-uURI, --uri=URI URI for PackageList header required for RPM format
ouput.

-v, --verbose Enable verbose output.
-yYUMREPOS, --yumrepos=YUMREPOS

Comma separated list of YUM repository URLs to load.
NOTE: Each URL must end in a ’/’ character.

Note: The startdate and enddate options are not yet implemented.

pkgmgr_update.py pkgmgr_update will update the release (meaning the epoch, version and release) in-
formation in an existing Pkgrmgr file from a list of directories containing RPMs or from a list of YUM
repositories. All Tags and other attributes in the existing file will remain unchanged.:

[root@bcfg2 Pkgmgr]# pkgmgr_update.py --help
usage: pkgmgr_update.py [options]

options:
-h, --help show this help message and exit
-cCONFIGFILE, --configfile=CONFIGFILE

Existing Pkgmgr configuration file name.
-dRPMDIRS, --rpmdirs=RPMDIRS

Comma separated list of directories to scan for RPMS.
Wilcards are permitted.

-oOUTFILE, --outfile=OUTFILE
Output file name or new Pkgrmgr file.

-v, --verbose Enable verbose output.

6.1. Available client tools 125

Bcfg2 Documentation, Release 1.2.0

-yYUMREPOS, --yumrepos=YUMREPOS
Comma separated list of YUM repository URLs to load.
NOTE: Each URL must end in a ’/’ character.

Pkgmgr Configuration Examples

verify_flags This entry was used for the Centos test client used during RPMng development.

<Package name=’bcfg2’ type=’rpm’>
<Instance simplefile=’bcfg2-0.9.3-0.0pre5.noarch.rpm’ version=’0.9.3’ release=’0.0pre5’ arch=’noarch’ verify_flags=’nomd5,nosize,nomtime’/>

</Package>

Multiple Instances
<Package name=’beecrypt’ type=’rpm’>

<Instance simplefile=’beecrypt-3.1.0-6.x86_64.rpm’ version=’3.1.0’ release=’6’ arch=’x86_64’/>
<Instance simplefile=’beecrypt-3.1.0-6.i386.rpm’ version=’3.1.0’ release=’6’ arch=’i386’/>

</Package>

Kernel Note: Multiple instances with the same architecture must be in the installOnlyPkgs list.

<Package name=’kernel’ type=’rpm’>
<Instance simplefile=’kernel-2.6.9-42.0.8.EL.x86_64.rpm’ version=’2.6.9’ release=’42.0.8.EL’ arch=’x86_64’/>
<Instance simplefile=’kernel-2.6.9-42.0.10.EL.x86_64.rpm’ version=’2.6.9’ release=’42.0.10.EL’ arch=’x86_64’/>

</Package>

Per Instance Ignore Note: In this case a per instance ignore is actually a bad idea as the verify failure
is because of multiarch issues where the last package installed wins. So this would be better as a Package
level ignore.

Ignore tag entries only work with the RPMng driver. They do not appear to be supported in YUMng as of
1.0pre5.

<Package name=’glibc’ type=’rpm’>
<Instance simplefile=’glibc-2.3.4-2.25.x86_64.rpm’ version=’2.3.4’ release=’2.25’ arch=’x86_64’>

<Ignore name=’/etc/rpc’/>
</Instance>
<Instance simplefile=’glibc-2.3.4-2.25.i686.rpm’ version=’2.3.4’ release=’2.25’ arch=’i686’/>

</Package>

pkg_checks If pkg_checks = false the version information is not required. If pkg_checks = true the full
information is needed as normal.

For YUMng a minimal entry is

<Package name="bcfg2" type="yum" pkg_checks="False"/>

126 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

In fact for YUMng, with pkg_checks = false, any combination of the nevra attributes that will build a valid
yum package name (see the Misc heading on the yum man page) is valid.

<Package name="bcfg2" type="yum" pkg_checks="False" arch="x86_64"/>

For RPMng a minimal entry is

<Package name="bcfg2" type="rpm" pkg_checks="False" simplefile="bcfg2-0.9.4-0.0pre1.noarch.rpm"/>

verify_fail_action The way I have Bcfg2 configured for my development systems. This way it reports
bad, but doesn’t do anything about it.

<Package name=’bcfg2’ type=’rpm’>
<Instance simplefile=’bcfg2-0.9.3-0.0pre5.noarch.rpm’ version=’0.9.3’ release=’0.0pre5’ arch=’noarch’ verify_fail_action=’none’/>

</Package>

6.1.10 launchd

Mac OS X Services. To use this tool, you must maintain a standard launch daemon
.plist file in /Library/LaunchDaemons/ (example ssh.plist) and setup a <Service
name="com.openssh.sshd" type="launchd" status="on" /> entry in your config to
load or unload the service. Note the name is the ‘’Label” specified inside of the .plist file

6.1.11 Portage

Support for Gentoo Packages.

6.1.12 POSIX

Files and Permissions are handled by the POSIX driver. Usage well documented other places.

6.1.13 RcUpdate

Uses the rc-update executable to manage services on distributions such as Gentoo.

6.1.14 RPM

Warning: Deprecated in favor of RPMng

Executes rpm to manage packages most often on redhat based systems.

6.1. Available client tools 127

Bcfg2 Documentation, Release 1.2.0

6.1.15 RPMng

Next-generation RPM tool, will be default in upcoming release. Handles RPM sublties like epoch and
prelinking and 64-bit platforms better than RPM client tool.

6.1.16 SMF

Solaris Service Support.

Example legacy run service (lrc):

<BoundService name=’/etc/rc2_d/S47pppd’ FMRI=’lrc:/etc/rc2_d/S47pppd’ status=’off’ type=’smf’/>

6.1.17 SYSV

Handles System V Packaging format that is available on Solaris.

6.1.18 Upstart

Upstart service support. Uses Upstart to configure services.

6.1.19 Yum

Warning: Deprecated in favor of YUMng

Handles RPMs using the YUM package manager.

6.1.20 Bcfg2 RPMng/YUMng Client Drivers

Introduction

The goal of this driver is to resolve the issues that exist with the RPM and Yum client tool drivers.

For the most part, the issues are due to RPM being able to have multiple packages of the same name installed.
This is an issue on all Red Hat and SUSE based distributions.

Examples of this are:

• SLES10 and openSUSE 10.2 both install six GPG keys. From an RPM perspective this means that
there are six packages with the name gpg-pubkey.

• YUM always installs, as opposed to upgrades, kernel packages. This is hard coded in YUM (actually it
can be overridden in yum.conf), so systems using YUM will eventually have multiple kernel packages
installed.

128 Chapter 6. The Bcfg2 Client

http://upstart.ubuntu.com/

Bcfg2 Documentation, Release 1.2.0

• Red Hat family x86_64 based systems frequently have both an x86_64 and an i386 version of the
same package installed.

The new Pkgmgr format files with Instances are therefore the only way to accurately describe an RPM based
system. It is recommended that all RPM based systems be changed to use the new format configuration files
and the RPMng driver. Alternatively, you can use the newer Packages plugin.

Development Status

Initial development of the drivers was done on Centos 4.4 x86_64, with testing on openSUSE 10.2 x86_64.
Centos has been tested with a new style Pkgmgr file and openSUSE with an old style file (see the Config-
uration section below for what this means). Testing has now moved to Centos 5 x86_64 and old style files
are no longer being tested.

RPMng/YUMng are the default RPM drivers.

Features

• Limited support for 0.9.4 and earlier Pkgmgr configuration files. See Configuration below for details.

• Full RPM package identification using epoch, version, release and arch.

• Support for multiple instances of packages with the Instance tag.

• Better control of the RPM verification using the pkg_checks, pkg_verify and verify_flags attributes.

• Support for install only packages such as the kernel packages.

• Support for per instance ignoring of individual files for the RPM verification with the Ignore tag.

• Multiple package Instances with full version information listed in interactive mode.

• Support for installation and removal of gpg-pubkey packages.

• Support for controlling what action is taken on package verification failure with the install_action,
version_fail_action and verify_fail_action attributes.

RPMng Driver Overview

The RPMng driver uses a mixture of rpm commands and rpm-python as detailed in the sections below.

rpmtools module

The rpmtools module conatins most of the rpm-python code and is imported by RPMng.py and YUMng.py.

RPMng.RefreshPackages()

The RPMng.RefreshPackages method generates the installed dict using rpm-python code from the rpmtools
module. Full name, epoch, version, release and arch information is stored.

6.1. Available client tools 129

Bcfg2 Documentation, Release 1.2.0

RPMng.VerifyPackages()

The RPMng.VerifyPackages method generates a number of structures that record the state of the of the
system compared to the Bcfg2 literal configuration retrieved from the server. These structures are mainly
used by the RPMng.Install method.

AS part of the verification process an rpm package level verification is carried out using rpm-python code
from the rpmtools module. Full details of the failures are returned in a complicated dict/list structure for
later use.

RPMng.Install()

The RPMng.Install method attempts to fix what the RPMng.VerifyPackages method found wrong. It does
this by installing, reinstalling, deleting and upgrading RPMs. RPMng.Install does not use rpm-python. It
does use the following rppm commands as appropriate:

rpm -install

rpm --import

rpm -upgrade

A method (RPMng.to reinstall_check()) to decide whether to do a reinstall of a package instance or not has
been added, but is very simple at this stage. Currently it will prevent a reinstall if the only reason for a
verification failure was due to an RPM configuration (%config) file. A package reinstall will not replace
these, so there is no point reinstalling.

RPMng.Remove()

The RPMng.Remove method is written using rpm-python code in the rpmtools module. Full nevra informa-
tion is used in the selection of the package removal.

Installation

isprelink

This is a Python C extension module that checks to see if a file has been prelinked or not. It should be built
and installed on systems that have the prelink package installed (only Red Hat family systems as far as I can
tell). rpmtools will function without the isprelink module, but performance is not good.

Source can be found here ftp://ftp.mcs.anl.gov/pub/bcfg/isprelink-0.1.2.tar.gz

To compile and install prelink, execute:

python setup.py install

in the rpmtools directory. The elfutils-libelf-devel package is required for the compilation.

130 Chapter 6. The Bcfg2 Client

ftp://ftp.mcs.anl.gov/pub/bcfg/isprelink-0.1.2.tar.gz

Bcfg2 Documentation, Release 1.2.0

There are Centos x86_64 RPMs here ftp://ftp.mcs.anl.gov/pub/bcfg/redhat/

Configuration and Usage

Loading of RPMng

The RPMng driver can be loaded by command line options, client configuration file options or as the default
driver for RPM packages.

From the command line:

bcfg2 -n -v -d -D Action,POSIX,Chkconfig,RPMng

This produces quite a bit of output so you may want to redirect the output to a file for review.

In the bcfg2.conf file:

[client]
#drivers = Action,Chkconfig,POSIX,YUMng
drivers = Action,Chkconfig,POSIX,RPMng

Note: Note that loading this driver will unload the RPM driver, so the Yum driver will not work.

Configuration File Options

A number of paramters can be set in the client configuration for both the RPMng and YUMng drivers. Each
driver has its own section. A full client configuration file with all the options specified is below:

[communication]
protocol = xmlrpc/ssl
password = xxxxxx
user = yyyyyyy

[components]
bcfg2 = https://bcfg2:6789

[client]
#drivers = Action,Chkconfig,POSIX,YUMng
drivers = Action,Chkconfig,POSIX,RPMng

[RPMng]
pkg_checks = true
pkg_verify = true
erase_flags = allmatches
installonlypackages = kernel, kernel-bigmem, kernel-enterprise, kernel-smp, kernel-modules, kernel-debug, kernel-unsupported, kernel-source, kernel-devel, kernel-default, kernel-largesmp-devel, kernel-largesmp, kernel-xen, gpg-pubkey
install_action = install
version_fail_action = upgrade
verify_fail_action = reinstall

[YUMng]
pkg_checks = True

6.1. Available client tools 131

ftp://ftp.mcs.anl.gov/pub/bcfg/redhat/

Bcfg2 Documentation, Release 1.2.0

pkg_verify = true
erase_flags = allmatches
autodep = true
installonlypackages = kernel, kernel-bigmem, kernel-enterprise, kernel-smp, kernel-modules, kernel-debug, kernel-unsupported, kernel-source, kernel-devel, kernel-default, kernel-largesmp-devel, kernel-largesmp, kernel-xen, gpg-pubkey
install_action = install
version_fail_action = upgrade
verify_fail_action = reinstall

installOnlyPkgs Install only packages are packages that should only ever be installed or deleted, not
upgraded.

The only packages for which this is an absolute on, are the gpg-pubkey packages. It is however ‘best’
practice to only ever install/delete kernel packages. The wisdom being that the package for the currently
running kernel should always be installed. Doing an upgrade would delete the running kernel package.

The RPMng driver follows the YUM practice of having a list of install only packages. A default list is hard
coded in RPMng.py. This maybe over ridden in the client configuration file.

Note that except for gpg-pubkey packages (which are always added to the list by the driver) the list in the
client configuration file completely replaces the default list. An empty list means that there are no install
only packages (except for gpg-pubkey), which is the behaviour of the old RPM driver.

Example - an empty list:

[RPMng]
installonlypackages =

Example - The default list:

[RPMng]
installonlypackages = kernel, kernel-bigmem, kernel-enterprise, kernel-smp, kernel-modules, kernel-debug, kernel-unsupported, kernel-source, kernel-devel, kernel-default, kernel-largesmp-devel, kernel-largesmp, kernel-xen, gpg-pubkey

erase_flags erase_flags are rpm options used by ‘rpm -erase’ in the client Remove() method. The RPMng
erase is written using rpm-python and does not use the rpm command.

The erase flags are specified in the client configuration file as a comma separated list and apply to all RPM
erase operations. The default is:

[RPMng]
erase_flags = allmatches

The following rpm erase options are supported, see the rpm man page for details.:

noscripts
notriggers
repackage
allmatches
nodeps

Note: Note that specifying erase_flags in the configuration file completely replaces the default.

132 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

pkg_checks The RPMng/YUMng drivers do the following three checks/status:

1. Installed

2. Version

3. rpm verify

Setting pkg_checks = true (the default) in the client configuration file means that all three checks will be
done for all packages.

Setting pkg_checks = false in the client configuration file means that only the Installed check will be done
for all packages.

The true/false value can be any combination of upper and lower case.

Note:

1. pkg_checks must evaluate true for both the client (this option) and the package (see the Package Tag
pkg_checks attribute below) for the action to take place.

2. If pkg_checks = false then the Pkgmgr entries do not need the version information. See the examples
towards the bottom of the page.

pkg_verify The RPMng/YUMng drivers do the following three checks/status:

1. Installed

2. Version

3. rpm verify

Setting pkg_verify = true (the default) in the client configuration file means that all three checks will be done
for all packages as long as pkg_checks = true.

Setting pkg_verify = false in the client configuration file means that the rpm verify wil not be done for all
packages on the client.

The true/false value can be any combination of upper and lower case.

Note:

1. pkg_verify must evaluate true for both the client (this option) and the package instance (see the In-
stance Tag pkg_verify attribute below) for the action to take place.

install_action The RPMng/YUMng drivers do the following three checks/status:

1. Installed

2. Version

3. rpm verify

install_action controls whether or not a package instance will be installed if the installed check fails (i.e. if
the package instance isn’t installed).

6.1. Available client tools 133

Bcfg2 Documentation, Release 1.2.0

If install_action = install then the package instance is installed. If install_action = none then the package
instance is not installed.

Note:

1. install_action must evaluate true for both the client (this option) and the package instance (see the
Instance Tag install_action attribute below) for the action to take place.

version_fail_action The RPMng/YUMng drivers do the following three checks/status:

1. Installed

2. Version

3. rpm verify

version_fail_action controls whether or not a package instance will be updated if the version check fails (i.e.
if the installed package instance isn’t the same version as specified in the configuration).

If version_fail_action = upgrade then the package instance is upgraded (or downgraded).

If version_fail_action = none then the package instance is not upgraded (or downgraded).

Note:

1. verion_fail_action must evaluate true for both the client (this option) and the package instance (see
the Instance Tag version_fail_action attribute below) for the action to take place.

verify_fail_action The RPMng/YUMng drivers do the following three checks/status:

1. Installed

2. Version

3. rpm verify

verify_fail_action controls whether or not a package instance will be reinstlled if the version check fails (i.e.
if the installed package instance isn’t the same version as specified in the configuration).

If verify_fail_action = reinstall then the package instance is reinstalled. If verify_fail_action = none then the
package instance is not reinstalled.

Note:

1. verify_fail_action must evaluate true for both the client (this option) and the package instance (see the
Instance Tag verify_fail_action attribute below) for the action to take place.

2. yum cannot reinstall packages, so this option is really only relevant to RPMng.

3. RPMng will not attempt to reinstall a package instance if the only failure is an RPM configuration
file.

4. RPMng will not attempt to reinstall a package instance if the only failure is an RPM dependency
failure.

134 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

Interactive Mode

Running the client in interactive mode (-I) prompts for the actions to be taken as before. Prompts are per
package and may apply to multiple instances of that package. Each per package prompt will contain a list
of actions per instance.

Actions are encoded as

D - Delete

I - Install

R - Reinstall

U - Upgrade/Downgrade

An example is below. The example is from a system that is still using the old Pkgmgr format, so the epoch
and arch appear as ‘*’.:

Install/Upgrade/delete Package aaa_base instance(s) - R(*:10.2-38.*) (y/N)
Install/Upgrade/delete Package evms instance(s) - R(*:2.5.5-67.*) (y/N)
Install/Upgrade/delete Package gpg-pubkey instance(s) - D(*:9c800aca-40d8063e.*) D(*:0dfb3188-41ed929b.*) D(*:7e2e3b05-44748aba.*) D(*:a1912208-446a0899.*) D(*:9c777da4-4515b5fd.*) D(*:307e3d54-44201d5d.*) (y/N)
Install/Upgrade/delete Package module-init-tools instance(s) - R(*:3.2.2-62.*) (y/N)
Install/Upgrade/delete Package multipath-tools instance(s) - R(*:0.4.7-29.*) (y/N)
Install/Upgrade/delete Package pam instance(s) - R(*:0.99.6.3-29.1.*) (y/N)
Install/Upgrade/delete Package perl-AppConfig instance(s) - U(None:1.52-4.noarch -> *:1.63-17.*) (y/N)
Install/Upgrade/delete Package postfix instance(s) - R(*:2.3.2-28.*) (y/N)
Install/Upgrade/delete Package sysconfig instance(s) - R(*:0.60.4-3.*) (y/N)
Install/Upgrade/delete Package udev instance(s) - R(*:103-12.*) (y/N)

GPG Keys

GPG is used by RPM to ‘sign’ packages. All vendor packages are signed with the vendors GPG key.
Additional signatures maybe added to the rpm file at the users discretion.

It is normal to have multiple GPG keys installed. For example, SLES10 out of the box has six GPG keys
installed.

To the RPM database all GPG ‘packages’ have the name ‘gpg-pubkey’, which may be nothing like the name
of the file specified in the rpm -import command. For example on Centos 4 the file name is RPM-GPG-
KEY-centos4. For SLES10 this means that there are six packages with the name ‘gpg-pubkey’ installed.

RPM does not check GPG keys at package installation, YUM does.

RPMng uses the rpm command for installation and does not therefore check GPG signatures at package
install time. RPMng uses rpm-python for verification and does by default do signature checks as part of the
client Inventory process. To do the signature check the appropriate GPG keys must be installed. rpm-python
is not very friendly if the required key(s) is not installed (it crashes the client).

The RPMng driver detects, on a per package instance basis, if the appropriate key is installed. If it is not, a
warning message is printed and the signature check is disabled for that package instance, for that client run
only.

6.1. Available client tools 135

Bcfg2 Documentation, Release 1.2.0

GPG keys can be installed and removed by the RPMng driver. To install a GPG key configure it in Pkg-
mgr/Rules as a package and add gpg-pubkey to the clients abstract configuration. The gpg-pubkey pack-
age/instance is treated as an install only package. gpg-pubkey packages are installed by the RPMng driver
with the rpm -import command.

gpg-pubkey packages will be removed by bcfg2 -r packages if they are not in the clients configura-
tion.

<PackageList uri=’http://fortress/’ priority=’0’ type=’rpm’>
<Group name=’Centos4.4-Standard’>

<Group name=’x86_64’>
<Package name=’gpg-pubkey’ type=’rpm’>

<Instance simplefile=’mrepo/Centos44-x86_64/disc1/RPM-GPG-KEY-centos4’ version=’443e1821’ release=’421f218f’/>
<Instance simplefile=’RPM-GPG-KEY-mbrady’ version=’9c777da4’ release=’4515b5fd’/>

</Package>
</Group>

</Group>
</PackageList>

Example gpg-pubkey Pkgmgr configuration file.

Pkgmgr Configuration

Also see the general Pkgmgr and Fun and Profit using altsrc pages.

Package Tag (Old style) Old style (meaning no Instance tag) Pkgmgr files have limited support. Specifi-
cally the multiarch and verify attributes are ignored.

If multiarch type support is needed a new style format file must be used.

If some control over the verification is needed, replace the verify attribute with the pkg_checks or ver-
ify_flags attributes. The pkg_checks and verify_flags attributes are detailed under the Instance tag heading.

Package Tag (New Style) and Attributes The new style package tag supports the name and pkg_checks
attributes and requires the use of Instance tag entries.

New style configuration files must be generated from the RPM headers. Either from RPM files or from the
RPM DB.

The included pkgmgr_gen.py can be used as a starting point for generating configuration files from directo-
ries of RPM package files. pkgmgr_gen.py –help for the options.

The included pkgmgr_update.py can be used to update the package instance versions in configuration files
from directories of package files. pkgmgr_update.py –help for the options.

Attribute Description Values
name Package name. String
pkg_checks Do the version and rpm verify checks. true(default) or false

136 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

Instance Tag and Attributes The instance tag supports the following attributes:

At-
tribute

Description Values

simple-
file

Package file name. String (see Notes below)

epoch Package epoch. String (numeric only) (optional)
version Package version. String
release Package release. String
arch Package architecture. Architecture String e.g. (i386|i586|i686|x86_64)
ver-
ify_flags

Comma separated list of rpm –verify
options. See the rpm man page for
their details.

nodeps, nodigest, nofiles, noscripts, nosignature,
nolinkto, nomd5, nosize, nouser, nogroup, nomtime,
nomode, nordev

pkg_verify Do the rpm verify true(default) or false
in-
stall_action

Install package instance if it is not
installed.

install(default) or none

ver-
sion_fail_action

Upgrade package if the incorrect
version is installed.

upgrade(default) or none

ver-
ify_fail_action

Reinstall the package instance if the
rpm verify failed

reinstall(default) or none

Note: The simplefile attribute doesn’t need to be just the filename, meaning the basename. It is joined with
the uri attribute from the PackageList Tag to form the URL that the client will use to download the package.
So the uri could just be the host portion of the url and simple file could be the directory path.

e.g.

<PackageList uri=’http://fortress/’ priority=’0’ type=’rpm’>
<Group name=’Centos4.4-Standard’>

<Group name=’x86_64’>
<Package name=’gpg-pubkey’ type=’rpm’>

<Instance simplefile=’mrepo/Centos44-x86_64/disc1/RPM-GPG-KEY-centos4’ version=’443e1821’ release=’421f218f’/>
<Instance simplefile=’RPM-GPG-KEY-mbrady’ version=’9c777da4’ release=’4515b5fd’/>

</Package>
</Group>

</Group>
</PackageList>

The values for epoch, version, release and arch attributes must come from the RPM header, not the RPM
file name.

Epoch is a strange thing. In short:

epoch not set == epoch=None < epoch=’0’ < epoch=’1’

and it is an int, but elementtree attributes have to be str or unicode, so the driver is constantly converting.

Ignore Tag The Ignore tag is used to “mask out” individual files from the RPM verification. This is done
by comparing the verification failure results with the Ignore tag name. If there is a match, that entry is not
used by the client to determine if a package has failed verification.

6.1. Available client tools 137

Bcfg2 Documentation, Release 1.2.0

Ignore tag entries can be specified at both the Package level, in which case they apply to all Instances, and/or
at the Instance level, in which case they only apply to that instance.

Ignore tag entries are used by the RPMng driver. They can be specified in both old and new style Pkgmgr
files.

The Ignore Tag supports the following attributes:

Attribute Description Values
name File name. String

Example

<Package name=’glibc’ type=’rpm’>
<Ignore name=’/etc/rpc’/>
<Instance simplefile=’glibc-2.3.4-2.25.x86_64.rpm’ version=’2.3.4’ release=’2.25’ arch=’x86_64’/>

</Package>

POSIX ‘ignore’ Path entries The YUMng analog to the Ignore Tag used by RPMng is the use of Path
entries of type ‘ignore’. The following shows an example for the centos-release package which doesn’t
verify if you remove the default repos and replace them with a custom repo.

<!-- Ignore verification failures for centos-release -->
<BoundPath name=’/etc/yum.repos.d/CentOS-Base.repo’ type=’ignore’/>
<BoundPath name=’/etc/yum.repos.d/CentOS-Media.repo’ type=’ignore’/>

Automated Generation of Pkgmgr Configuration Files

The two utilities detailed below are provided in the tools directory of the source tarball.

Also see the general Pkgmgr and Fun and Profit using altsrc pages.

pkgmgr_gen.py pkgmgr_gen will generate a Pkgmgr file from a list of directories containing RPMs or
from a list of YUM repositories.:

[root@bcfg2 Pkgmgr]# pkgmgr_gen.py --help usage: pkgmgr_gen.py
[options]

options:
-h, --help show this help message and exit
-aARCHS, --archs=ARCHS

Comma separated list of subarchitectures to include.
The highest subarichitecture required in an
architecture group should specified. Lower
subarchitecture packages will be loaded if that
is all that is available. e.g. The higher of i386,
i486 and i586 packages will be loaded if -a i586
is specified. (Default: all).

-dRPMDIRS, --rpmdirs=RPMDIRS
Comma separated list of directories to scan for RPMS.
Wilcards are permitted.

138 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

-eENDDATE, --enddate=ENDDATE
End date for RPM file selection.

-fFORMAT, --format=FORMAT
Format of the Output. Choices are yum or rpm.
(Default: yum)

-gGROUPS, --groups=GROUPS
List of comma separated groups to nest Package
entities in.

-iINDENT, --indent=INDENT
Number of leading spaces to indent nested entries in
the output.
(Default:4)

-oOUTFILE, --outfile=OUTFILE
Output file name.

-P, --pkgmgrhdr Include PackageList header in output.
-pPRIORITY, --priority=PRIORITY

Value to set priority attribute in the PackageList Tag.
(Default: 0)

-rRELEASE, --release=RELEASE
Which releases to include in the output. Choices are
all or latest. (Default: latest).

-sSTARTDATE, --startdate=STARTDATE
Start date for RPM file selection.

-uURI, --uri=URI URI for PackageList header required for RPM format
ouput.

-v, --verbose Enable verbose output.
-yYUMREPOS, --yumrepos=YUMREPOS

Comma separated list of YUM repository URLs to load.
NOTE: Each URL must end in a ’/’ character.

Note: The startdate and enddate options are not yet implemented.

pkgmgr_update.py

pkgmgr_update will update the release (meaning the epoch, version and release) information in an existing
Pkgrmgr file from a list of directories containing RPMs or from a list of YUM repositories. All Tags and
other attributes in the existing file will remain unchanged.:

[root@bcfg2 Pkgmgr]# pkgmgr_update.py --help
usage: pkgmgr_update.py [options]

options:
-h, --help show this help message and exit
-cCONFIGFILE, --configfile=CONFIGFILE

Existing Pkgmgr configuration file name.
-dRPMDIRS, --rpmdirs=RPMDIRS

Comma separated list of directories to scan for RPMS.
Wilcards are permitted.

-oOUTFILE, --outfile=OUTFILE
Output file name or new Pkgrmgr file.

-v, --verbose Enable verbose output.
-yYUMREPOS, --yumrepos=YUMREPOS

6.1. Available client tools 139

Bcfg2 Documentation, Release 1.2.0

Comma separated list of YUM repository URLs to load.
NOTE: Each URL must end in a ’/’ character.

Pkgmgr Configuration Examples

verify_flags This entry was used for the Centos test client used during RPMng development.

<Package name=’bcfg2’ type=’rpm’>
<Instance simplefile=’bcfg2-0.9.3-0.0pre5.noarch.rpm’ version=’0.9.3’ release=’0.0pre5’ arch=’noarch’ verify_flags=’nomd5,nosize,nomtime’/>

</Package>

Multiple Instances
<Package name=’beecrypt’ type=’rpm’>

<Instance simplefile=’beecrypt-3.1.0-6.x86_64.rpm’ version=’3.1.0’ release=’6’ arch=’x86_64’/>
<Instance simplefile=’beecrypt-3.1.0-6.i386.rpm’ version=’3.1.0’ release=’6’ arch=’i386’/>

</Package>

Kernel Note: Multiple instances with the same architecture must be in the installOnlyPkgs list.

<Package name=’kernel’ type=’rpm’>
<Instance simplefile=’kernel-2.6.9-42.0.8.EL.x86_64.rpm’ version=’2.6.9’ release=’42.0.8.EL’ arch=’x86_64’/>
<Instance simplefile=’kernel-2.6.9-42.0.10.EL.x86_64.rpm’ version=’2.6.9’ release=’42.0.10.EL’ arch=’x86_64’/>

</Package>

Per Instance Ignore Note: In this case a per instance ignore is actually a bad idea as the verify failure
is because of multiarch issues where the last package installed wins. So this would be better as a Package
level ignore.

Ignore tag entries only work with the RPMng driver. They do not appear to be supported in YUMng as of
1.0pre5.

<Package name=’glibc’ type=’rpm’>
<Instance simplefile=’glibc-2.3.4-2.25.x86_64.rpm’ version=’2.3.4’ release=’2.25’ arch=’x86_64’>

<Ignore name=’/etc/rpc’/>
</Instance>
<Instance simplefile=’glibc-2.3.4-2.25.i686.rpm’ version=’2.3.4’ release=’2.25’ arch=’i686’/>

</Package>

pkg_checks If pkg_checks = false the version information is not required. If pkg_checks = true the full
information is needed as normal.

For YUMng a minimal entry is

<Package name="bcfg2" type="yum" pkg_checks="False"/>

In fact for YUMng, with pkg_checks = false, any combination of the nevra attributes that will build a valid
yum package name (see the Misc heading on the yum man page) is valid.

140 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

<Package name="bcfg2" type="yum" pkg_checks="False" arch="x86_64"/>

For RPMng a minimal entry is

<Package name="bcfg2" type="rpm" pkg_checks="False" simplefile="bcfg2-0.9.4-0.0pre1.noarch.rpm"/>

verify_fail_action The way I have Bcfg2 configured for my development systems. This way it reports
bad, but doesn’t do anything about it.

<Package name=’bcfg2’ type=’rpm’>
<Instance simplefile=’bcfg2-0.9.3-0.0pre5.noarch.rpm’ version=’0.9.3’ release=’0.0pre5’ arch=’noarch’ verify_fail_action=’none’/>

</Package>

6.2 Other client-related documentation

6.2.1 Agent Functionality using SSH

The Bcfg2 agent code provides the ability to trigger a client update from the server using a secure mechanism
that is restricted to running the Bcfg2 client with the options the agent was started with. This same capability
is provided by SSH keypairs, if properly configured. Setup is pretty easy:

1. Create an ssh keypair that is to be used solely for triggering Bcfg2 client runs. This key may or may
not have a password associated with it; a keyphrase will make things more secure, but will require a
person to enter the key passphrase, so it will not be usable automatically.:

$ ssh-keygen -t dsa -b 1024 -f /path/to/key -N ""
Generating public/private dsa key pair.
Your identification has been saved in /path/to/key.
Your public key has been saved in /path/to/key.pub.
The key fingerprint is:
aa:25:9b:a7:10:60:f3:eb:2b:ae:4b:1a:42:1b:63:5d desai@ubik

2. Add this this public key to root’s authorized_keys file, with several commands prepended to it:

command="/usr/sbin/bcfg2 -q <other options>",no-port-forwarding,no-X11-forwarding,no-pty,no-agent-forwarding,from="<bcfg2-server ipaddr>" <pub key>

This key is now only useful to call the Bcfg2 client, from the Bcfg2 server’s ip address. If Permit-
RootLogin was set to no in sshd_config, you will need to set it to forced-commands-only. Adding a
& to the end of the command will cause the command to immediately return.

3. Now, to cause a client to reconfigure, call:

$ ssh -i /path/to/key root@client /usr/sbin/bcfg2

Note that you will not be able to alter the command line options from the ones specified in autho-
rized_keys in any way. Also, it is not needed that the invocation of Bcfg2 in the ssh command match.
The following will have the same result.:

6.2. Other client-related documentation 141

Bcfg2 Documentation, Release 1.2.0

$ ssh -i /path/to/key root@client /bin/true

If a passphrase was used to create the keypair, then it will need to be entered here.

See Also

SSH “triggers” (from Ganneff’s Little Blog)

6.2.2 Client Debugging

When working on the Bcfg2 client, it is helpful to employ a few specific techniques to isolate and remedy
problems.

First, running the client with the -f flag allows configuration from a local file, rather than querying the server.
This helps rule out server configuration problems, and allows for rapid development. For example: bcfg2
-f test-config.conf with the following test-config.conf:

<Configuration>
<Bundle name="ssh-tests">

<Service type="launchd" name="com.openssh.sshd" status="on" />
</Bundle>

</Configuration>

Next, it is important to look at the interactive mode. This is similar to the interactive mode on the server and
provides an interactive Python interpreter with which one may manipulate all the objects in the client. It will
setup all the infrastructure so you will have the appropriate objects to play with. It will run the client through
once, then present you with an interpreter. Try it out with: python -i /usr/bin/bcfg2 or, for more
fun, a local config file and also enable Debugging and Verbose output with -d and -v, yielding python -i
/usr/bin/bcfg2 -d -v -f test-config.conf.

Now we just explore; use dir() to examine different objects in the client, or run a reconfiguration again
by calling client.run()

6.2.3 Client Metadata

This page describes ClientMetadata objects. These are used to describe clients in terms of a variety of
parameters, group memberships, and so forth.

Construction

ClientMetadata instances are constructed whenever the server needs to recognize a client. This occurs in
every aspect of client server interaction:

• Probing

• Configuration Generation

• Statistics Upload

142 Chapter 6. The Bcfg2 Client

http://blog.ganneff.de/blog/2007/12/29/ssh-triggers.html

Bcfg2 Documentation, Release 1.2.0

This construction process spans several server plugins. The Metadata is responsible for initial instance
creation, including the client hostname, profile, and basic group memberships. After this initial creation,
Connector plugins (such as Probes or Properties) can add additional group memberships for clients. These
memberships are merged into the instance; that is, the new group memberships are treated as if they were
included in groups.xml. If any of these groups are defined in groups.xml, then groups included there are
included in the ClientMetadata instance group list. At the end of this process, the ClientMetadata instance
has its complete set of group memberships. At this point, each connector plugin has the opportunity to
return an additional object which will be placed in an attribute corresponding to the Connector name. For
example, the Probes plugin returns a dictionary of probe name to probe result mappings for the client. This
dictionary is available as the “Probes” attribute. With this, ClientMetadata resolution is complete, and the
ClientMetadata instance can be used by the rest of the system.

Contents

ClientMetadata instances contain all of the information needed to differentiate clients from one another.
This data includes:

• hostname

• groups

• profile group

• address information (if specified)

ClientMetadata instances also contain a query object. This can be used to query the metadata of other clients.
Currently, several methods are supported. In this table, we refer to the instance as meta. Each of these is a
function that must be called.

Name Description Return Type
meta.query.names_by_groups([group
list])

Returns names of clients which are
members of all groups

List of client names

meta.query.names_by_profile(profile)Returns names of clients which use profile
group

List of client names

meta.query.all_clients() Returns names of all clients List of client names
meta.query.all_groups() Returns names of all groups List of group names
meta.query.all() Returns metadata for all clients List of ClientMetadata

instances
meta.query.by_name(name) Returns metadata for named client ClientMetadata

instance
meta.query.by_groups([group
list])

Returns metadata for all members of all
groups

List of ClientMetadata
instances

meta.query.by_profile(profile) Returns metadata for all profile havers List of ClientMetadata
instances

In general, there is no substantial benefit to using name returning versions of the query functions; metadata
resolution is (in general) fast.

6.2. Other client-related documentation 143

Bcfg2 Documentation, Release 1.2.0

6.2.4 Client modes

Dryrun mode

Dryrun mode (-n) prevents the client from making changes, but gives you some insight into the state of
the machine. This mode is also useful if you simply want to gather data from the client into the reporting
system.

Interactive mode

The client can be run interactively (-I) so that you are able to step through each operation in order to see
what the client is doing.

Paranoid mode

Paranoid mode creates a backup of a local configuration file before Bcfg2 replaces the file. This allows for
easier recovery by the local administrator.

How do I use it?

1. In the Bcfg2 repository, put paranoid=’true’ in the info.xml file.

2. On the client, create /var/cache/bcfg2 (or specify an alternate path in the [paranoid] section of
/etc/bcfg2).

3. On the client, run bcfg2 with the -P option (alternatively, you can set paranoid to true in the [client]
section of bcfg2.conf).

This will save a copy of the replaced file in /var/cache/bcfg2, but it’ll be named as the
path to the file with /’s replaced by _’s. For example, the old /etc/hosts will be named
/var/cache/bcfg2/etc_hosts.

Extra configuration

New in version 1.0.0. Here is an example of how to use some of the extra paranoid features available. For
the following section in bcfg2.conf (client-side):

[paranoid]
path = /my/custom/backup/path
max_copies = 5

You will have the file backups store in /my/custom/backup/path. This will also keep the five most
recent backups of files.

144 Chapter 6. The Bcfg2 Client

Bcfg2 Documentation, Release 1.2.0

Altering the global metadata to enable paranoid mode for all files

You may also want to just globally enable the paranoid attribute for all files distributed to clients from
your Bcfg2 server. You can accomplish this by adding a global metadata override in your bcfg2.conf
(server-side) with the following syntax:

[mdata]
paranoid=true

This will override the default value of “paranoid=false” and change it to “true” which will cause every file
you add or update in your Bcfg2 repo to backup on the client as specified in your client config.

Overall client service mode

New in version 1.0.0. Overall client service mode. Specified on the client using -s <service mode>.

• default

– perform all service manipulations

• disabled

– perform no service manipulations

• build

– attempt to stop all services started

– deprecates/replaces -B

6.2. Other client-related documentation 145

Bcfg2 Documentation, Release 1.2.0

146 Chapter 6. The Bcfg2 Client

CHAPTER

SEVEN

THE BCFG2 REPORTING SYSTEM

Bcfg2’s reporting system is its killer feature. It allows administrators to gain a broad understanding of the
configuration state of their entire environment. It summarizes

• Configuration changes and when they were made

• Discrepancies between the specification and current client states

– Clients can be grouped by misconfiguration type

• Configuration entries that are not specified

• Overall client summaries according to these types

There are two systems, the old system, which builds static reports based on a series of XSLT stylesheets and
a new dynamic reporting system that uses django and a database backend.

7.1 Bcfg2 Static Reporting System

The Bcfg2 reporting system collects and displays information about the operation of the Bcfg2 client, and
the configuration states of target machines.

7.1.1 Goals

The reporting system provides an interface to administrators describing a few important tasks

• Client configuration state, particularly aspects that do not match the configuration specification. In-
formation about bad and extra configuration elements is included.

• Client execution results (a list of configuration elements that were modified)

• Client execution performance data (including operation retry counts, and timings for several critical
execution regions)

This data can be used to understand the current configuration state of the entire network, the operations
performed by the client, how the configuration changes propagate, and any reconfiguration operations that
have failed.

147

Bcfg2 Documentation, Release 1.2.0

7.1.2 Retention Model

The current reporting system stores statistics in an XML data store, by default to
{{{<repo>/etc/statistics.xml}}}. It retains either one or two statistic sets per host. If the client has a
clean configuration state, the most recent (clean) record is retained. If the client has a dirty configuration
state, two records are retained. One record is the last clean record. The other record is the most recent
record collected, detailing the incorrect state.

This retention model, while non-optimal, does manage to persistently record most of the data that users
would like.

7.1.3 Setup

In order to configure your Bcfg2 server for receiving reports, you will need to list the Statistics plugin in the
plugins line of your bcfg2.conf. You will also need a [statistics] section in your bcfg2.conf. You
can find out more about what goes there in the bcfg2.conf manpage.

7.1.4 Output

Several output reports can be generated from the statistics store with the command line tool {{{bcfg2-build-
reports}}}.

• Nodes Digest

• Nodes Individual

• Overview Statistics

• Performance

The data generated by these reports can be delivered by several mechanisms:

• HTML

• Email

• RSS

7.1.5 Shortcomings and Planned Enhancements

When designing the current reporting system, we were overly concerned with the potential explosion in data
size over time. In order to address this, we opted to use the retention scheme described above. This approach
has several shortcomings:

• A comprehensive list of reconfiguration operations (with associated timestamps) isn’t retained

• Client results for any given day (except the last one) aren’t uniformly retained. This means that inter-
client analysis is difficult, if not impossible

We plan to move to a database backend to address the dataset size problem and start retaining all information.
The move to a SQL backend will allow many more types of queries to be efficiently processed. It will also
make on-demand reports simpler.

148 Chapter 7. The Bcfg2 Reporting System

Bcfg2 Documentation, Release 1.2.0

Other sorts of information would also be useful to track. We plan to add the ability to tag a particular con-
figuration element as security related, and include this in reports. This will aid in the effective prioritization
of manual and failed reconfiguration tasks.

Capability Goals (posed as questions)

• What machines have not yet applied critical updates?

• How long did critical updates take to be applied?

• What configuration did machine X have on a particular date?

• When did machine X perform configuration update Y?

7.2 Bcfg2 Dynamic Reporting System

New in version 0.8.2.

7.2.1 Installation

Prerequisites

• sqlite3

• pysqlite2

• Django

• mod-python

Install

Be sure to include the specified fields included in the example bcfg2.conf file. These can be specified in
either /etc/bcfg2.conf, if it is readable by the webserver user, or /etc/bcfg2-web.conf. Any
database supported by Django can be used. If you are not using sqlite (the default choice), please see the
Notes on Alternative Databases section below.

Note: Distributed environments can share a single remote database for reporting.

The recommended statistics plugin is DBStats. To use it, add it to the plugins line in your
bcfg2.conf. Alternatively, the Statistics plugin can be used in conjunction with a crontab entry to run
/usr/sbin/bcfg2-admin reports load_stats.

Detailed installation instructions can be found here.

7.2. Bcfg2 Dynamic Reporting System 149

http://www.djangoproject.com

Bcfg2 Documentation, Release 1.2.0

Apache configuration for web-based reports

Note: Reports no longer needs to be installed at the root URL for a given host. Therefore, reports no longer
require their own virtual host.

In order to make this work, you will need to specify your web prefix by adding a web_prefix setting in the
[statistics] section of your bcfg2.conf.

An example site config is included below for the vhost “reports.mcs.anl.gov”:

<VirtualHost reports.mcs.anl.gov>
ServerAdmin webmaster@mcs.anl.gov
ServerName reports.mcs.anl.gov
DocumentRoot /var/www/reports
<Directory /var/www/reports>

Order deny,allow
Deny from all
Allow from localhost #you may want to change this
AllowOverride None

</Directory>

Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
LogLevel warn

ServerSignature Off

Stop TRACE/TRACK vulnerability
<IfModule mod_rewrite.c>

RewriteEngine on
RewriteCond %{REQUEST_METHOD} ^(TRACE|TRACK)
RewriteRule .* - [F]

</IfModule>
<Location "/">

SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_SETTINGS_MODULE Bcfg2.Server.Reports.settings
PythonDebug On

</Location>
<Location "/site_media/">

SetHandler None
</Location>
</VirtualHost>

The first three lines of this configuration must be customized per site.

The bcfg2-tarball/reports/site_media/ directory needs to be copied to
/var/www/reports/site_media/ It could live anywhere; as long as the contents are accessi-
ble on the virtual host at /site_media/.

At this point you should be able to point your web browser to the virtualhost you created and see the new
reports

150 Chapter 7. The Bcfg2 Reporting System

Bcfg2 Documentation, Release 1.2.0

Example WSGI configuration

entry.wsgi:

import os, sys
os.environ[’DJANGO_SETTINGS_MODULE’] = ’Bcfg2.Server.Reports.settings’
import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

Apache conf:

Alias /bcfg2reports/site_media "/path/to/site_media"
<Directory /path/to>

Order deny,allow
Allow from all
AllowOverride None

</Directory>
If Python is installed in a non-standard prefix:
#WSGIPythonHome /python/prefix
#WSGIPythonPath /python/prefix/lib/python2.6/site-packages
WSGIScriptAlias /bcfg2reports "/another/path/to/entry.wsgi"

Notes on Alternative Databases

If you choose to use a different database, you’ll need to edit /etc/bcfg2.conf. These fields should be
updated in the [statistics] section:

• database_engine

– ex: database_engine = mysql

– ex: database_engine = postgresql_psycopg2

• database_name

• database_user

• database_password

• database_host

• database_port (optional)

7.2.2 Summary and Features

The new reporting system was implemented to address a number of deficiencies in the previous system. By
storing statistics data in a relational database, we are now able to view and analyze more information about
the state of the configuration, including information about previous configuration. Specific features in the
new system include:

• The ability to look at a Calendar Summary with past statistics information.

• More recent data concerning hosts.

7.2. Bcfg2 Dynamic Reporting System 151

Bcfg2 Documentation, Release 1.2.0

• Additional information display in reports. Primarily, reasons for configuration item verification failure
are now accessible.

• Instead of static pages, pages are generated on the fly, allowing users to drill down to find out about a
specific host, rather than only having one huge page with too much information.

7.2.3 Planned improvements include

• Accounts, customized displays for each admin. And privacy of config data.

• Config browsing capabilities; to look at your config in an interesting way.

• Fixing all the known bugs from below.

Unfortunately with all the improvements, there are a few less exciting elements about the new reporting
system. The new reporting system moves away from static pages and towards a real web application, which
causes mainly problems with dependencies and makes installation more difficult. This should become less
of a problem over time as we develop a better installation process for a web application.

7.2.4 Usage

bcfg2-admin reports (command line script)

The bcfg2-admin tool provides management and maintenance capabilities for the reporting database. A few
useful Django commands are provided as well.

• init: Initialize a new database

• load_stats: Load statistics data from the Statistics plugin into the database. This was importscript.py.

• scrub: Scrub the database for duplicate reasons.

• update: Apply any updates to the reporting database. Unlike the syncdb command, this will modify
existing tables.

Django commands

• syncdb: Create the tables for any models not installed. Django will not modify any existing tables.

• sqlall: Print the sql statements used to create the database. Note: This does not show the fixture data.

• validate: Validate the database against the current models.

bcfg2-reports (command line script)

bcfg2-reports allows you to retrieve data from the database about clients, and the states of their current
interactions. It also allows you to change the expired/unexpired states.

The utility runs as a standalone application. It does, however, use the models from
/src/lib/Server/Reports/reports/models.py.

152 Chapter 7. The Bcfg2 Reporting System

http://www.djangoproject.com

Bcfg2 Documentation, Release 1.2.0

A number of different options can be used to change what bcfg2-reports displays:

Usage: python bcfg2-reports [option] ...

Options and arguments (and corresponding environment variables):
-a : shows all hosts, including expired hosts
-b NAME : single-host mode - shows bad entries from the

current interaction of NAME
-c : shows only clean hosts
-d : shows only dirty hosts
-e NAME : single-host mode - shows extra entries from the

current interaction of NAME
-h : shows help and usage info about bcfg2-reports
-s NAME : single-host mode - shows bad and extra entries from

the current interaction of NAME
-x NAME : toggles expired/unexpired state of NAME
--badentry=KIND,NAME : shows only hosts whose current interaction has bad

entries in of KIND kind and NAME name; if a single
argument ARG1 is given, then KIND,NAME pairs will be
read from a file of name ARG1

--extraentry=KIND,NAME : shows only hosts whose current interaction has extra
entries in of KIND kind and NAME name; if a single
argument ARG1 is given, then KIND,NAME pairs will be
read from a file of name ARG1

--fields=ARG1,ARG2,... : only displays the fields ARG1,ARG2,...
(name,time,state)

--sort=ARG1,ARG2,... : sorts output on ARG1,ARG2,... (name,time,state)
--stale : shows hosts which haven’t run in the last 24 hours

7.2. Bcfg2 Dynamic Reporting System 153

Bcfg2 Documentation, Release 1.2.0

154 Chapter 7. The Bcfg2 Reporting System

Bcfg2 Documentation, Release 1.2.0

7.2.5 Screenshots

Calendar Summary

Item detail

Node dropdown

7.2. Bcfg2 Dynamic Reporting System 155

Bcfg2 Documentation, Release 1.2.0

156 Chapter 7. The Bcfg2 Reporting System

CHAPTER

EIGHT

BCFG2 DEVELOPMENT

There are several ways users can contribute to the Bcfg2 project.

• Developing code

• Testing prereleases

• Reporting bugs

• Adding to the common repository

• Improving the wiki and writing documentation

This section will outline some things that can help you get familiar with the various areas of the Bcfg2 code.

Send patches to the mailinglist or create a trac ticket with the patch included. In order to submit a ticket via
the trac system, you will need to create a session by clicking on the Preferences link and filling out/saving
changes to the form. In order to be considered for mainline inclusion, patches need to be BSD licensed. The
most convenient way to prepare patches is by using git diff inside of a source tree checked out of git.

The source tree can be checked out by running:

git clone git://git.mcs.anl.gov/bcfg2.git

Users wishing to contribute on a regular basis can apply for direct git access. Mail the mailinglist for details.

8.1 Tips for Bcfg2 Development

1. Focus on either the client or server code. This focuses the development process down to the precise
pieces of code that matter for the task at hand.

• If you are developing a client driver, then write up a small configuration specification that in-
cludes the needed characteristics.

• If you are working on the server, run bcfg2-info and use to assess the code.

2. Use the python interpreter. One of python’s most appealing features is interactive use of the interpreter.

• If you are developing for the client-side, run python -i /usr/sbin/bcfg2 with the ap-
propriate bcfg2 options. This will cause the python interpreter to continue running, leaving all
variables intact. This can be used to examine data state in a convenient fashion.

157

https://trac.mcs.anl.gov/projects/bcfg2/newticket
https://trac.mcs.anl.gov/projects/bcfg2/prefs

Bcfg2 Documentation, Release 1.2.0

• If you are developing for the server side, use bcfg2-info and the “debug” option. This will
leave you at a python interpreter prompt, with the server core loaded in the variable “bcore”.

3. Use pylint obsessively. It raises a lot of style-related warnings which can be ignored, but most all
of the errors are legitimate.

4. If you are doing anything with Regular Expressions, Kodos and re-try are your friends.

8.2 Environment setup for development

• Check out a copy of the code:

svn co https://svn.mcs.anl.gov/repos/bcfg/trunk/bcfg2

• Create link to src/lib:

cd bcfg2
ln -s src/lib Bcfg2

• Add bcfg2/src/sbin to your PATH environment variable

• Add bcfg2 to your PYTHONPATH environment variable

8.3 Writing A Client Tool Driver

This page describes the step-by-step process of writing a client tool driver for a configuration element type.
The included example describes an existing driver, and the process that was used to create it.

1. Pick a name for the driver. In this case, we picked the name RPM.

2. Add “RPM” to the __all__ list in src/lib/Client/Tools/__init__.py

3. Create a file in src/lib/Client/Tools with the same name (RPM.py)

4. Create a class in this file with the same name (class RPM)

• If it handles Package entries, subclass Bcfg2.Client.Tools.PkgTool (from here ref-
erenced as branch [P])

• If it handles Service entries, subclass Bcfg2.Client.Tools.SvcTool (from here ref-
erenced as branch [S])

• Otherwise, subclass Bcfg2.Client.Tools.Tool (from here referenced as branch
[T])

5. Set __name__ to “RPM”

6. Add any required executable programs to __execs__

7. Set __handles__ to a list of (entry.tag, entry.get(’type’)) tuples. This deter-
mines which entries the Tool module can be used on. In this case, we set __handles__ =
[(’Package’, ’rpm’)].

158 Chapter 8. Bcfg2 Development

http://kodos.sourceforge.net
http://re-try.appspot.com

Bcfg2 Documentation, Release 1.2.0

8. Add verification. This method should return True/False depending on current entry installation status.

• [T] Add a Verify<entry.tag> method.

• [P] Add a VerifyPackage method.

• [S] Add a VerifyService method.

• In the failure path, the current state of failing entry attributes should be set in the entry, to aid
in auditing. (For example, if a file should be mode 644, and is currently mode 600, then set
attribute current_perms=‘600’ in the input entry)

9. Add installation support. This method should return True/False depending on the results of the instal-
lation process.

• [T,S] Add an Install<entry.tag> method.

• [P] The PkgTool baseclass has a generic mechanism for performing all-at-once installations,
followed, in the case of failures, by single installations. To enable this support, set the
pkgtype attribute to the package type handled by this driver. Set the pkgtool to a tu-
ple (“command string %s”, (“per-package string format”, [list of package entry fields])).
For RPM, we have setup pkgtool = ("rpm --oldpackage --replacepkgs
--quiet -U %s", ("%s", ["url"]))

10. Implement entry removal

• [T,S] Implement a Remove method that removes all specified entries (prototype
Remove(self, entries))

• [P] Implement a RemovePackages that removes all specified entries (same prototype as Re-
move)

11. Add a FindExtra method that locates entries not included in the configuration. This may or may
not be required, certain drivers do not have the capability to find extra entries.

12. [P] Package drivers require a RefreshPackages method that updates the internal representation
of the package database.

8.3.1 Writing Tool Driver Methods

1. Programs can be run using self.cmd.run. This function returns a (return code, stdout list) tuple.

2. The configuration is available as self.config

3. Runtime options are available in a dictionary as self.setup

4. Informational, error, and debug messages can be produced by running
self.logger.info/error/debug.

8.4 Bcfg2 Plugin development

While the Bcfg2 server provides a good interface for representing general system configurations, its plugin
interface offers the ability to implement configuration interfaces and representation tailored to problems

8.4. Bcfg2 Plugin development 159

Bcfg2 Documentation, Release 1.2.0

encountered by a particular site. This chapter describes what plugins are good for, what they can do, and
how to implement them.

8.4.1 Bcfg2 Plugins

Bcfg2 plugins are loadable python modules that the Bcfg2 server loads at initialization time. These plugins
can contribute to the functions already offered by the Bcfg2 server or can extend its functionality. In general,
plugins will provide some portion of the configuration for clients, with a data representation that is tuned for
a set of common tasks. Much of the core functionality of Bcfg2 is implemented by several plugins, however,
they are not special in any way; new plugins could easily supplant one or all of them.

The following table describes the various functions of bcfg2 plugins.

Name Description
Probes Plugins can issue commands to collect client-side state (like hardware inventory)

to include in client configurations
ConfigurationEntry
List

Plugins can construct a list of per-client configuration entry lists to include in
client configurations.

ConfigurationEntry
contents

Literal values for configuration entries

XML-RPC
functions

Plugins can export function calls that expose internal functions.

8.5 Writing Bcfg2 Plugins

Bcfg2 plugins are python classes that subclass from Bcfg2.Server.Plugin.Plugin. Several plugin-specific
values must be set in the new plugin. These values dictate how the new plugin will behave with respect to
the above four functions. The following table describes all important member fields.

160 Chapter 8. Bcfg2 Development

Bcfg2 Documentation, Release 1.2.0

Name Description Format
__name__The name of the plugin string
__ver-
sion__

The plugin version (generally tied to revctl keyword
expansion)

string

__au-
thor__

The plugin author. string

__au-
thor__

The plugin author. string

__rmi__ Set of functions to be exposed as XML-RPC functions List of function names (strings)
Entries Multidimentional dictionary of keys that point to the

function used to bind literal contents for a given
configuration entity.

Dictionary of
ConfigurationEntityType, Name
keys, and function reference values

Build-
Struc-
tures

Function that returns a list of the structures for a given
client

Member function

Get-
Probes

Function that returns a list of probes that a given client
should execute

Member function

Re-
ceive-
Data

Function that accepts the probe results for a given
client.

Member function

8.5.1 Example Plugin

import Bcfg2.Server.Plugin
class MyPlugin(Bcfg2.Server.Plugin.Plugin):

’’’An example plugin’’’
All plugins need to subclass Bcfg2.Server.Plugin.Plugin
__name__ = ’MyPlugin’
__version__ = ’1’
__author__ = ’me@me.com’
__rmi__ = [’myfunction’]
myfunction is not available remotely as MyPlugin.myfunction

def __init__(self, core, datastore):
Bcfg2.Server.Plugin.Plugin.__init__(self, core, datastore)
self.Entries = {’Path’:{’/etc/foo.conf’: self.buildFoo}}

def myfunction(self):
’’’function for xmlrpc rmi call’’’
#do something
return True

def buildFoo(self, entry, metadata):
’’’Bind per-client information into entry based on metadata’’’
entry.attrib.update({’type’:’file’, ’owner’:’root’, ’group’:’root’, ’perms’:’644’})
entry.text = ’’’contents of foo.conf’’’

8.5. Writing Bcfg2 Plugins 161

Bcfg2 Documentation, Release 1.2.0

8.5.2 Example Connector

import Bcfg2.Server.Plugin

class Foo(Bcfg2.Server.Plugin.Plugin,
Bcfg2.Server.Plugin.Connector):

’’’The Foo plugin is here to illustrate a barebones connector’’’
name = ’Foo’
version = ’$Revision: $’
experimental = True

def __init__(self, core, datastore):
Bcfg2.Server.Plugin.Plugin.__init__(self, core, datastore)
Bcfg2.Server.Plugin.Connector.__init__(self)
self.store = XMLFileBacked(self.data, core.fam)

def get_additional_data(self, metadata):

mydata = {}
for data in self.store.entries[’foo.xml’].data.get("foo", []):

mydata[data] = "bar"

return dict([(’mydata’, mydata)])

def get_additional_groups(self, meta):
return self.cgroups.get(meta.hostname, list())

8.6 Server Plugin Types

8.6.1 Generator

Generator plugins contribute to literal client configurations

8.6.2 Structure

Structure Plugins contribute to abstract client configurations

8.6.3 Metadata

Signal metadata capabilities

8.6.4 Connector

Connector Plugins augment client metadata instances

162 Chapter 8. Bcfg2 Development

Bcfg2 Documentation, Release 1.2.0

8.6.5 Probing

Signal probe capability

8.6.6 Statistics

Signal statistics handling capability

8.6.7 Decision

Signal decision handling capability

8.6.8 Version

Interact with various version control systems

8.7 Writing Bcfg2 Specification

Bcfg2 specifications are logically divided in to three areas:

• Metadata

• Abstract

• Literal

The metadata portion of the configuration assigns a client to its profile group and to its non-profile groups.
The profile group is assigned in Metadata/clients.xml and the non profile group assignments are in
Metadata/groups.xml.

The group memberships contained in the metadata are then used to constuct an abstract configuration for
the client. An abstract configuration for a client identifies the configuration entities (packages, configuration
files, service, etc) that a client requires, but it does not identify them explicitly. For instance an abstract
configuration may identify that a client needs the Bcfg2 package with

<Package name=bcfg2/>

but this does not explicitly identify that an RPM package version 0.9.2 should be loaded from
http://rpm.repo.server/bcfg2-1.0.1-0.1.rpm. The abstract configuration is defined in the xml configuration
files for the Base and Bundles plugins.

A combination of a clients metadata (group memberships) and abstract configuration is then used to generate
the clients literal configuration. For instance the above abstract configuration entry may generate a literal
configuration of

<Package name=’bcfg2’ version=’1.0.1-0.1’ type=’yum’/>

A clients literal configuration is generated by a number of plugins that handle the different configuration
entities.

8.7. Writing Bcfg2 Specification 163

http://rpm.repo.server/bcfg2-1.0.1-0.1.rpm

Bcfg2 Documentation, Release 1.2.0

164 Chapter 8. Bcfg2 Development

Bcfg2 Documentation, Release 1.2.0

8.8 Writing Server Plugins

8.8.1 Metadata

If you would like to define your own Metadata plugin (to extend/change functionality of the existing Meta-
data plugin), here are the steps to do so. We will call our new plugin MyMetadata.

1. Add MyMetadata.py

__revision__ = ’$Revision$’

import Bcfg2.Server.Plugins.Metadata

class MyMetadata(Bcfg2.Server.Plugins.Metadata.Metadata):
’’’This class contains data for bcfg2 server metadata’’’
__version__ = ’Id’
__author__ = ’bcfg-dev@mcs.anl.gov’

def __init__(self, core, datastore, watch_clients=True):
Bcfg2.Server.Plugins.Metadata.Metadata.__init__(self, core, datastore, watch_clients)

2. Add MyMetadata to src/lib/Server/Plugins/__init__.py

3. Replace Metadata with MyMetadata in the plugins line of bcfg2.conf

8.9 Packages

In order to support a given client package tool driver, that driver must support use of the auto value for the
version attribute in Package entries. In this case, the tool driver views the current state of available pack-
ages, and uses the underlying package manager’s choice of correct package version in lieu of an explicit,
centrally-specified, version. This support enables Packages to provide a list of Package entries with ver-
sion=’auto’. Currently, the APT and YUMng drivers support this feature. Note that package management
systems without any network support cannot operate in this fashion, so RPMng and SYSV will never be
able to use Packages. Emerge, Zypper, IPS, and Blastwave all have the needed features to be supported by
Packages, but support has not yet been written.

Packages fills two major functions in configuration generation. The first is to provide entry level binding
support for Package entries included in client configurations. This function is quite easy to implement;
Packages determines (based on client group membership) if the package is available for the client system,
and which type it has. Because version=’auto’ is used, no version determination needs to be done.

The second major function is more complex. Packages ensures that client configurations include all
package-level prerequisites for package entries explicitly included in the configuration. In order to sup-
port this, Packages needs to directly process network data for package management systems (the network
sources for apt or yum, for examples), process these files, and build data structures describing prerequi-
sites and the providers of those functions/paths. To simplify implementations of this, there is a generic
base class (Bcfg2.Server.Plugins.Packages.Source) that provides a framework for fetching network data via
HTTP, processing those sources (with subclass defined methods for processing the specific format provided

8.8. Writing Server Plugins 165

Bcfg2 Documentation, Release 1.2.0

by the tool), a generic dependency resolution method, and a caching mechanism that greatly speeds up
server/bcfg2-info startup.

Each source type must define:

• a get_urls attribute (and associated urls property) that describes the URLS where to get data from.

• a read_files method that reads and processes the downloaded files

Sources may define a get_provides method, if provides are complex. For example, provides in rpm can be
either rpm names or file paths, so multiple data sources need to be multiplexed.

The APT source in src/lib/Server/Plugins/Packages.py provides a relatively simple imple-
mentation of a source.

8.10 Testing

8.10.1 Testing Prereleases

Before each release, several prereleases will be tagged. It is helpful to have users test these releases (when
feasible) because it is hard to replicate the full range of potential reconfiguration situations; between different
operating systems, system management tools, and configuration specification variation, there can be large
differences between sites.

For more details please visit Tracking Development Releases of Bcfg2 .

8.10.2 Upgrade Testing

This section describes upgrade procedures to completely test the client and server. These procedures can be
used for either pre-release testing, or for confidence building in a new release.

Server Testing

1. Ensure that the server produces the same configurations for clients

• Before the upgrade, generate all client configurations using the buildall subcommand of bcfg2-info.
This subcommand takes a directory argument; it will generate one client configuration in each file,
naming each according to the client name.

mgt1:~/bcfg# bcfg2-info
Filesystem check 1 of 25
...
> buildall /path/to/cf-old
Generated config for fs2.bgl.mcs.anl.gov in 1.97310400009 seconds
Generated config for fs13.bgl.mcs.anl.gov in 1.47958016396 seconds
...

Take notice of any messages produced during configuration generation. These generally
reflect minor issues in the configuration specification. Ideally, they should be fixed.

166 Chapter 8. Bcfg2 Development

http://trac.mcs.anl.gov/projects/bcfg2/wiki/TrackingDevelopmentTrunk

Bcfg2 Documentation, Release 1.2.0

• Upgrade the server software

• Generate all client configurations in a second location using the new software. Any tracebacks reflect
bugs, and should be filed in the ticketing system. Any new messages should be carefully examined.

• Compare each file in the old directory to those in the new directory using bcfg2-admin compare
-r /old/directory /new/directory

mgt1:~/bcfg# bcfg2-admin compare -r cf-old/ cf-new/
Entry: fs2.bgl.mcs.anl.gov.xml
Entry: fs2.bgl.mcs.anl.gov.xml good
Entry: fs13.bgl.mcs.anl.gov.xml
Entry: fs13.bgl.mcs.anl.gov.xml good
Entry: login1.bgl.mcs.anl.gov.xml
ConfigFile /bin/whatami contents differ
ConfigFile /bin/whatami differs (in bundle softenv)

Entry: login1.bgl.mcs.anl.gov.xml bad

This can be used to compare configurations for single clients, or different clients.

2. Compare old and new group diagrams (using bcfg2-admin viz)

Client Testing

Run the client in dry-run and non-dry-run mode; ensure that multiple runs produce consistent results.

8.11 Documentation

There are two parts of documentation in the Bcfg2 project:

• The wiki

• The manual

8.11.1 The wiki

A python-based Trac instance is used for the Bcfg2 website. The Wiki part of the website can be edited after
you have successful logged in. For the login is a vaild OpenID provider needed and an interaction from an
administrator. Please request your access to the Wiki on the mailinglist or in the IRC Channel.

8.11.2 The manual

The source for the manual is located in the doc/ directory in the SVN repository or in the source tarball. All
files are written in rst (ReStructuredText). For the build process we are using Sphinx.

8.11. Documentation 167

http://trac.edgewall.org/
http://trac.mcs.anl.gov/projects/bcfg2/wiki
http://trac.mcs.anl.gov/projects/bcfg2/wiki
http://en.wikipedia.org/wiki/ReStructuredText
http://sphinx.pocoo.org

Bcfg2 Documentation, Release 1.2.0

Building the Manual

• Install the prerequisites. Docutils and Sphinx are needed to build.

• For Debian (Lenny) the tools are available in the backports repository; installation can be
done with the following:

apt-get -t lenny-backports install python-sphinx

• The needed tools for Fedora based systems are in the Fedora Package Collection; instal-
lation can be done easily with Yum:

yum -y install python-sphinx python-docutils

• Additionally, to build the PDF version:

• LaTeX

• pdftex

• Download the source. Please refer to Download for more details.

• Building the HTML version, run the following command in the doc/ directory. The output will appear
in ../build/sphinx/html:

python setup.py build_sphinx

• Building the PDF version

python setup.py build_sphinx --builder=latex
cd build/sphinx/latex
make

The latest version of the manual

The latest version of the manual can always be found on the Four Kitchens server.

This is an auto-updated from the Launchpad mirror.

8.12 Documentation Style Guide for Bcfg2

This is a style guide to use when creating documentation for Bcfg2. It is meant to be helpful, not a hinder-
ence.

8.12.1 Basics

Bcfg2

When referring to project, Bcfg2 is the preferred use of cases.

Monospace fonts

168 Chapter 8. Bcfg2 Development

http://sphinx.pocoo.org
http://www.backports.org/dokuwiki/doku.php?id=instructionst
https://admin.fedoraproject.org/pkgdb
http://doc.bcfg2.fourkitchens.com/
https://code.launchpad.net/~vcs-imports/bcfg2/trunk

Bcfg2 Documentation, Release 1.2.0

When referring to commands written on the command line use monospace fonts.

Repository

When used alone this refers to a Bcfg2 repository. When there is a chance for confusion, for
instance in documents also talking about VCS, be sure to use the longer Bcfg2 repository.

8.13 Emacs + YASnippet mode

This page describes using emacs with YASnippet mode with a set of snippets that allow quick composition
of bundles and base files. More snippets are under development.

1. Download YASnippet from http://code.google.com/p/yasnippet/

2. Install it into your emacs load path (typically ~/.emacs.d/site-lisp)

3. Add YASnippet initialization to your .emacs (remember to re-byte-compile it if needed)

(require ’yasnippet-bundle)

;;; Bcfg2 snippet

(yas/define-snippets ’sgml-mode
’(

("<Bundle" "<Bundle name=’${1:bundlename}’ version=’2.0’>
$0

</Bundle>" nil)
("<Base" "<Base>
$0

</Base>" nil)
("<Group" "<Group name=’${1:groupname}>
$0

</Group>" nil)
("<Config" "<ConfigFile name=’${1:filename}’/>

$0" nil)
("<Service" "<Service name=’${1:svcname}’/>

$0" nil)
("<Package" "<Package name=’${1:packagename}’/>

$0" nil)
("<Action" "<Action name=’${1:name}’/>

$0" nil)
("<Directory" "<Directory name=’${1:name}’/>

$0" nil)
("<SymLink" "<SymLink name=’${1:name}’/>

$0" nil)
("<Permissions" "<Permissions name=’${1:name}’/>

$0" nil)
)
)

4. One quick M-x eval-current-buffer, and this code is enabled

Each of these snippets activates on the opening element, ie <Bundle. After this string is entered, but before
entering a space, press <TAB>, and the snippet will be expanded. The template will be inserted into the text

8.13. Emacs + YASnippet mode 169

http://code.google.com/p/yasnippet/

Bcfg2 Documentation, Release 1.2.0

with a set of input prompts, which default to overwrite mode and can be tabbed through.

The code above only works for bundles and base, but will be expanded to support other xml files as well.

8.14 Vim Snippet Support

This page describes using vim with snipMate and a set of snippets that allow quick composition of bundles
and base files.

1. Download snipMate from http://www.vim.org/scripts/script.php?script_id=2540

2. Install it using the install instructions (unzip snipMate.zip -d ~/.vim or equivalent, e.g. $HOMEvim-
files on Windows)

3. Add the following to ~/.vim/snippets/xml.snippets

Bundle
snippet <Bundle

<Bundle name=’${1:bundlename}’>
${2}

</Bundle>
Base
snippet <Base

<Base>
${1}

</Base>
Group
snippet <Group

<Group name=’${1:groupname}’>
${2}

</Group>
ConfigFile
snippet <Config

<ConfigFile name=’${1:filename}’/>
Service
snippet <Service

<Service name=’${1:svcname}’/>
Package
snippet <Package

<Package name=’${1:packagename}’/>
Action
snippet <Action

<Action name=’${1:name}’/>
Directory
snippet <Directory

<Directory name=’${1:name}’/>
SymLink
snippet <SymLink

<SymLink name=’${1:name}’/>
Permissions
snippet <Permissions

<Permissions name=’${1:name}’/>

170 Chapter 8. Bcfg2 Development

http://www.vim.org/scripts/script.php?script_id=2540

Bcfg2 Documentation, Release 1.2.0

4. Save and start editing away!

Each of these snippets activates on the opening element, ie <Bundle>. After this string is entered, but before
entering a space, press <TAB>, and the snippet will be expanded. The template will be inserted into the text
with a set of input prompts, which default to overwrite mode and can be tabbed through.

The code above only works for bundles and base, but will be expanded to support other xml files as well.

8.14. Vim Snippet Support 171

Bcfg2 Documentation, Release 1.2.0

172 Chapter 8. Bcfg2 Development

CHAPTER

NINE

GETTING HELP

Having trouble? We’d like to help!

There are several ways to get in touch with the community around Bcfg2.

• Try the FAQ – it’s got answers to many common questions.

• Looking for specific information? Try the genindex, modindex, or the detailed table of contents.

• Search for information in the mailinglist.

• Ask a question in the IRC Channel, or search the IRC logs to see if its been asked before.

Note that the IRC channel tends to be much busier than the mailing list; use whichever seems most appro-
priate for your query, but don’t let the lack of mailing list activity make you think the project isn’t active.

9.1 Reporting bugs

Report bugs with Bcfg2 in our tracker.

9.2 Mailing List

To subscribe to the mailing list for Bcfg2 please visit the bcfg-dev mailman page

Searchable archives are available from Gmane. You can also read the mailing list from any NNTP client via
Gmane.

9.3 IRC Channel

The Bcfg2 IRC channel is #bcfg2 on Freenode. It is home to both support and development discussions. If
you have a question, suggestion, or just want to know about Bcfg2, please drop in and say hi.

Archives are available at: http://colabti.org/irclogger/irclogger_logs/bcfg2

173

http://colabti.org/irclogger/irclogger_logs/bcfg2
http://trac.mcs.anl.gov/projects/bcfg2/wiki
https://lists.mcs.anl.gov/mailman/listinfo/bcfg-dev
http://dir.gmane.org/gmane.comp.sysutils.bcfg2.devel
http://chat.freenode.net
http://colabti.org/irclogger/irclogger_logs/bcfg2

Bcfg2 Documentation, Release 1.2.0

9.4 FAQ

The Frequently Asked Questions (FAQ) answers the most common questions about Bcfg2. At the moment
the FAQ is splitted into a general and a client specfic section.

9.4.1 FAQ: General

What does Bcfg2 stand for?

Initially, Bcfg stood for the bundle configuration system. Bcfg2 is the second major revision. At this point,
the acronym is meaningless, but the name has stuck. Luckily, Bcfg2 googles better than Bcfg does. No,
seriously. Try it. All I know is that I have no interest in a billion cubic feet of gas.

What architectures does Bcfg2 support?

Bcfg2 should run on any POSIX compatible operating system, however direct support for an operating
system’s package and service formats are limited by the currently available Available client tools (although
new client tools are pretty easy to add). The following is an incomplete but more exact list of platforms on
which Bcfg2 works.

• GNU/Linux deb based distros

• GNU/Linux rpm based distros

• Solaris pkg based

• Gentoo portage based

• OSX (POSIX/launchd support)

What pre-requisites are needed to run Bcfg2?

Please visit the Prerequisites section in the manual.

Why won’t bcfg2-server start?

If your server doesn’t seem to be starting and you see no error messages in your server logs, try running it
in the foreground to see why.

Why am I getting a traceback?

If you get a traceback, please let us know. You can file a ticket, send the traceback to the mailinglist, or hop
on IRC Channel and let us know.

What is the most common cause of “The following entries are not handled by any tool”?

Often it corresponds to entries that aren’t bound by the server (for which you’ll get error messages on the
server). You should try inspecting the logs on the server to see what may be the cause.

How can I figure out if error is client or server side?

• Cache a copy of the client using bcfg2 -c /tmp/config.xml

• Search for the entry of interest

• If it looks correct, then there is a client issue

174 Chapter 9. Getting Help

https://trac.mcs.anl.gov/projects/bcfg2/newticket

Bcfg2 Documentation, Release 1.2.0

This file contains all aspects of client configuration. It is structured as a series of bundles and base entries.

Note: Most often the entry is not correct and the issue lies in the specification.

Where are the server log messages?

The bcfg2-server process logs to syslog facility LOG_DAEMON. The server produces a series of messages
upon a variety of events and errors.

Is there a way to check if all repository XML files conform to schemas?

Bcfg2 comes with XML schemas describing all of the XML formats used in the server repository. A valida-
tion command bcfg2-repo-validate is included with the source distribution and all packages. Run it
with the -v flag to see each file and the results if its validation.

9.4.2 FAQ: Client

No ca is specified. Cannot authenticate the server with SSL.

This means that the client does not have a copy of the CA for the server, so it can’t verify that it is talking
to the right server. To fix this issue, copy /etc/bcfg2.crt from the server to /etc/bcfg2.ca on the
client. Then add the following on the client.

[communication]
ca = /etc/bcfg2.ca

9.5 Error Messages

This page describes error messages produced by Bcfg2 and steps that can be taken to remedy them.

9.5. Error Messages 175

Bcfg2 Documentation, Release 1.2.0

Error Lo-
ca-
tion

Meaning Repair

Incomplete information
for entry <Entry-
Tag>:<EntryName>;
cannot verify

ClientThe described entry is not fully
specified by the server, so no
verification can be performed.

1

Incomplete information
for entry <Entry-
Tag>:<EntryName>;
cannot install

ClientThe described entry is not fully
specified by the server, so no
verification can be performed.

2

The following entries are
not handled by any tool:
<Entry-
Tag>:<EntryName>

ClientThe client cannot figure out how
to handle this entry.

3

no server x509
fingerprint; no server
verification performed!

ClientThe client is unable to verify the
server

4

Failed to bind entry:
<EntryTag>
<EntryName>

ServerThe server was unable to find a
suitable version of entry for
client.

5

Failed to bind to socket ServerThe server was unable to bind to
the tcp server socket.

6

Failed to load ssl key
<path>

ServerThe server was unable to read
and process the ssl key.

7

Failed to read file <path> ServerThe server failed to read the
specified file

8

Failed to parse file <path> ServerThe server failed to parse the
specified XML file

9

Client metadata
resolution error for <IP>

ServerThe server cannot resolve the
client hostname or the client is
associated with a non-profile
group.

10

1This entry is not being bound. Ensure that a version of this entry applies to this client.
2This entry is not being bound. Ensure that a version of this entry applies to this client.
3Add a type to the generator definition for this entry
4Run bcfg2-admin fingerprint on the server and add it to the client bcfg2.conf as mentioned here
5This entry is not being bound. Ensure that a version of this entry applies to this client.
6Ensure that another instance of the daemon (or any other process) is not listening on the same port.
7Ensure that the key is readable by the user running the daemon and that it is well-formed.
8Ensure that this file still exists; a frequent cause is the deletion of a temp file.
9Ensure that the file is properly formed XML.

10Fix hostname resolution for the client or ensure that the profile group is properly setup.

176 Chapter 9. Getting Help

Bcfg2 Documentation, Release 1.2.0

9.6 Manual pages

These are copies of the bcfg2 manual pages created with man2html. The most recent versions of these man
pages are always in the man/ directory in the source.

9.6.1 bcfg2

The man page of bcfg2.

man bcfg2

9.6.2 bcfg2-admin

The man page of bcfg2-admin.

man bcfg2-admin

9.6.3 bcfg2-build-reports

The man page of bcfg2-build-reports.

man bcfg2-build-reports

9.6.4 bcfg2.conf

The man page of bcfg2.conf.

man bcfg2.conf

9.6.5 bcfg2-info

The man page of bcfg2-info.

man bcfg2-info

9.6.6 bcfg2-repo-validate

The man page of bcfg2-repo-validate.

man bcfg2-repo-validate

9.6. Manual pages 177

Bcfg2 Documentation, Release 1.2.0

9.6.7 bcfg2-server

The man page of bcfg2-server.

man bcfg2-server

9.7 Troubleshooting

From time to time, Bcfg2 produces results that the user finds surprising. This can happen either due to bugs
or user error. This page describes several techniques to gain visibility into the bcfg2 client and server and
understand what is going on.

9.7.1 Figure out if error is client or server side

• Cache a copy of the client configuration using bcfg2 -qnc /tmp/config.xml

• Look in the file and search for the entry of interest

• If it looks correct, then there is a client issue

• If not, it is time to inspect things on the server

This file contains all aspects of client configuration. It is structured as a series of bundles and base entries.

Note: Most often the entry is not correct and the issue lies in the specification.

9.7.2 Review server log messages

The bcfg2-server process logs to syslog facility LOG_DAEMON. The server produces a series of messages
upon a variety of events and errors.

9.7.3 Check if all repository XML files conform to schemas

Bcfg2 comes with XML schemas describing all of the XML formats used in the server repository. A valida-
tion command bcfg2-repo-validate is included with the source distribution and all packages. Run it
with the -v flag to see each file and the results if its validation.

9.7.4 If the bcfg2 server is not reflecting recent changes, try restarting the bcfg2-
server process

If this fixes the problem, it is either a bug in the underlying file monitoring system (fam or gamin) or a bug
in Bcfg2’s file monitoring code. In either case, file a ticket in the tracking system. In the ticket, include:

• filesystem monitoring system (fam or gamin)

• kernel version (if on linux)

178 Chapter 9. Getting Help

https://trac.mcs.anl.gov/projects/bcfg2/newticket

Bcfg2 Documentation, Release 1.2.0

• if any messages of the form “Handled N events in M seconds” appeared between the modification
event and the client configuration generation request appeared in the server log

• which plugin handled the file in the repostiory (Cfg, Rules, Packages, TCheetah, TGenshi, Metadata)

• if a touch of the file after the modification causes the problem to go away

9.7.5 bcfg2-info

Bcfg2 server operations can be simulated using the bcfg2-info command. The command is interactive,
and has commands to allow several useful operations

• clients - Current client metadata (profile and group) settings

• groups - Current group metadata values

• mappings - Configuration entries provided by plugins

• buildfile <filename> <hostname> - Build a config file for a client

• showentries <client> <type> - Build the abstract configuration (list of entries) for a client

• build <hostname> <output-file> - Build the complete configuration for a client

Type help in bcfg2-info for more information.

9.7.6 Error Messages

This page describes error messages produced by Bcfg2 and steps that can be taken to remedy them.

9.7. Troubleshooting 179

Bcfg2 Documentation, Release 1.2.0

Error Lo-
ca-
tion

Meaning Repair

Incomplete
information for entry
<Entry-
Tag>:<EntryName>
cannot verify

ClientThe described entry is not
fully specified by the server,
so no verification can be
performed.

11

Incomplete
information for entry
<Entry-
Tag>:<EntryName>
cannot install

ClientThe described entry is not
fully specified by the server,
so no verification can be
performed.

1

The following entries
are not handled by any
tool: <Entry-
Tag>:<EntryName>

ClientThe client cannot figure out
how to handle this entry.

12

No ca is specified.
Cannot authenticate
the server with SSL.

ClientThe client is unable to verify
the server

13

Failed to bind entry:
<EntryTag>
<EntryName>

ServerThe server was unable to
find a suitable version of
entry for client.

14

Failed to bind to socket ServerThe server was unable to
bind to the tcp server socket.

15

Failed to load ssl key
<path>

ServerThe server was unable to
read and process the ssl key.

16

Failed to read file
<path>

ServerThe server failed to read the
specified file

17

Failed to parse file
<path>

ServerThe server failed to parse
the specified XML file

18

Client metadata
resolution error for
<IP>

ServerThe server cannot resolve
the client hostname or the
client is associated with a
non-profile group.

19

11This entry is not being bound. Ensure that a version of this entry applies to this client.
12Add a type to the generator definition for this entry
13Copy the Bcfg2 server’s CA certificate to the client and specify it using the ca option in the [communication] section of

bcfg2.conf
14This entry is not being bound. Ensure that a version of this entry applies to this client.
15Ensure that another instance of the daemon (or any other process) is not listening on the same port.
16Ensure that the key is readable by the user running the daemon and that it is well-formed.
17Ensure that this file still exists; a frequent cause is the deletion of a temp file.
18Ensure that the file is properly formed XML.
19Fix hostname resolution for the client or ensure that the profile group is properly setup.

180 Chapter 9. Getting Help

Bcfg2 Documentation, Release 1.2.0

9.7.7 FAQs

Why won’t bcfg2-server start?

If your server doesn’t seem to be starting and you see no error messages in your server logs, try running it
in the foreground to see why.

Why am I getting a traceback?

If you get a traceback, please let us know by reporting it on Trac, via the mailing list, or on IRC. Your best
bet to get a quick response will be to jump on IRC during the daytime (CST).

What is the most common cause of “The following entries are not handled by any tool”?

Often it corresponds to entries that aren’t bound by the server (for which you’ll get error messages on the
server). You should try inspecting the logs on the server to see what may be the cause.

9.7. Troubleshooting 181

Bcfg2 Documentation, Release 1.2.0

182 Chapter 9. Getting Help

CHAPTER

TEN

GLOSSARY

generator A type of plugin which provides file contents. For example Cfg or TGenshi.

Genshi A Python-based templating engine. Genshi Homepage.

group A “tag” assigned to a client through a probe or other plugin.

irc channel #bcfg2 on freenode

probe A script that executes on a client machine and sets client metadata such as group membership.

profile A special type of group that a client is explicitly assigned to.

repository A collection of folders and files that make up the configurations that Bcfg2 applies to server. The
repository is located at /var/lib/bcfg2 by default. This is not to be confused with a :term:VCS
repository, which is an excellent place to pull your Bcfg2 repository from to manage changes. When
used alone, repository refers to a Bcfg2 repository.

VCS Stands for Version Control System.

183

http://genshi.edgewall.org/
http://en.wikipedia.org/wiki/Revision_control

Bcfg2 Documentation, Release 1.2.0

184 Chapter 10. Glossary

CHAPTER

ELEVEN

APPENDIX

Bcfg2 is based on a client-server architecture. The client is responsible for interpreting (but not processing)
the configuration served by the server. This configuration is literal, so no local process is required. After
completion of the configuration process, the client uploads a set of statistics to the server. This section will
describe the goals and then the architecture motivated by it.

11.1 Example files

In this section are some examples for getting started with a more indeep usage of Bcfg2.

11.1.1 Mysql example

I had some time ago to continue with putting my configuration into Bcfg2 and maybe this helps someone
else.

I added a new bundle:

<Bundle name="mysql-server" version="3.0">
<ConfigFile name="/root/bcfg2-install/mysql/users.sh"/>
<ConfigFile name="/root/bcfg2-install/mysql/users.sql"/>
<PostInstall name="/root/bcfg2-install/mysql/users.sh"/>
<Package name="mysql-server-4.1"/>
<Service name="mysql"/>

</Bundle>

The users.sh script looks like this:

#!/bin/sh

mysql --defaults-extra-file=/etc/mysql/debian.cnf mysql \
< /root/bcfg2-install/mysql/users.sql

On debian there is a user account in /etc/mysql/debian.cnf automatically created, but you could
also (manually) create a user in the database that has enough permissions and add the login information in a
file yourself. This file looks like this:

185

Bcfg2 Documentation, Release 1.2.0

[client]
host = localhost
user = debian-sys-maint
password = XXXXXXXXXX

The users.sql looks like this:

DELETE FROM db;
INSERT INTO db VALUES (’localhost’, ’phpmyadmin’, ’pma’, ’Y’, ’Y’,
’Y’, ’Y’, ’N’, ’N’, ’N’, ’N’, ’N’, ’N’, ’N’, ’N’);

DELETE FROM user WHERE User <> ’debian-sys-maint’;
INSERT INTO user VALUES (’localhost’, ’root’, ’XXXXXXXXXXX’, ’Y’, ’Y’,
’Y’, ’Y’, ’Y’, ’Y’, ’Y’, ’Y’, ’Y’, ’Y’, ’Y’, ’Y’, ’Y’, ’Y’, ’Y’, ’Y’,
’Y’, ’Y’, ’Y’, ’Y’, ’Y’, ’’, ’’, ’’, ’’, 0, 0, 0);
INSERT INTO user VALUES (’localhost’, ’pma’, ’’, ’N’, ’N’, ’N’, ’N’,
’N’, ’N’, ’N’, ’N’, ’N’, ’N’, ’N’, ’N’, ’N’, ’N’, ’N’, ’N’, ’N’, ’N’,
’N’, ’N’, ’N’, ’’, ’’, ’’, ’’, 0, 0, 0);

FLUSH PRIVILEGES;

11.1.2 ntp example

Here is a series of example configurations for Bcfg2, each introducing another layer of functionality.

• After each change, run bcfg-repo-validate -v

• Run the server with bcfg2-server -v

• Update the client with bcfg2 -v -d -n (will not actually make client changes)

Package only

Our example starts with the bare minimum configuration setup. We have a client, a profile group, a list of
packages, and a base configuration.

cat Metadata/clients.xml
<Clients version=’3.0’>
<Client profile=’fedora’ pingable=’N’ pingtime=’0’ name=’foo.bar.com’/>
</Clients>

cat Metadata/groups.xml
<Groups version=’3.0’>
<Group profile=’true’ name=’fedora’ toolset=’rh’/>
</Groups>

cat Base/base.xml
<Base>
<Group name=’fedora’>
<Package name=’ntp’/>
</Group>
</Base>

186 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

cat Pkgmgr/packages.xml
<PackageList type=’rpm’ priority=’0’>
<Package name=’ntp’ version=’4.2.0.a.20050816-11.FC5’/>
</PackageList>

Add service

Configure the service, and add it to the base.

cat Svcmgr/services.xml
<Services priority=’0’>
<Service name=’ntpd’ status=’on’/>
</Services>

cat Base/base.xml
<Base>
<Group name=’fedora’>
<Package name=’ntp’/>
<Service name=’ntpd’/>
</Group>
</Base>

Add config file

Setup an etc/ directory structure, and add it to the base.

cat Cfg/etc/ntp.conf/ntp.conf
server ntp1.utexas.edu

cat Base/base.xml
<Base>
<Group name=’fedora’>
<Package name=’ntp’/>
<Service name=’ntpd’/>
<ConfigFile name=’/etc/ntp.conf’/>
</Group>

</Base>

Create a bundle

The above configuration layout works fine for a single service, but that method of organization would quickly
become a nightmare as you approach the number of packages, services, and config files required to represent
a fully configured host. Bundles allow the grouping of related configuration entries that are used to provide
a single service. This is done for several reasons:

• Grouping related things in one place makes it easier to add those entries for a multiple groups of
clients

11.1. Example files 187

Bcfg2 Documentation, Release 1.2.0

• Grouping entries into bundles makes their validation occur collectively. This means that config files
can override the contents of packages. Also, config files are rechecked after packages are upgraded,
so that they can be repaired if the package install clobbered them.

• Services associated with a bundle get restarted whenever any entity in that bundle is modified. This
ensures that new configuration files and software are used after installation.

The config file, package, and service are really all related components describing the idea of an ntp client,
so they should be logically grouped together. We use a bundle to accomplish this.

cat Bundler/ntp.xml
<Bundle name=’ntp’ version=’2.0’>
<Package name=’ntp’/>
<Service name=’ntpd’/>
<ConfigFile name=’/etc/ntp.conf’/>
</Bundle>

After this bundle is created, it must be associated with a group (or groups). Add a bundle child element to
the group(s) which should install this bundle.

cat Metadata/groups.xml
<Groups>

...
<Group name=’fedora’>

<Bundle name=’ntp’/>
</Group>

...
</Groups>

Once this bundle is created, a client reconfigure will install these entries. If any are modified, then the ntpd
service will be restarted. If you only want ntp configurations to be updated (and nothing else), the bcfg2
client can be run with a -b <bundle name> option that will only update entries in the specified bundle.

11.2 Example configuration

This section contains useful configuration of additional tools.

11.2.1 mrepo

This section describes how to setup an mrepo mirror.

mrepo builds a local APT/Yum RPM repository from local ISO files, downloaded updates, and extra pack-
ages from 3rd party repositories. It takes care of setting up the ISO files, downloading the RPMs, configuring
HTTP access and providing PXE/TFTP resources for remote network installations.

Sample mrepo configuration

188 Chapter 11. Appendix

http://dag.wieers.com/home-made/mrepo/
http://dag.wieers.com/home-made/mrepo/

Bcfg2 Documentation, Release 1.2.0

Configuration file for mrepo

The [main] section allows to override mrepo’s default settings
The mrepo-example.conf gives an overview of all the possible settings
[main]
srcdir = /var/mrepo/src
wwwdir = /var/www/mrepo
confdir = /etc/mrepo.conf.d
arch = x86_64

mailto = <youremail>
smtp-server = localhost

hardlink = yes
shareiso = yes

rsync-timeout = 3600

[centos5]
name = CentOS Server $release ($arch)
release = 5
arch = x86_64
metadata = yum repomd

ISO images
iso = centos-$release-server-$arch-DVD.iso

#addons = rsync://mirrors.kernel.org/centos/$release/addons/$arch/RPMS
centosplus = rsync://mirrors.kernel.org/centos/$release/centosplus/$arch/RPMS
extras = rsync://mirrors.kernel.org/centos/$release/extras/$arch/RPMS
#fasttrack = rsync://mirrors.kernel.org/centos/$release/fasttrack/$arch/RPMS
os = rsync://mirrors.kernel.org/centos/$release/os/$arch/CentOS
updates = rsync://mirrors.kernel.org/centos/$release/updates/$arch/RPMS
dag = http://apt.sw.be/redhat/el$release/en/$arch/RPMS.dag
dries = http://apt.sw.be/redhat/el$release/en/$arch/RPMS.dries
rpmforge = http://apt.sw.be/redhat/el$release/en/$arch/RPMS.rpmforge

Any other section is considered a definition for a distribution
You can put distribution sections in /etc/mrepo.conf.d/
Examples can be found in the documentation at:
/usr/share/doc/mrepo-0.8.6/dists/.

Update the repositories

To update your local repository, just lauch the following command

11.2. Example configuration 189

Bcfg2 Documentation, Release 1.2.0

mrepo -ug

11.3 Contributors

In alphabetical order of the given name:

• Brian Pellin and Andrew Lusk did substantial work on Bcfg1, some of which was used in the bcfg2
client.

• Chris Vuletich <vuletich@mcs.anl.gov> wrote some SSL code and the verification debugging code

• Cory Lueninghoener <cory@mcs.anl.gov> wrote the showentries function in bcfg2-info

• Daniel Clark <dclark@pobox.com> created encap packages for bcfg2 and deps, wrote fossil-scm dvcs
support, and helps with Debian packaging

• Danny Clark enabled the Encap packaging

• David Dahl worked on Hostbase

• David Strauss worked on CentOS, RHEL, Yum, and Bazaar VCS support

• Ed Smith <esmith4@inf.ed.ac.uk> has done substantial hardening of the bcfg client and server and
implemented a common logging infrastructure.

• Fabian Affolter <fabian@bernewireless.net> made some patches and worked on the manual

• Jason Pepas <cell@ices.utexas.edu> has written a RPM package list creator has contributed patches
to the Red Hat toolset

• Joey Hagedorn <hagedorn@mcs.anl.gov> has written the reporting subsystem, including StatReports,
GenerateHostinfo, and the xslt, css and javascript associated with it.

• Jos Catnook fixed bugs

• Ken Raffenetti <raffenet@mcs.anl.gov> and Rick Bradshaw have written the Hostbase plugin

• Michael Jinks <mjinks@uchicago.edu> wrote the Gentoo tool drivers

• Narayan Desai <desai@mcs.anl.gov> has written most of bcfg2, including all parts not explicitly
mentioned in this file

• Patrick Ruckstuhl fixed bugs in the templating

• Pedro Flores made the Reporting system design help

• Rick Bradshaw <bradshaw@mcs.anl.gov> has written several of the tools included in the tools/
subdirectory

• Sami Haahtinen <ressu@ressukka.net> has written Debian packaging logic.

• Scott Behrens <behrens@mcs.anl.gov> and Rick Bradshaw have written the VHost plugin

• Scott Matott

• Sol Jerome <solj@ices.utexas.edu> squashes bugs, helps manage the project roadmap, and imple-
ments various interesting features.

190 Chapter 11. Appendix

mailto:vuletich@mcs.anl.gov
mailto:cory@mcs.anl.gov
mailto:dclark@pobox.com
mailto:esmith4@inf.ed.ac.uk
mailto:fabian@bernewireless.net
mailto:cell@ices.utexas.edu
mailto:hagedorn@mcs.anl.gov
mailto:raffenet@mcs.anl.gov
mailto:mjinks@uchicago.edu
mailto:desai@mcs.anl.gov
mailto:bradshaw@mcs.anl.gov
mailto:ressu@ressukka.net
mailto:behrens@mcs.anl.gov
mailto:solj@ices.utexas.edu

Bcfg2 Documentation, Release 1.2.0

• Ti Leggett worked on ebuild packaging and bugfixes, RPM packaging

• Zach Lowry Solaris support and general hardening

The entire MCS systems team has provided invaluable help in the design process and refinement of the user
interface. In particular, Gene Rackow and Sandra Bittner have provided great assistance throughout this
project. Philip Steinbachs provided detailed feedback as an early external user.

The most updated listing is available in the AUTHORS file in the SVN repository of Bcfg2.

11.4 Books

• Configuration Management with Bcfg2

• Narayan Desai and Cory Lueninghoener

11.5 Papers

• Configuration Life-Cycle Management on the TeraGrid.

• Ti Leggett, Cory Lueninghoener, and Narayan Desai

• In Proceedings of TeraGrid ‘07 Conference, June 2007

• A Scalable Approach To Deploying And Managing Appliances

• Rick Bradshaw, Narayan Desai, Tim Freeman, and Kate Keahey

• In Proceedings of the TeraGrid ‘07 Conference, June 2007

• Bcfg2 - Konfigurationsmanagement Für Heterogene Umgebungen

• Marko Jung, Robert Gogolok

• In Proceedings of German Unix User Group’s Frühjahrsfachgespräch 2007, March 2007.

• Directing Change Using Bcfg2

• Narayan Desai, Rick Bradshaw, Joey Hagedorn, and Cory Lueninghoener

• In Proceedings of the Twentieth Large Install System Administration Conference (LISA XX), De-
cember 2-9, 2006, Washington D.C., USA, 2006.

• A Case Study in Configuration Management Tool Deployment

• Narayan Desai, Rick Bradshaw, Scott Matott, Sandra Bittner, Susan Coghlan, Remy Evard, Cory
Leunighhoener, Ti Leggett, J.P. Navarro, Gene Rackow, Craig Stacey, and Tisha Stacey

• In Proceedings of the Nineteenth Large Install System Administration Conference (LISA XIX), De-
cember 4-9, 2005, San Diego, CA, USA, 2005.

• Bcfg2: A Pay As You Go Approach to Configuration Complexity

• Narayan Desai

11.4. Books 191

http://www.mcs.anl.gov/
http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/bcfg2/AUTHORS
http://www.sage.org/pubs/19_bcfg2/
http://workspace.globus.org/papers/Scalable_Approach_To_Deploying_And_Managing_Appliances.pdf
ftp://ftp.mcs.anl.gov/pub/bcfg/papers/20070301-FFG2007-bcfg2-paper.pdf
ftp://ftp.mcs.anl.gov/pub/bcfg/papers/directing-change-with-bcfg2.pdf
ftp://ftp.mcs.anl.gov/pub/bcfg/papers/bcfg2-lisa05-deployment.pdf
ftp://ftp.mcs.anl.gov/pub/bcfg/papers/pay-as-you-go.pdf

Bcfg2 Documentation, Release 1.2.0

• In Proceedings of the 2005 Australian Unix Users Group (AUUG2005), October 16-21, 2005, Sydney,
Australia, 2005.

• Bcfg: A Configuration Management Tool for Heterogenous Environments

• Narayan Desai, Andrew Lusk, Rick Bradshaw, and Remy Evard

• In Proceedings of the 5th IEEE International Conference on Cluster Computing (CLUSTER03), pages
500-503. IEEE Computer Society, 2003.

11.6 Articles

• Configuration and change management with Bcfg2: “The Dean” - The powerful Bcfg2 provides a
sophisticated environment for centralized configuration management.

• Marko Jung, Nils Magnus

• In the english ‘Linux Magazine’, 04/09, pages 30-35, April 2009

• The Bcfg2 code listings for the article are public.

• Konfigurations- und Change-Management in Bcfg2

• Marko Jung, Nils Magnus

• In the german ‘Linux Magazin’, 10/08, pages 76-80, September 2008

• The code listings for the article are public.

• System Management Methodologies with Bcfg2

• Narayan Desai, Rick Bradshaw and Joey Hagedorn

• In ;login: Magazine, Volume 31, #1, pages 11-18, February 2006

11.7 Guides

This section contains platform-specific quickstart guides and howtos around Bcfg2.

11.7.1 Authentication

Scenarios

1. Cluster nodes that are frequently rebuilt

Default settings work well; machines do not float, and a per-client password is not required.

2. NAT Howto nat_howto

• Build client records in advance with bcfg2-admin, setting a uuid for each new client.

• Set the address attribute for each to the address of the NAT.

192 Chapter 11. Appendix

ftp://ftp.mcs.anl.gov/pub/bcfg/papers/bcfg-cluster2003.pdf
ftp://ftp.linux-magazin.com/pub/listings/magazine/101/bcfg2/
http://www.linux-magazin.de/Heft-Abo/Ausgaben/2008/10/Abstrakte-Avantgarde?category=0
http://www.linux-magazin.de/static/listings/magazin/2008/10/bcfg2/
ftp://ftp.mcs.anl.gov/pub/bcfg/papers/login-reports.pdf

Bcfg2 Documentation, Release 1.2.0

• Optionally, set a per-client password for each, and set into secure mode.

Note: This will require the use of the uuid and password from each client, and will require that they
come through the NAT address.

Building bcfg2.conf automatically

This is a TCheetah template that automatically constructs per-client bcfg2.conf from the per-client metadata:

[communication]
protocol = xmlrpc/ssl
#if $self.metadata.uuid != None
user = $self.metadata.uuid
#end if
#if $self.metadata.password != None
password = $self.metadata.password
#else
password = my-password-foobar
#end if

[components]
bcfg2 = https://localhost:6789

In this setup, this will cause any clients that have uuids established to be set to use them in bcfg2.conf. It
will also cause any clients with passwords set to use them instead of the global password.

How Authentication Works

1. First, the client is associated with a client record. If the client specifies a uuid, it uses this instead of
the results of a dns or address lookup.

2. Next, the ip address is verified against the client record. If the address doesn’t match, then the client
must be set to location=floating

3. Finally, the password is verified. If the client is set to secure mode, the only its per-client password is
accepted. If it is not set to secure mode, then either the global password or per-client password will
be accepted

Failure during any of these stages results in authentication failure. Note that clients set into secure mode
that do not have per-client passwords set will not be able to connect.

SSL Cert-based client authentication

SSL-based client authentication is supported. This requires several things:

1. Certificate Authority (to sign all keys)

2. Server key and cert signed by the CA

3. Client key and cert signed by the CA

A variety of CAs can be used, but these keys can be simply generated using the following set of steps:

11.7. Guides 193

Bcfg2 Documentation, Release 1.2.0

1. Setup a CA

http://www.flatmtn.com/article/setting-openssl-create-certificates

2. Create keys for each client and server, signing them with the CA signing cert

http://www.flatmtn.com/article/setting-ssl-certificates-apache

Note: The client CN must be the FQDN of the client (as returned by a reverse DNS lookup of the ip
address. Otherwise, you will end up with an error message on the client that looks like:

Server failure: Protocol Error: 401 Unauthorized
Failed to download probes from bcfg2
Server Failure

You will also see an error message on the server that looks something like:

cmssrv01 bcfg2-server[9785]: Got request for cmssrv115 from incorrect address 131.225.206.122
cmssrv01 bcfg2-server[9785]: Resolved to cmssrv115.fnal.gov

3. Distribute the keys and certs to the appropriate locations

4. Copy the ca cert to clients, so that the server can be authenticated

Clients authenticating themselves with a certificate will be authenticated that way first; clients can be setup
to either authenticate solely with certs, use certs with a fallback to password, or password only. Also a
bootstrap mode will be added shortly; this will allow a client to authenticate with a password its first time,
requiring a certificate all subsequent times. This behavior can be controlled through the use of the auth
attribute in Metadata/clients.xml:

<Clients>
<Client name=’testclient’ auth=’cert’/>

</Clients>

Allowed values are:

Auth Type Meaning
cert Certificates must be used
cert+password Certificate or password may be used
bootstrap Password can be used for one client run, after that certificate is required

11.7.2 Quickstart for CentOS

This is a complete getting started guide for CentOS. With this document you should be able to install a
Bcfg2 server and a Bcfg2 client.

Install Bcfg2

The fastest way to get Bcfg2 onto your system is to use Yum or your preferred package management tool.
We’ll be using the ones that are distributed through EPEL, but depending on your aversion to risk you could
download an RPM from other places as well. See Using Bcfg2 With CentOS for information about building
Bcfg2 from source and making your own packages.

194 Chapter 11. Appendix

http://www.flatmtn.com/article/setting-openssl-create-certificates
http://www.flatmtn.com/article/setting-ssl-certificates-apache
http://fedoraproject.org/wiki/EPEL

Bcfg2 Documentation, Release 1.2.0

Using EPEL

Make sure EPEL is a valid repository on your server. The instructions on how to do this basically say:

[root@centos ~]# rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/x86_64/epel-release-5-4.noarch.rpm

Note: You will have to adjust this command to match your architecture and the current EPEL release.

Install the bcfg2-server and bcfg2 RPMs:

[root@centos ~]# yum install bcfg2-server bcfg2

Your system should now have the necessary software to use Bcfg2. The next step is to set up your Bcfg2
repository.

Initialize your repository

Now that you’re done with the install, you need to initialize your repository and setup your
/etc/bcfg2.conf. bcfg2-admin init is a tool which allows you to automate this:

[root@centos ~]# bcfg2-admin init
Store bcfg2 configuration in [/etc/bcfg2.conf]:
Location of bcfg2 repository [/var/lib/bcfg2]:
Input password used for communication verification (without echoing; leave blank for a random):
What is the server’s hostname: [centos]
Input the server location [https://centos:6789]:
Input base Operating System for clients:
1: Redhat/Fedora/RHEL/RHAS/Centos
2: SUSE/SLES
3: Mandrake
4: Debian
5: Ubuntu
6: Gentoo
7: FreeBSD
: 1
Generating a 2048 bit RSA private key
.........................+++
..................+++
writing new private key to ’/etc/bcfg2.key’

Signature ok
subject=/C=US=ST=Illinois/L=Argonne/CN=centos
Getting Private key
Repository created successfuly in /var/lib/bcfg2

Change responses as necessary.

Start the server

You are now ready to start your bcfg2 server for the first time:

11.7. Guides 195

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL/FAQ#howtouse

Bcfg2 Documentation, Release 1.2.0

[root@centos ~]# /sbin/service bcfg2-server start

To verify that everything started ok, look for the running daemon and check the logs:

[root@centos ~]# /etc/init.d/service bcfg2-server status
[root@centos ~]# tail /var/log/messages
Mar 29 12:42:26 centos bcfg2-server[5093]: service available at https://centos:6789
Mar 29 12:42:26 centos bcfg2-server[5093]: serving bcfg2-server at https://centos:6789
Mar 29 12:42:26 centos bcfg2-server[5093]: serve_forever() [start]
Mar 29 12:42:41 centos bcfg2-server[5093]: Handled 16 events in 0.007s

Run bcfg2 to be sure you are able to communicate with the server:

[root@centos ~]# bcfg2 -vqn
No ca is specified. Cannot authenticate the server with SSL.
No ca is specified. Cannot authenticate the server with SSL.
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
Excluding Packages in global exclude list
Finished
Loaded tool drivers:
Action Chkconfig POSIX YUMng

Phase: initial
Correct entries: 0
Incorrect entries: 0
Total managed entries: 0
Unmanaged entries: 208

Phase: final
Correct entries: 0
Incorrect entries: 0
Total managed entries: 0
Unmanaged entries: 208

No ca is specified. Cannot authenticate the server with SSL.

The ca message is just a warning, meaning that the client does not have sufficient information to verify that
it is talking to the correct server. This can be fixed by distributing the ca certificate from the server to all
clients. By default, this file is available in /etc/bcfg2.crt on the server. Copy this file to the client
(with a bundle) and add the ca option to bcfg2.conf pointing at the file, and the client will be able to
verify it is talking to the correct server upon connection:

[root@centos ~]# cat /etc/bcfg2.conf

[communication]
protocol = xmlrpc/ssl
password = N41lMNeW
ca = /etc/bcfg2.crt

[components]

196 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

bcfg2 = https://centos:6789

Now if you run the client, no more warning:

[root@centos ~]# bcfg2 -vqn
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
Excluding Packages in global exclude list
Finished
Loaded tool drivers:
Action Chkconfig POSIX YUMng

Phase: initial
Correct entries: 0
Incorrect entries: 0
Total managed entries: 0
Unmanaged entries: 208

Phase: final
Correct entries: 0
Incorrect entries: 0
Total managed entries: 0
Unmanaged entries: 208

Bring your first machine under Bcfg2 control

Now it is time to get your first machine’s configuration into your Bcfg2 repository. Let’s start with the server
itself.

Setup the Packages plugin

First, replace Pkgmgr with Packages in the plugins line of bcfg2.conf. Then create Packages layout
(as per Example usage) in /var/lib/bcfg2

Note: I am using the RawURL syntax here since we are using mrepo to manage our yum mirrors.

<Sources>
<!-- CentOS (5.4) sources -->
<YUMSource>

<Group>centos5.4</Group>
<RawURL>http://mrepo/centos5-x86_64/RPMS.os</RawURL>
<Arch>x86_64</Arch>

</YUMSource>
<YUMSource>

<Group>centos5.4</Group>
<RawURL>http://mrepo/centos5-x86_64/RPMS.updates</RawURL>
<Arch>x86_64</Arch>

</YUMSource>
<YUMSource>

<Group>centos5.4</Group>

11.7. Guides 197

http://dag.wieers.com/home-made/mrepo/

Bcfg2 Documentation, Release 1.2.0

<RawURL>http://mrepo/centos5-x86_64/RPMS.extras</RawURL>
<Arch>x86_64</Arch>

</YUMSource>
</Sources>

Due to the Magic Groups, we need to modify our Metadata. Let’s add a centos5.4 group
which inherits a centos group (this should replace the existing redhat group) present in
/var/lib/bcfg2/Metadata/groups.xml. The resulting file should look something like this

<Groups version=’3.0’>
<Group profile=’true’ public=’true’ default=’true’ name=’basic’>

<Group name=’centos5.4’/>
</Group>
<Group name=’centos5.4’>

<Group name=’centos’/>
</Group>
<Group name=’ubuntu’/>
<Group name=’debian’/>
<Group name=’freebsd’/>
<Group name=’gentoo’/>
<Group name=’centos’/>
<Group name=’suse’/>
<Group name=’mandrake’/>
<Group name=’solaris’/>

</Groups>

Note: When editing your xml files by hand, it is useful to occasionally run bcfg2-repo-validate to ensure
that your xml validates properly.

The final thing we need is for the client to have the proper arch group membership. For this, we will make
use of the unsorted-dynamic_groups capabilities of the Probes plugin. Add Probes to your plugins line in
bcfg2.conf and create the Probe.:

[root@centos ~]# grep plugins /etc/bcfg2.conf
plugins = Base,Bundler,Cfg,Metadata,Packages,Probes,Rules,SSHbase
[root@centos ~]# mkdir /var/lib/bcfg2/Probes
[root@centos ~]# cat /var/lib/bcfg2/Probes/groups
#!/bin/sh

echo "group:‘uname -m‘"

Now we restart the bcfg2-server:

[root@centos ~]# /etc/init.d/bcfg2-server restart

If you tail /var/log/syslog now, you will see the Packages plugin in action, updating the cache.

Start managing packages

Add a base-packages bundle. Let’s see what happens when we just populate it with the yum package.

198 Chapter 11. Appendix

http://trac.mcs.anl.gov/projects/bcfg2/wiki/Plugins/Packages#MagicGroups

Bcfg2 Documentation, Release 1.2.0

[root@centos ~]# cat /var/lib/bcfg2/Bundler/base-packages.xml
<Bundle name=’base-packages’>

<Package name=’yum’/>
</Bundle>

You need to reference the bundle from your Metadata. The resulting profile group might look something
like this

<Group profile=’true’ public=’true’ default=’true’ name=’basic’>
<Bundle name=’base-packages’/>
<Group name=’centos5.4’/>

</Group>

Now if we run the client, we can see what this has done for us.:

[root@centos ~]# bcfg2 -vqn
Running probe groups
Probe groups has result:
x86_64
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
Excluding Packages in global exclude list
Finished
Loaded tool drivers:
Action Chkconfig POSIX YUMng

Package pam failed verification.

Phase: initial
Correct entries: 94
Incorrect entries: 1
Total managed entries: 95
Unmanaged entries: 113

In dryrun mode: suppressing entry installation for:
Package:pam

Phase: final
Correct entries: 94
Incorrect entries: 1
Package:pam

Total managed entries: 95
Unmanaged entries: 113

Interesting, our pam package failed verification. What does this mean? Let’s have a look:

[root@centos ~]# rpm --verify pam
....L... c /etc/pam.d/system-auth

Sigh, it looks like the default RPM install for pam fails to verify using its own verification process (trust me,
it’s not the only one). At any rate, I was able to get rid of this particular issue by removing the symlink and
running yum reinstall pam.

As you can see, the Packages plugin has generated the dependencies required for the yum package automat-
ically. The ultimate goal should be to move all the packages from the Unmanaged entries section to the

11.7. Guides 199

Bcfg2 Documentation, Release 1.2.0

Managed entries section. So, what exactly are those Unmanaged entries?:

[root@centos ~]# bcfg2 -veqn
Running probe groups
Probe groups has result:
x86_64
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
Excluding Packages in global exclude list
Finished
Loaded tool drivers:
Action Chkconfig POSIX YUMng

Extra Package openssh-clients 4.3p2-36.el5_4.4.x86_64.
Extra Package libuser 0.54.7-2.1el5_4.1.x86_64.
...

Phase: initial
Correct entries: 95
Incorrect entries: 0
Total managed entries: 95
Unmanaged entries: 113

Phase: final
Correct entries: 95
Incorrect entries: 0
Total managed entries: 95
Unmanaged entries: 113
Package:at
Package:avahi
Package:avahi-compat-libdns_sd
...

Now you can go through these and continue adding the packages you want to your Bundle. After a while, I
ended up with a minimal bundle that looks like this

<Bundle name=’base-packages’>
<Package name=’bcfg2-server’/>
<Package name=’exim’/>
<Package name=’grub’/>
<Package name=’kernel’/>
<Package name=’krb5-workstation’/>
<Package name=’m2crypto’/>
<Package name=’openssh-clients’/>
<Package name=’openssh-server’/>
<Package name=’prelink’/>
<Package name=’redhat-lsb’/>
<Package name=’rpm-build’/>
<Package name=’rsync’/>
<Package name=’sysklogd’/>
<Package name=’vim-enhanced’/>
<Package name=’yum’/>

</Bundle>

200 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

Now when I run the client, you can see I have only one unmanaged package:

[root@centos ~]# bcfg2 -veqn
Running probe groups
Probe groups has result:
x86_64
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
Excluding Packages in global exclude list
Finished
Loaded tool drivers:
Action Chkconfig POSIX YUMng

Extra Package gpg-pubkey e8562897-459f07a4.None.
Extra Package gpg-pubkey 217521f6-45e8a532.None.

Phase: initial
Correct entries: 187
Incorrect entries: 0
Total managed entries: 187
Unmanaged entries: 16

Phase: final
Correct entries: 187
Incorrect entries: 0
Total managed entries: 187
Unmanaged entries: 16
Package:gpg-pubkey
Service:atd
Service:avahi-daemon
Service:bcfg2-server
...

The gpg-pubkey packages are special in that they are not really packages. Currently, the way to manage
them is using BoundEntries. So, after adding them, our Bundle now looks like this

Note: This does not actually control the contents of the files, you will need to do this part separately (see
below).

<Bundle name=’base-packages’>
<BoundPackage name="gpg-pubkey" type="rpm">

<Instance simplefile="/etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5" version="e8562897" release="459f07a4"/>
<Instance simplefile="/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL" version="217521f6" release="45e8a532"/>

</BoundPackage>
<Package name=’bcfg2-server’/>
<Package name=’exim’/>
<Package name=’grub’/>
<Package name=’kernel’/>
<Package name=’krb5-workstation’/>
<Package name=’m2crypto’/>
<Package name=’openssh-clients’/>
<Package name=’openssh-server’/>
<Package name=’prelink’/>
<Package name=’redhat-lsb’/>

11.7. Guides 201

Bcfg2 Documentation, Release 1.2.0

<Package name=’rpm-build’/>
<Package name=’rsync’/>
<Package name=’sysklogd’/>
<Package name=’vim-enhanced’/>
<Package name=’yum’/>

</Bundle>

To actually push the gpg keys out via Bcfg2, you will need to manage the files as well. This can be done by
adding Path entries for each of the gpg keys you want to manage

<Bundle name=’base-packages’>
<Path name=’/etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5’/>
<Path name=’/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL’/>
<BoundPackage name="gpg-pubkey" type="rpm">

<Instance simplefile="/etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5" version="e8562897" release="459f07a4"/>
<Instance simplefile="/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL" version="217521f6" release="45e8a532"/>

</BoundPackage>
<Package name=’bcfg2-server’/>
<Package name=’exim’/>
<Package name=’grub’/>
<Package name=’kernel’/>
<Package name=’krb5-workstation’/>
<Package name=’m2crypto’/>
<Package name=’openssh-clients’/>
<Package name=’openssh-server’/>
<Package name=’prelink’/>
<Package name=’redhat-lsb’/>
<Package name=’rpm-build’/>
<Package name=’rsync’/>
<Package name=’sysklogd’/>
<Package name=’vim-enhanced’/>
<Package name=’yum’/>

</Bundle>

Then add the files to Cfg:

mkdir -p Cfg/etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5
cp /etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5 !$/RPM-GPG-KEY-CentOS-5
mkdir -p Cfg/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL
cp /etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL !$/RPM-GPG-KEY-EPEL

Now, running the client shows only unmanaged Service entries. Woohoo!

Manage services

Now let’s clear up the unmanaged service entries by adding the following entries to our bundle.

<!-- basic services -->
<Service name=’atd’/>
<Service name=’avahi-daemon’/>
<Service name=’bcfg2-server’/>
<Service name=’crond’/>

202 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

<Service name=’cups’/>
<Service name=’gpm’/>
<Service name=’lvm2-monitor’/>
<Service name=’mcstrans’/>
<Service name=’messagebus’/>
<Service name=’netfs’/>
<Service name=’network’/>
<Service name=’postfix’/>
<Service name=’rawdevices’/>
<Service name=’sshd’/>
<Service name=’syslog’/>

...and bind them in Rules

[root@centos ~]# cat /var/lib/bcfg2/Rules/services.xml
<Rules priority=’1’>

<!-- basic services -->
<Service type=’chkconfig’ status=’on’ name=’atd’/>
<Service type=’chkconfig’ status=’on’ name=’avahi-daemon’/>
<Service type=’chkconfig’ status=’on’ name=’bcfg2-server’/>
<Service type=’chkconfig’ status=’on’ name=’crond’/>
<Service type=’chkconfig’ status=’on’ name=’cups’/>
<Service type=’chkconfig’ status=’on’ name=’gpm’/>
<Service type=’chkconfig’ status=’on’ name=’lvm2-monitor’/>
<Service type=’chkconfig’ status=’on’ name=’mcstrans’/>
<Service type=’chkconfig’ status=’on’ name=’messagebus’/>
<Service type=’chkconfig’ status=’on’ name=’netfs’/>
<Service type=’chkconfig’ status=’on’ name=’network’/>
<Service type=’chkconfig’ status=’on’ name=’postfix’/>
<Service type=’chkconfig’ status=’on’ name=’rawdevices’/>
<Service type=’chkconfig’ status=’on’ name=’sshd’/>
<Service type=’chkconfig’ status=’on’ name=’syslog’/>

</Rules>

Now we run the client and see there are no more unmanaged entries!

[root@centos ~]# bcfg2 -veqn
Running probe groups
Probe groups has result:
x86_64
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
Excluding Packages in global exclude list
Finished
Loaded tool drivers:
Action Chkconfig POSIX YUMng

Phase: initial
Correct entries: 205
Incorrect entries: 0
Total managed entries: 205
Unmanaged entries: 0

11.7. Guides 203

Bcfg2 Documentation, Release 1.2.0

Phase: final
Correct entries: 205
Incorrect entries: 0
Total managed entries: 205
Unmanaged entries: 0

Dynamic (web) reports

See installation instructions at server-reports-install

11.7.3 Converging on Verification with RHEL 5

Running verification

To get complete verification status, run:

bcfg2 -vqned

Unmanaged entries

• Package (top-level)

1. Enable the “Packages” plugin in {{{/etc/bcfg2.conf}}}, and configure the Yum repositories in
{{{/var/lib/bcfg2/Packages/config.xml}}}.

2. If a package is unwanted, remove it:

sudo yum remove PACKAGE

3. Otherwise, add {{{<Package name=”PACKAGE” />}}} to the Base or Bundler configuration.

• Package (dependency)

1. Ensure the Yum repository sources configured in {{{/var/lib/bcfg2/Packages/config.xml}}} are cor-
rect.

2. Ensure the Yum repositories themselves are up-to-date with the main package and dependencies.

3. Rebuild the Packages plugin cache:

bcfg2-admin xcmd Packages.Refresh

• Service

1. Add {{{<Service name=”SERVICE” />}}} to the Base or Bundler configuration.

2. Add {{{<Service name=”SERVICE” status=”on” type=”chkconfig” />}}} to
{{{/var/lib/bcfg2/Rules/services.xml}}}.

204 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

Incorrect entries

For a “Package”

• Failed RPM verification

1. Run {{{rpm -V PACKAGE}}}

2. Add configuration files (the ones with “c” next to them in the verification output) to
{{{/var/lib/bcfg2/Cfg/}}}.

• For example, {{{/etc/motd}}} to {{{/var/lib/bcfg2/Cfg/etc/motd/motd}}}. Yes, there is
an extra directory level named after the file.

1. Specify configuration files as {{{<Path name=’PATH’ />}}} in the Base or Bundler con-
figuration.

2. Add directories to {{{/var/lib/bcfg2/Rules/directories.xml}}}. For example:

<Rules priority="0">
<Directory name="/etc/cron.hourly" group="root" owner="root" perms="0700" />
<Directory name="/etc/cron.daily" group="root" owner="root" perms="0700" />

</Rules>

• Multiple instances

• Option A: Explicitly list the instances

1. Drop the {{{<Package />}}} from the Base or Bundler configuration.

2. Add an explicit {{{<BoundPackage>}}} and {{{<Instance />}}} configuration to a new
Bundle, like the following:

<Bundle name=’keys’>
<!-- GPG keys -->
<BoundPackage name="gpg-pubkey" type="yum">
<Instance simplefile="/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL" version="217521f6" release="45e8a532"/>
<Instance simplefile="/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release" version="37017186" release="45761324"/>

</BoundPackage>
</Bundle>

3. Add the bundle to the applicable groups in {{{/var/lib/bcfg2/Metadata/groups.xml}}}.

• Option B: Disable verification of the package

1. Add {{{pkg_checks=”false”}}} to the {{{<Package />}}} tag.

For a “Path”

• Unclear verification problem (no details from BCFG2)

1. Run {{{bcfg2 -vqI}}} to see detailed verification issues (but deny any suggested actions).

• Permissions mismatch

11.7. Guides 205

Bcfg2 Documentation, Release 1.2.0

1. Create an {{{info.xml}}} file in the same directory as the configuration file. Example:

<FileInfo>
<Group name=’webserver’>

<Info owner=’root’ group=’root’ perms=’0652’/>
</Group>
<Info owner=’root’ group=’sys’ perms=’0651’/>

</FileInfo>

Other troubleshooting tools

• Generate the physical configuration from the server side:

bcfg2-info buildfile /test test.example.com

• Generate the physical configuration from the client side:

bcfg2 -vqn -c/root/bcfg2-physical.xml

11.7.4 Fedora

This guide is work in progess.

This is a complete getting started guide for Fedora. With this document you should be able to install a Bcfg2
server, a Bcfg2 client, and change the /etc/motd file on the client.

Install Bcfg2 From RPM

The fastest way to get Bcfg2 onto your system is to use yum or PackageKit. ‘‘ um‘‘ will pull all dependencies
of Bcfg2 automatically in.

$ su -c ’yum install bcfg2-server bcfg2’

Your system should now have the necessary software to use Bcfg2. The next step is to set up your Bcfg2
repository.

Initialize your repository

Now that you’re done with the install, you need to initialize your repository and setup your
/etc/bcfg2.conf. bcfg2-admin init is a tool which allows you to automate this:

bcfg2-admin init
Store bcfg2 configuration in [/etc/bcfg2.conf]:
Location of bcfg2 repository [/var/lib/bcfg2]:
Directory /var/lib/bcfg2 exists. Overwrite? [y/N]:y
Input password used for communication verification (without echoing; leave blank for a random):
What is the server’s hostname: [config01.local.net]
Input the server location [https://config01.local.net:6789]:
Input base Operating System for clients:

206 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

1: Redhat/Fedora/RHEL/RHAS/Centos
2: SUSE/SLES
3: Mandrake
4: Debian
5: Ubuntu
6: Gentoo
7: FreeBSD
: 1
Generating a 1024 bit RSA private key
...++++++
.....++++++
writing new private key to ’/etc/bcfg2.key’

Signature ok
subject=/C=US/ST=Illinois/L=Argonne/CN=config01.local.net
Getting Private key
Repository created successfuly in /var/lib/bcfg2

Change responses as necessary.

Start the server

You are now ready to start your bcfg2 server for the first time:

$ su -c ’/etc/init.d/bcfg2-server start’
Starting Configuration Management Server: bcfg2-server [OK]

To verify that everything started ok, look for the running daemon and check the logs:

$ su -c ’tail /var/log/messages’
May 16 14:14:57 config01 bcfg2-server[2746]: service available at https://config01.local.net:6789
May 16 14:14:57 config01 bcfg2-server[2746]: serving bcfg2-server at https://config01.local.net:6789
May 16 14:14:57 config01 bcfg2-server[2746]: serve_forever() [start]
May 16 14:14:57 config01 bcfg2-server[2746]: Handled 16 events in 0.009s

Run bcfg2 to be sure you are able to communicate with the server:

$ su -c ’bcfg2 -vqne’

/usr/lib/python2.6/site-packages/Bcfg2/Client/Tools/rpmtools.py:23: DeprecationWarning: the md5 module is deprecated; use hashlib instead
import md5

Loaded plugins: presto, refresh-packagekit
Loaded tool drivers:
Action Chkconfig POSIX YUMng

Extra Package imsettings-libs 0.108.0-2.fc13.i686.
Extra Package PackageKit-device-rebind 0.6.4-1.fc13.i686.
...
Extra Package newt-python 0.52.11-2.fc13.i686.
Extra Package pulseaudio-gdm-hooks 0.9.21-6.fc13.i686.

Phase: initial
Correct entries: 0
Incorrect entries: 0

11.7. Guides 207

Bcfg2 Documentation, Release 1.2.0

Total managed entries: 0
Unmanaged entries: 1314

Phase: final
Correct entries: 0
Incorrect entries: 0
Total managed entries: 0
Unmanaged entries: 1314
Package:ConsoleKit Package:jasper-libs Package:pcsc-lite-libs
Package:ConsoleKit-libs Package:java-1.5.0-gcj Package:perf

...
Package:iw Package:pcre Service:sshd
Package:jack-audio-connection-kit Package:pcsc-lite Service:udev-post

The bcfg2.conf file contains only standard plugins so far.

$ su -c ’cat /etc/bcfg2.conf’

[server]
repository = /var/lib/bcfg2
plugins = Base,Bundler,Cfg,Metadata,Pkgmgr,Rules,SSHbase

[statistics]
sendmailpath = /usr/lib/sendmail
database_engine = sqlite3
’postgresql’, ’mysql’, ’mysql_old’, ’sqlite3’ or ’ado_mssql’.
database_name =
Or path to database file if using sqlite3.
#<repository>/etc/brpt.sqlite is default path if left empty
database_user =
Not used with sqlite3.
database_password =
Not used with sqlite3.
database_host =
Not used with sqlite3.
database_port =
Set to empty string for default. Not used with sqlite3.
web_debug = True

[communication]
protocol = xmlrpc/ssl
password = test1234
certificate = /etc/bcfg2.crt
key = /etc/bcfg2.key
ca = /etc/bcfg2.crt

[components]
bcfg2 = https://config01.local.net:6789

208 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

Add the machines to Bcfg2

bcfg2-admin can be used to add a machine to Bcfg2 easily. You need to know the Fully Qualified
Domain Name (FQDN) of ever system you want to control through Bcfg2.

bcfg2-admin client add <FQDN machine>

Bring your first machine under Bcfg2 control

Now it is time to get the first machine’s configuration into the Bcfg2 repository. The server will be the first
machine. It’s already in the Metadata/client.xml.

Setup the Packages plugin First, replace Pkgmgr with Packages in the plugins line of bcfg2.conf.
Then create Packages/ directory in /var/lib/bcfg2

$ su -c ’mkdir /var/lib/bcfg2/Packages’

Create a config.xml file for the packages in /var/lib/bcfg2/Packages with the following con-
tent. Choose a mirror near your location according the Mirror list .

<Sources>
<YUMSource>
<Group>fedora-13</Group>
<URL>ftp://fedora.tu-chemnitz.de/pub/linux/fedora/linux/releases/</URL>
<Version>13</Version>
<Component>Fedora</Component>
<Arch>i386</Arch>
<Arch>x86_64</Arch>
</YUMSource>

</Sources>

Due to the Magic Groups, we need to modify our Metadata. Let’s add a fedora13 group
which inherits a fedora group (this should replace the existing redhat group) present in
/var/lib/bcfg2/Metadata/groups.xml. The resulting file should look something like this

<Groups version=’3.0’>
<Group profile=’true’ public=’true’ default=’true’ name=’basic’>

<Group name=’fedora13’/>
</Group>
<Group name=’fedora13’/>

<Group name=’fedora’/>
<Group name=’ubuntu’/>
<Group name=’debian’/>
<Group name=’freebsd’/>
<Group name=’gentoo’/>
<Group name=’fedora’/>
<Group name=’suse’/>
<Group name=’mandrake’/>
<Group name=’solaris’/>

</Groups>

11.7. Guides 209

http://mirrors.fedoraproject.org/publiclist/
http://trac.mcs.anl.gov/projects/bcfg2/wiki/Plugins/Packages#MagicGroups

Bcfg2 Documentation, Release 1.2.0

Note: When editing your xml files by hand, it is useful to occasionally run bcfg2-repo-validate to
ensure that your xml validates properly.

Add a probe The next step for the client will be to have the proper arch group membership. For this,
we will make use of the server-plugins-grouping-dynamic_groups capabilities of the Probes plugin. Add
Probes to your plugins line in bcfg2.conf and create the Probe:

$ su -c ’mkdir /var/lib/bcfg2/Probes’
$ su -c ’cat /var/lib/bcfg2/Probes/groups’
#!/bin/sh

echo "group:‘uname -m‘"

Now a restart of bcfg2-server is needed:

$ su -c ’/etc/init.d/bcfg2-server restart’

To test the Probe just run bcfg2 -vqn.

$ su -c ’bcfg2 -vqn’
Running probe group
Probe group has result:
group:i686
...

Start managing packages Add a base-packages bundle. Let’s see what happens when we just populate it
with the yum package. Create the base-packages.xml in your Bundler/ directory with a entry for
yum.

$ cat /var/lib/bcfg2/Bundler/base-packages.xml
<Bundle name=’base-packages’>

<Package name=’yum’/>
</Bundle>

You need to reference the bundle from your group.xml. The resulting profile group might look something
like this

<Group profile=’true’ public=’true’ default=’true’ name=’basic’>
<Bundle name=’base-packages’/>
<Group name=’fedora13’/>

</Group>

Now if we run the client, we can see what this has done for us.:

output

As you can see, the Packages plugin has generated the dependencies required for the yum package automat-
ically. The ultimate goal should be to move all the packages from the Unmanaged entries section to the
Managed entries section. So, what exactly are those Unmanaged entries?:

output

210 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

Now you can go through these and continue adding the packages you want to your Bundle. After a while, I
ended up with a minimal bundle that looks like this

<Bundle name=’base-packages’>

</Bundle>

Now when I run the client, you can see I have only one unmanaged package:

outout

The gpg-pubkey packages are special in that they are not really packages. Currently, the way to manage
them is using BoundEntries. So, after adding them, our Bundle now looks like this

Note: This does not actually control the contents of the files, you will need to do this part separately (see
below).

<Bundle name=’base-packages’>
<BoundPackage name="gpg-pubkey" type="rpm">

<Instance simplefile="/etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5" version="e8562897" release="459f07a4"/>
<Instance simplefile="/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL" version="217521f6" release="45e8a532"/>

</BoundPackage>
<Package name=’bcfg2-server’/>
<Package name=’exim’/>
<Package name=’grub’/>
<Package name=’kernel’/>
<Package name=’krb5-workstation’/>
<Package name=’m2crypto’/>
<Package name=’openssh-clients’/>
<Package name=’openssh-server’/>
<Package name=’prelink’/>
<Package name=’redhat-lsb’/>
<Package name=’rpm-build’/>
<Package name=’rsync’/>
<Package name=’sysklogd’/>
<Package name=’vim-enhanced’/>
<Package name=’yum’/>

</Bundle>

To actually push the gpg keys out via Bcfg2, you will need to manage the files as well. This can be done by
adding Path entries for each of the gpg keys you want to manage

<Bundle name=’base-packages’>
<Path name=’/etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5’/>
<Path name=’/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL’/>
<BoundPackage name="gpg-pubkey" type="rpm">

<Instance simplefile="/etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5" version="e8562897" release="459f07a4"/>
<Instance simplefile="/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL" version="217521f6" release="45e8a532"/>

</BoundPackage>
<Package name=’bcfg2-server’/>
<Package name=’exim’/>
<Package name=’grub’/>
<Package name=’kernel’/>
<Package name=’krb5-workstation’/>
<Package name=’m2crypto’/>

11.7. Guides 211

Bcfg2 Documentation, Release 1.2.0

<Package name=’openssh-clients’/>
<Package name=’openssh-server’/>
<Package name=’prelink’/>
<Package name=’redhat-lsb’/>
<Package name=’rpm-build’/>
<Package name=’rsync’/>
<Package name=’sysklogd’/>
<Package name=’vim-enhanced’/>
<Package name=’yum’/>

</Bundle>

Then add the files to Cfg:

mkdir -p Cfg/etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5
cp /etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5 !$/RPM-GPG-KEY-CentOS-5
mkdir -p Cfg/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL
cp /etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL !$/RPM-GPG-KEY-EPEL

Now, running the client shows only unmanaged Service entries. Woohoo!

Manage services Now let’s clear up the unmanaged service entries by adding the following entries to our
bundle...

<!-- basic services -->
<Service name=’atd’/>
<Service name=’avahi-daemon’/>
<Service name=’bcfg2-server’/>
<Service name=’crond’/>
<Service name=’cups’/>
<Service name=’gpm’/>
<Service name=’lvm2-monitor’/>
<Service name=’mcstrans’/>
<Service name=’messagebus’/>
<Service name=’netfs’/>
<Service name=’network’/>
<Service name=’postfix’/>
<Service name=’rawdevices’/>
<Service name=’sshd’/>
<Service name=’syslog’/>

...and bind them in Rules

[root@centos ~]# cat /var/lib/bcfg2/Rules/services.xml
<Rules priority=’1’>

<!-- basic services -->
<Service type=’chkconfig’ status=’on’ name=’atd’/>
<Service type=’chkconfig’ status=’on’ name=’avahi-daemon’/>
<Service type=’chkconfig’ status=’on’ name=’bcfg2-server’/>
<Service type=’chkconfig’ status=’on’ name=’crond’/>
<Service type=’chkconfig’ status=’on’ name=’cups’/>
<Service type=’chkconfig’ status=’on’ name=’gpm’/>
<Service type=’chkconfig’ status=’on’ name=’lvm2-monitor’/>
<Service type=’chkconfig’ status=’on’ name=’mcstrans’/>

212 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

<Service type=’chkconfig’ status=’on’ name=’messagebus’/>
<Service type=’chkconfig’ status=’on’ name=’netfs’/>
<Service type=’chkconfig’ status=’on’ name=’network’/>
<Service type=’chkconfig’ status=’on’ name=’postfix’/>
<Service type=’chkconfig’ status=’on’ name=’rawdevices’/>
<Service type=’chkconfig’ status=’on’ name=’sshd’/>
<Service type=’chkconfig’ status=’on’ name=’syslog’/>

</Rules>

Now we run the client and see there are no more unmanaged entries!

$ su -c ’bcfg2 -veqn’

Adding Plugins

Git

Adding the Git plugins can preserve versioning information. The first step is to add Git to your plugin line:

plugins = Base,Bundler,Cfg,...,Git

For tracking the configuration files in the /var/lib/bcfg2 directory a git repository need to be estab-
lished:

git init

For more detail about the setup of git please refer to a git tutorial. The first commit can be the empty or the
allready populated directory:

git add . && git commit -a

While running bcfg2-info the following line will show up:

Initialized git plugin with git directory = /var/lib/bcfg2/.git

11.7.5 Gentoo

This document tries to lay out anything Gentoo-specific that you need to know in order to use Bcfg2. Mostly
that has to do with getting it to cooperate with the various pieces of Portage. Services, all things POSIX, and
just about anything else that Bcfg2 does will work the same on Gentoo as on any other distribution. Bcfg2
is new on Gentoo; please let the list know if you find errors or omissions.

Installing Bcfg2

Early in July 2008, Bcfg2 was added to the Gentoo portage tree. So far it’s only keyworded for ~x86, but we
hope to see it soon in the amd64 and x64-solaris ports. If you’re using Gentoo on some other architecture, it
should still work provided that you have a reasonably up to date Python; try adding app-admin/bcfg2 ~* to
your /etc/portage/package.keywords file.

11.7. Guides 213

http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html

Bcfg2 Documentation, Release 1.2.0

If you don’t use portage to install Bcfg2, you’ll want to make sure you have all the prerequisites installed
first. For a server, you’ll need:

• app-admin/gamin or app-admin/fam

• dev-python/lxml

Clients will need at least:

• app-portage/gentoolkit

Package Repository

You’ll need (to make) at least one archive of binary packages. The Portage driver calls emerge with
the -getbinpkgonly option. See make.conf(5) and emerge(1) manpages, specifically the
PORTAGE_BINHOST environment variable.

Time Saver: quickpkg

If you have a standing Gentoo machine that you want to preserve or propagate, you can generate a complete
package archive based on the present state of the system by using the quickpkg utility. For example:

for pkg in ‘equery -q l‘ ; do quickpkg "=$pkg" ; done

. . . will leave you with a complete archive of all the packages on your system in
/usr/portage/packages/All, which you can then move to your ftp server.

Cataloging Packages In Your Repository

Once you have a set of packages, you will need to create a catalog for them in
/var/lib/bcfg2/Pkgmgr. Here’s a template:

<PackageList uri=’’ type=’portage’ priority=’’>
<Group name=’’>

<Package name=’’ version=’’/>
</Group>

</PackageList>

. . . and a partially filled-out example, for our local Gentoo/VMware build:

<PackageList uri=’ftp://filthy.uchicago.edu/200701-vmware/’ type=’portage’ priority=’0’>
<Group name=’gentoo-200701-vmware’>

<Package name=’app-admin/bcfg2’ version=’0.9.1_pre1’/>
[...]
<Package name=’x11-wm/twm’ version=’1.0.1’/>

</Group>
</PackageList>

The <Group> name (in our example, “gentoo-200701-vmware”) should be included by any host which will
draw its packages from this list. Our collection of packages for this class of machines is at the listed URI,

214 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

and we only have one collection of packages for this batch of machines so in our case the priority doesn’t
really matter, we’ve set it to 0.

Notice that package name fields are in CAT/TITLE format.

Here is a hack which will generate a list of Package lines from a system’s database of installed packages,
especially useful in conjunction with the quickpkg example above:

#!/bin/bash
for pkg in ‘equery -q l‘ ; do

title=‘echo $pkg | sed -e ’s/\(.*\)-\([0-9].*\)/\1/’‘
version=‘echo $pkg | sed -e ’s/\(.*\)-\([0-9].*\)/\2/’‘
echo " <Package name=’${title}’ version=’${version}’/>"

done

Configuring Client Machines

Set up /etc/bcfg2.conf the way you would for any other Bcfg2 client.

In make.conf, set PORTAGE_BINHOST to point to the URI of your package repository. You may
want to create versions of make.conf for each package repository you maintain, with appropriate
PORTAGE_BINHOST URI’s in each, and associated with that package archive’s group under Cfg – for
example, we have Cfg/etc/make.conf/make.conf.G99_gentoo-200701-vmware. If a client
host switches groups, and the new group needs a different set of packages, everything should just fall into
place.

Pitfalls

Package Verification Issues

As of this writing (2007/01/31), we’re aware of a number of packages marked stable in the Gentoo x86 tree
which, for one reason or another, consistently fail to verify cleanly under equery check. In some cases (pam,
openldap), files which don’t (ever) exist on the system are nonetheless recorded in the package database;
in some (python, Bcfg2, ahem), whole classes of files (.pyc and .pyo files) consistently fail their md5sum
checks; and in others, the problem appears to be a discrepancy in the way that symlinks are created vs. the
way they’re recorded in the database. For example, in the OpenSSH package, /usr/bin/slogin is a symlink to
./ssh, but equery expects it to point to an unadorned ssh. An analogous situation exists with their manpages,
leading to noise like this:

equery check openssh
[Checking net-misc/openssh-4.5_p1]
!!! /etc/ssh/sshd_config has incorrect md5sum
!!! /usr/bin/slogin does not point to ssh
!!! /usr/share/man/man1/slogin.1.gz does not point to ssh.1.gz
!!! /etc/ssh/ssh_config has incorrect md5sum

* 62 out of 66 files good

We can ignore the lines for ssh_config and sshd_config; those will be caught by Bcfg2 as registered
config files and handled appropriately.

11.7. Guides 215

Bcfg2 Documentation, Release 1.2.0

Because Bcfg2 relies on the client system’s native package reporting tool to judge the state of installed pack-
ages, complaints like these about trivial or intractable verification failures can trigger unnecessary bundle
reinstalls when the Bcfg2 client runs. Bcfg2 will catch on after a pass or two that the situation isn’t getting
any better with repeated package installs, stop trying, and list those packages as “bad” in the client system’s
statistics.

Aside from filing bugs with the Gentoo package maintainers, your narrator has been unable to come up with
a good approach to this. Maybe write a series of Rules definitions according to what the package database
thinks it should find, and/or stage copies of affected files under Cfg, and associate those rules and files with
the affected package in a bundle? Annoying but possibly necessary if you want your stats file to look good.

/boot

Gentoo as well as some other distros recommend leaving /boot unmounted during normal run-
time. This can lead to trouble during verification and package installation, for example when
/boot/grub/grub.conf turns up missing. The simplest way around this might just be to ensure that
/boot is mounted whenever you run Bcfg2, possibly wrapping Bcfg2 in a script for the purpose. I’ve
also thought about adding Action clauses to bundles for grub and our kernel packages, which would mount
/boot before the bundle installs and unmount it afterward, but this doesn’t get around the problem of those
packages flunking verification.

11.7.6 NAT HOWTO

This page describes how to setup bcfg2 to properly function with a collection of clients behind NAT. It
describes the issues, how the underlying portions of the bcfg2 system function, and how to correctly setup
client metadata to cope with this environment.

Issues

Bcfg2, by default, uses ip address lookup to determine the identity of a client that has connected. This
process doesn’t work properly in the case of NATted hosts, because all requests from these clients come
from the same external address when connecting to the server.

These client identification issues will manifest themselves in a number of ways:

• Inability to setup discrete clients with different profiles

• Incorrect sharing of probe results across clients in the same NAT pool

• Inability to bootstrap clients properly when client data is not predefined

Architectural Issues

Client identification is performed as the beginning of each client/server interaction. As of 0.9.3pre3, client
identification via IP address can be completely short-circuited through the use of a client uuid. Setup of
client uuids requires actions of both the client and server. On the server side, the client uuid must be added
to the client record in Metadata/clients.xml. This attribute allows the server to use the user part of the

216 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

authentication to resolve the client’s metadata. Also, either the location attribute should be set to floating,
or the IP address of the NAT must be reflected in the address attribute. Once added, the Client entry in
clients.xml will look like:

<Client profile="desktop" name="test1" pingable="N"
uuid=’9001ec29-1531-4b16-8198-a71bea093d0a’ location=’floating’/>

Alternatively, the Client entry can be setup like:

<Client profile="desktop" name="test1" pingable="N"
uuid=’9001ec29-1531-4b16-8198-a71bea093d0a’ address=’ip-address-of-NAT’/>

The difference between these definitions is explained in detail on the [wiki:Authentication] page, but in
short, the second form requires that the client access the server from the NAT address, while the first form
allows it to connect from any address provided it uses the proper uuid. (Client identification is orthogonal
to the use of per-client passwords; this can be set in addition to the attributes above.)

Once this setup is done, each client must be configured to use the proper uuid upon any server interaction.
This can be done using either the command line argument -u, or the setting “user” in the “communication”
section of /etc/bcfg2.conf.

UUID Choice

When determining client UUIDs, one must take care to ensure that UUIDs are unique to the client. Any
hardware-specific attribute, like a hash of a mac address would be sufficient. Alternatively, if a local host-
name is unique, it may be used as well.

Automated Client Bootstrapping

Automated setup of new clients from behind NAT works by using the common password. For example:

/usr/sbin/bcfg2 -u ubik3 -p desktop -x <password>

It is not possible at this time to do automated setup without setting up a pre-shared per-client key.

11.7.7 Ubuntu

Note: This particular how to was done on lucid, but should apply to any other stable version of Ubuntu.

Install Bcfg2

We first need to install the server. For this example, we will use the bcfg2 server package from the bcfg2
PPA (note that there is also a version available in the ubuntu archives, but it is not as up to date).

Add the Ubuntu PPA listing to your APT sources

See http://trac.mcs.anl.gov/projects/bcfg2/wiki/PrecompiledPackages#UbuntuLucid

11.7. Guides 217

https://wiki.ubuntu.com/Releases
https://launchpad.net/~bcfg2/+archive/ppa
http://trac.mcs.anl.gov/projects/bcfg2/wiki/PrecompiledPackages#UbuntuLucid

Bcfg2 Documentation, Release 1.2.0

Install bcfg2-server

aptitude install bcfg2-server

Remove the default configuration preseeded by the ubuntu package:

root@lucid:~# rm -rf /etc/bcfg2* /var/lib/bcfg2

Initialize your repository

Now that you’re done with the install, you need to intialize your repository and setup your bcfg2.conf.
bcfg2-admin init is a tool which allows you to automate this process.:

root@lucid:~# bcfg2-admin init
Store bcfg2 configuration in [/etc/bcfg2.conf]:
Location of bcfg2 repository [/var/lib/bcfg2]:
Input password used for communication verification (without echoing; leave blank for a random):
What is the server’s hostname: [lucid]
Input the server location [https://lucid:6789]:
Input base Operating System for clients:
1: Redhat/Fedora/RHEL/RHAS/Centos
2: SUSE/SLES
3: Mandrake
4: Debian
5: Ubuntu
6: Gentoo
7: FreeBSD
: 5
Generating a 1024 bit RSA private key
...+++
...++++++
writing new private key to ’/etc/bcfg2.key’

Signature ok
subject=/C=US/ST=Illinois/L=Argonne/CN=lucid
Getting Private key
Repository created successfuly in /var/lib/bcfg2

Of course, change responses as necessary.

Start the server

You are now ready to start your bcfg2 server for the first time.:

root@lucid:~# /etc/init.d/bcfg2-server start
root@lucid:~# tail /var/log/syslog
Dec 17 22:07:02 lucid bcfg2-server[17523]: serving bcfg2-server at https://lucid:6789
Dec 17 22:07:02 lucid bcfg2-server[17523]: serve_forever() [start]
Dec 17 22:07:02 lucid bcfg2-server[17523]: Processed 16 fam events in 0.502 seconds. 0 coalesced

Run bcfg2 to be sure you are able to communicate with the server:

218 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

root@lucid:~# bcfg2 -vqn
Loaded tool drivers:
APT Action DebInit POSIX

Phase: initial
Correct entries: 0
Incorrect entries: 0
Total managed entries: 0
Unmanaged entries: 382

Phase: final
Correct entries: 0
Incorrect entries: 0
Total managed entries: 0
Unmanaged entries: 382

Bring your first machine under Bcfg2 control

Now it is time to get your first machine’s configuration into your Bcfg2 repository. Let’s start with the server
itself.

Setup the Packages plugin

Replace Pkgmgr with Packages in the plugins line of bcfg2.conf:

root@lucid:~# cat /etc/bcfg2.conf
[server]
repository = /var/lib/bcfg2
plugins = Base,Bundler,Cfg,Metadata,Packages,Rules,SSHbase

[statistics]
sendmailpath = /usr/lib/sendmail
database_engine = sqlite3
’postgresql’, ’mysql’, ’mysql_old’, ’sqlite3’ or ’ado_mssql’.
database_name =
Or path to database file if using sqlite3.
#<repository>/etc/brpt.sqlite is default path if left empty
database_user =
Not used with sqlite3.
database_password =
Not used with sqlite3.
database_host =
Not used with sqlite3.
database_port =
Set to empty string for default. Not used with sqlite3.
web_debug = True

[communication]
protocol = xmlrpc/ssl

11.7. Guides 219

Bcfg2 Documentation, Release 1.2.0

password = secret
certificate = /etc/bcfg2.crt
key = /etc/bcfg2.key
ca = /etc/bcfg2.crt

[components]
bcfg2 = https://lucid:6789

Create Packages layout (as per Example usage) in /var/lib/bcfg2

root@lucid:~# mkdir /var/lib/bcfg2/Packages
root@lucid:~# cat /var/lib/bcfg2/Packages/config.xml
<Sources>

<APTSource>
<Group>ubuntu-lucid</Group>
<URL>http://us.archive.ubuntu.com/ubuntu</URL>
<Version>lucid</Version>
<Component>main</Component>
<Component>multiverse</Component>
<Component>restricted</Component>
<Component>universe</Component>
<Arch>amd64</Arch>
<Arch>i386</Arch>

</APTSource>
</Sources>

Due to the Magic Groups, we need to modify our Metadata. Let’s add an ubuntu-lucid group which inherits
the ubuntu group already present in /var/lib/bcfg2/Metadata/groups.xml. The resulting file
should look something like this

<Groups version=’3.0’>
<Group profile=’true’ public=’true’ default=’true’ name=’basic’>

<Group name=’ubuntu-lucid’/>
</Group>
<Group name=’ubuntu-lucid’>

<Group name=’ubuntu’/>
</Group>
<Group name=’ubuntu’/>
<Group name=’debian’/>
<Group name=’freebsd’/>
<Group name=’gentoo’/>
<Group name=’redhat’/>
<Group name=’suse’/>
<Group name=’mandrake’/>
<Group name=’solaris’/>

</Groups>

Note: When editing your xml files by hand, it is useful to occasionally run bcfg2-repo-validate to ensure
that your xml validates properly.

The last thing we need is for the client to have the proper arch group membership. For this, we will make
use of the server-plugins-grouping-dynamic_groups capabilities of the Probes plugin. Add Probes to your
plugins line in bcfg2.conf and create the Probe.

220 Chapter 11. Appendix

http://trac.mcs.anl.gov/projects/bcfg2/wiki/Plugins/Packages#MagicGroups

Bcfg2 Documentation, Release 1.2.0

root@lucid:~# grep plugins /etc/bcfg2.conf
plugins = Base,Bundler,Cfg,Metadata,Packages,Probes,Rules,SSHbase
root@lucid:~# mkdir /var/lib/bcfg2/Probes
root@lucid:~# cat /var/lib/bcfg2/Probes/groups
#!/bin/sh

ARCH=‘uname -m‘
case "$ARCH" in

"x86_64")
echo "group:amd64"

;;
"i686")

echo "group:i386"
;;

esac

Now we restart the bcfg2-server:

root@lucid:~# /etc/init.d/bcfg2-server restart
Stopping Configuration Management Server: * bcfg2-server
Starting Configuration Management Server: * bcfg2-server
root@lucid:~# tail /var/log/syslog
Dec 17 22:36:47 lucid bcfg2-server[17937]: Packages: File read failed; falling back to file download
Dec 17 22:36:47 lucid bcfg2-server[17937]: Packages: Updating http://us.archive.ubuntu.com/ubuntu//dists/lucid/main/binary-amd64/Packages.gz
Dec 17 22:36:54 lucid bcfg2-server[17937]: Packages: Updating http://us.archive.ubuntu.com/ubuntu//dists/lucid/multiverse/binary-amd64/Packages.gz
Dec 17 22:36:55 lucid bcfg2-server[17937]: Packages: Updating http://us.archive.ubuntu.com/ubuntu//dists/lucid/restricted/binary-amd64/Packages.gz
Dec 17 22:36:56 lucid bcfg2-server[17937]: Packages: Updating http://us.archive.ubuntu.com/ubuntu//dists/lucid/universe/binary-amd64/Packages.gz
Dec 17 22:37:27 lucid bcfg2-server[17937]: Failed to read file probed.xml
Dec 17 22:37:27 lucid bcfg2-server[17937]: Loading experimental plugin(s): Packages
Dec 17 22:37:27 lucid bcfg2-server[17937]: NOTE: Interfaces subject to change
Dec 17 22:37:27 lucid bcfg2-server[17937]: service available at https://lucid:6789
Dec 17 22:37:27 lucid bcfg2-server[17937]: serving bcfg2-server at https://lucid:6789
Dec 17 22:37:27 lucid bcfg2-server[17937]: serve_forever() [start]
Dec 17 22:37:28 lucid bcfg2-server[17937]: Processed 17 fam events in 0.502 seconds. 0 coalesced

Start managing packages

Add a base-packages bundle. Let’s see what happens when we just populate it with the ubuntu-standard
package.

root@lucid:~# cat /var/lib/bcfg2/Bundler/base-packages.xml
<Bundle name=’base-packages’>

<Package name=’ubuntu-standard’/>
</Bundle>

You need to reference the bundle from your Metadata. The resulting profile group might look something
like this

<Group profile=’true’ public=’true’ default=’true’ name=’basic’>
<Bundle name=’base-packages’/>
<Group name=’ubuntu-lucid’/>

</Group>

11.7. Guides 221

Bcfg2 Documentation, Release 1.2.0

Now if we run the client in debug mode (-d), we can see what this has done for us.:

root@lucid:~# bcfg2 -vqdn
Running probe groups
Probe groups has result:
amd64
Loaded tool drivers:
APT Action DebInit POSIX

The following packages are specified in bcfg2:
ubuntu-standard

The following packages are prereqs added by Packages:
adduser debconf hdparm libdevmapper1.02.1 libk5crypto3 libparted1.8-12 libxml2 passwd upstart
apt debianutils info libdns53 libkeyutils1 libpci3 logrotate pciutils usbutils
aptitude dmidecode install-info libelf1 libkrb5-3 libpopt0 lsb-base perl-base wget
at dnsutils iptables libept0 libkrb5support0 libreadline5 lshw popularity-contest zlib1g
base-files dosfstools libacl1 libgcc1 liblwres50 libreadline6 lsof psmisc
base-passwd dpkg libattr1 libgdbm3 libmagic1 libselinux1 ltrace readline-common
bsdmainutils ed libbind9-50 libgeoip1 libmpfr1ldbl libsigc++-2.0-0c2a man-db rsync
bsdutils file libc-bin libgmp3c2 libncurses5 libssl0.9.8 memtest86+ sed
cpio findutils libc6 libgssapi-krb5-2 libncursesw5 libstdc++6 mime-support sensible-utils
cpp ftp libcap2 libisc50 libpam-modules libusb-0.1-4 ncurses-bin strace
cpp-4.4 gcc-4.4-base libcomerr2 libisccc50 libpam-runtime libuuid1 netbase time
cron groff-base libcwidget3 libisccfg50 libpam0g libxapian15 parted tzdata

Phase: initial
Correct entries: 101
Incorrect entries: 0
Total managed entries: 101
Unmanaged entries: 281

Phase: final
Correct entries: 101
Incorrect entries: 0
Total managed entries: 101
Unmanaged entries: 281

As you can see, the Packages plugin has generated the dependencies required for the ubuntu-standard pack-
age for us automatically. The ultimate goal should be to move all the packages from the Unmanaged entries
section to the Managed entries section. So, what exactly are those Unmanaged entries?:

root@lucid:~# bcfg2 -vqen
Running probe groups
Probe groups has result:
amd64
Loaded tool drivers:
APT Action DebInit POSIX

Phase: initial
Correct entries: 101
Incorrect entries: 0
Total managed entries: 101
Unmanaged entries: 281

222 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

Phase: final
Correct entries: 101
Incorrect entries: 0
Total managed entries: 101
Unmanaged entries: 281
Package:apparmor
Package:apparmor-utils
Package:apport
...

Now you can go through these and continue adding the packages you want to your Bundle. Note that
aptitude why is useful when trying to figure out the reason for a package being installed. Also, debor-
phan is helpful for removing leftover dependencies which are no longer needed. After a while, I ended up
with a minimal bundle that looks like this

<Bundle name=’base-packages’>
<Package name=’bash-completion’/>
<Package name=’bcfg2-server’/>
<Package name=’debconf-i18n’/>
<Package name=’deborphan’/>
<Package name=’diffutils’/>
<Package name=’e2fsprogs’/>
<Package name=’fam’/>
<Package name=’grep’/>
<Package name=’grub-pc’/>
<Package name=’gzip’/>
<Package name=’hostname’/>
<Package name=’krb5-config’/>
<Package name=’krb5-user’/>
<Package name=’language-pack-en-base’/>
<Package name=’linux-generic’/>
<Package name=’linux-headers-generic’/>
<Package name=’login’/>
<Package name=’manpages’/>
<Package name=’mlocate’/>
<Package name=’ncurses-base’/>
<Package name=’openssh-server’/>
<Package name=’python-fam’/>
<Package name=’tar’/>
<Package name=’ubuntu-minimal’/>
<Package name=’ubuntu-standard’/>
<Package name=’vim’/>
<Package name=’vim-runtime’/>

<!-- PreDepends -->
<Package name=’dash’/>
<Package name=’initscripts’/>
<Package name=’libdbus-1-3’/>
<Package name=’libnih-dbus1’/>
<Package name=’lzma’/>
<Package name=’mountall’/>
<Package name=’sysvinit-utils’/>
<Package name=’sysv-rc’/>

11.7. Guides 223

Bcfg2 Documentation, Release 1.2.0

<!-- vim dependencies -->
<Package name=’libgpm2’/>
<Package name=’libpython2.6’/>

</Bundle>

As you can see below, I no longer have any unmanaged packages.

root@lucid:~# bcfg2 -vqen
Running probe groups
Probe groups has result:
amd64
Loaded tool drivers:
APT Action DebInit POSIX

Phase: initial
Correct entries: 247
Incorrect entries: 0
Total managed entries: 247
Unmanaged entries: 10

Phase: final
Correct entries: 247
Incorrect entries: 0
Total managed entries: 247
Unmanaged entries: 10
Service:bcfg2 Service:fam Service:killprocs Service:rc.local Service:single
Service:bcfg2-server Service:grub-common Service:ondemand Service:rsync Service:ssh

Manage services

Now let’s clear up the unmanaged service entries by adding the following entries to our bundle...

<!-- basic services -->
<Service name=’bcfg2’/>
<Service name=’bcfg2-server’/>
<Service name=’fam’/>
<Service name=’grub-common’/>
<Service name=’killprocs’/>
<Service name=’ondemand’/>
<Service name=’rc.local’/>
<Service name=’rsync’/>
<Service name=’single’/>
<Service name=’ssh’/>

...and bind them in Rules

root@lucid:~# cat /var/lib/bcfg2/Rules/services.xml
<Rules priority=’1’>

<!-- basic services -->
<Service type=’deb’ status=’on’ name=’bcfg2’/>
<Service type=’deb’ status=’on’ name=’bcfg2-server’/>

224 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

<Service type=’deb’ status=’on’ name=’fam’/>
<Service type=’deb’ status=’on’ name=’grub-common’/>
<Service type=’deb’ status=’on’ name=’killprocs’/>
<Service type=’deb’ status=’on’ name=’ondemand’/>
<Service type=’deb’ status=’on’ name=’rc.local’/>
<Service type=’deb’ status=’on’ name=’rsync’/>
<Service type=’deb’ status=’on’ name=’single’/>
<Service type=’deb’ status=’on’ name=’ssh’/>

</Rules>

Now we run the client and see there are no more unmanaged entries!

root@lucid:~# bcfg2 -vqn
Running probe groups
Probe groups has result:
amd64
Loaded tool drivers:
APT Action DebInit POSIX

Phase: initial
Correct entries: 257
Incorrect entries: 0
Total managed entries: 257
Unmanaged entries: 0

All entries correct.

Phase: final
Correct entries: 257
Incorrect entries: 0
Total managed entries: 257
Unmanaged entries: 0

All entries correct.

Dynamic (web) reports

See installation instructions at server-reports-install

11.7.8 Using bcfg2-info

bcfg2-info is a tool for introspecting server functions. It is useful for understanding how the server is
interpreting your repository. It consists of the same logic executed by the server to process the repository
and produce configuration specifications, just without all of the network communication code. Think of
bcfg2-info as bcfg2-server on a stick. It is a useful location to do testing and staging of new con-
figuration rules, prior to deployment. This is particularly useful when developing templates, or developing
Bcfg2 plugins.

11.7. Guides 225

Bcfg2 Documentation, Release 1.2.0

Getting Started

First, fire up the bcfg2-info interpreter.

[0:464] bcfg2-info
Loading experimental plugin(s): Packages
NOTE: Interfaces subject to change
Handled 8 events in 0.006s
Handled 4 events in 0.035s
Welcome to bcfg2-info
Type "help" for more information
>

At this point, the server core has been loaded up, all plugins have been loaded, and the bcfg2-info
has both read the initial state of the Bcfg2 repository, as well as begun monitoring it for changes. Like
bcfg2-server, bcfg2-info monitors the repository for changes, however, unlike bcfg2-server, it does not
process change events automatically. File modification events can be processed by explicitly calling the
update command. This will process the events, displaying the number of events processed and the amount
of time taken by this processing. If no events are available, no message will be displayed. For example, after
a change to a file in the repository:

>update
Handled 1 events in 0.001s
> update
>

This explicit update process allows you to control the update process, as well as see the precise changes
caused by repository modifications.

bcfg2-info has several builtin commands that display the state of various internal server core state.
These are most useful for examining the state of client metadata, either for a single client, or for clients
overall.

clients displays a list of clients, along with their profile groups

groups displays a list of groups, the inheritance hierarchy, profile status, and category name, if there is one.

showclient displays full metadata information for a client, including profile group, group memberships,
bundle list, and any connector data, like Probe values or Property info.

Debugging Configuration Rules

In addition to the commands listed above for viewing client metadata, there are also commands which can
shed light on the configuration generation process. Recall that configuration generation occurs in three
major steps:

1. Resolve client metadata

2. Build list of entries for the configuration

3. Bind host-specific version of each entry

Step 1 can be viewed with the commands presented in the previous section. The latter two steps can be
examined using the following commands.

226 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

showentries displays a list of entries (optionally filtered by type) that appear in a client’s configuration
specification

buildfile Perform the entry binding process on a single entry, displaying its results. This command is very
useful when developing configuration file templates.

build Build the full configuration specification and write it to a file.

mappings displays the entries handled by the plugins loaded by the server core. This command is useful
when the server reports a bind failure for an entry.

Debugging and Developing Bcfg2

bcfg2-info loads a full Bcfg2 server core, so it provides the ideal environment for developing and
debugging Bcfg2. Because it is hard to automate this sort of process, we have only implemented two
commands in bcfg2-info to aid in the process.

profile The profile command produces python profiling information for other bcfg2-info commands.
This can be used to track performance problems in configuration generation.

debug The debug command exits the bcfg2-info interpreter loop and drops to a python interpreter
prompt. The Bcfg2 server core is available in this namespace as “self”. Full documentation for the
server core is out of scope for this document. This capability is most useful to call into plugin methods,
often with setup calls or the enabling of diagnostics.

It is possible to return to the bcfg2-info command loop by exiting the python interpreter with ^D.

There is built-in support for IPython in bcfg2-info. If IPython is installed, dropping into debug
mode in bcfg2-info will use the IPython interpreter by default.

11.7.9 Using Bcfg2 With CentOS

This section covers specific topics for using Bcfg2 with CentOS. Most likely the tips on this page also apply
to other members of the Red Hat family of Linux operating systems.

From Source

Install Prerequisities

While you can go about building all these things from source, this how to will try and meet the dependencies
using packages from EPEL or RPMforge. The el5 package should be compatible with CentOS 5.x.

EPEL:

[root@centos ~]# rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/epel-release-5-3.noarch.rpm

RPMforge:

[root@centos ~]# rpm -Uvh http://dag.wieers.com/rpm/packages/rpmforge-release/rpmforge-release-0.3.6-1.el5.rf.x86_64.rpm

11.7. Guides 227

http://fedoraproject.org/wiki/EPEL
https://rpmrepo.org/RPMforge
http://fedoraproject.org/wiki/EPEL
https://rpmrepo.org/RPMforge

Bcfg2 Documentation, Release 1.2.0

Note: Be careful with mixing package repositories.

Now you can install the rest of the prerequisites:

[root@centos ~]# yum install python-genshi python-cheetah python-lxml

Build Packages from source

• After installing subversion, check out a copy of trunk

[root@centos redhat]# svn co https://svn.mcs.anl.gov/repos/bcfg/trunk/bcfg2

• Install the fedora-packager package

[root@centos ~]# yum install fedora-packager

• A directory structure for the RPM build process has to be established.

[you@centos ~]$ rpmdev-setuptree

• Change to the redhat directory of the checked out Bcfg2 source:

[you@centos ~]$ cd bcfg2/redhat/

• In the particular directory is a Makefile which will do the job of building the RPM packages. You can
do this as root, but it’s not recommanded:

[you@centos redhat]$ make

• Now the new RPM package can be installed. Please adjust the path to your RPM package:

[root@centos ~]# rpm -ihv /home/YOU/rpmbuild/RPMS/noarch/bcfg2-server-1.0.0-0.2r5835.noarch.rpm

Install Packages from Package repository

To install the bcfg2-server and bcfg2 from a package repository, just use Yum to do it:

[root@centos ~]# yum install bcfg2-server bcfg2

11.7.10 Version control systems

The sections in this guide do only cover the basics steps in the setup of the different version control system
for the usage with the Bcfg2 plugin support. More more details about

Git

Adding the Git plugins can preserve versioning information. The first step is to add Git to your plugin line:

228 Chapter 11. Appendix

http://fedoraproject.org/wiki/EPEL/FAQ#What_about_compatibility_with_other_third_party_repositories.3F

Bcfg2 Documentation, Release 1.2.0

plugins = Base,Bundler,Cfg,...,Git

For tracking the configuration files in the /var/lib/bcfg2 directory a git repository need to be estab-
lished:

git init

For more detail about the setup of git please refer to a git tutorial. The first commit can be the empty or the
already populated directory:

git add . && git commit -a

While running bcfg2-info the following line will show up:

Initialized git plugin with git directory = /var/lib/bcfg2/.git

Mercurial

For the Mercurial (Hg) plugin are the same changes needed as for git.

plugins = Base,Bundler,Cfg,...,Mercurial

The repository must be initialized:

hg init

Mercurial will not commit the files to the repository until a user name is defined in
/var/lib/bcfg2/.hg/

cat <<END_ENTRY >> /var/lib/bcfg2/.hg/hgrc
[ui]
username = Yor name <you@example.com>
END_ENTRY

Now you are able to make submissions to the repository:

hg commit

While running bcfg2-info the following line will show up:

Initialized hg plugin with hg directory = /var/lib/bcfg2/.hg

Darcs

If you wish to use the Darcs plugin an entry has to be made in the bcfg2.conf file.:

plugins = Base,Bundler,Cfg,...,Darcs

The dracs repository must be initialized:

11.7. Guides 229

http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html

Bcfg2 Documentation, Release 1.2.0

darcs initialize

To commit to the darcs repository an author must be added to the _darcs/prefs/author file. If the
author file is missing, darcs will ask you to enter your e-mail address.

cat <<END_ENTRY >> /var/lib/bcfg2/_darcs/prefs/author
you@example.com
END_ENTRY

All files in the /var/lib/bcfg2 should be added to darcs now:

darcs add *

After that you can submit them to the repository:

darcs record

While running bcfg2-info the following line will show up:

Initialized Darcs plugin with darcs directory = /var/lib/bcfg2/_darcs

Cvs

If you wish to use the Darcs plugin an entry has to be made in the bcfg2.conf file.:

plugins = Base,Bundler,Cfg,...,Cvs

The CVS repository must be initialized:

cvs -d /var/lib/bcfg2 init

11.7.11 Dynamic (web) Reports installation

The first step is to install the needed software components like the Django framework and the database
(SQlite2). All packages for Fedora are in the Fedora Package Collection or in EPEL for CentOS/RHEL:

[root@system01 ~]# yum -y install Django python-simplejson python-sqlite2

Of course is a web server needed as well:

[root@system01 ~]# yum -y install httpd mod_python

The same packages are needed for Ubuntu systems:

[root@system01 ~]# aptitude install python-django apache2 libapache2-mod-python

Now we need to create the sqlite database. Use the following command on Fedora, CentOS, or RHEL.:

[root@system01 ~]# python /usr/lib/python2.4/site-packages/Bcfg2/Server/Reports/manage.py syncdb
Creating table auth_permission
Creating table auth_group
Creating table auth_user

230 Chapter 11. Appendix

http://fedoraproject.org/wiki/EPEL

Bcfg2 Documentation, Release 1.2.0

Creating table auth_message
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table django_admin_log
Creating table reports_client
Creating table reports_ping
Creating table reports_interaction
Creating table reports_reason
Creating table reports_entries
Creating table reports_entries_interactions
Creating table reports_performance
Creating table reports_internaldatabaseversion

You just installed Django’s auth system, which means you don’t have any superusers defined.
Would you like to create one now? (yes/no): no
Installing index for auth.Permission model
Installing index for auth.Message model
Installing index for admin.LogEntry model
Installing index for reports.Client model
Installing index for reports.Ping model
Installing index for reports.Interaction model
Installing index for reports.Entries model
Installing index for reports.Entries_interactions model

Note: There are different versions of Python available. If you are unsure about your installed version use
the following line instead of the line above.:

[root@system01 ~]# PYVER=‘python -c ’import sys;print(sys.version[0:3])’‘; python /usr/lib/python$PYVER/site-packages/Bcfg2/site-packages/Bcfg2/Server/Reports/manage.py syncdb

The path on Ubuntu systems is different. Please use the same path as shown in the following command to
execute the script on an Ubuntu machine in the next steps:

[root@system01 ~]# python /usr/share/pyshared/Bcfg2/Server/Reports/manage.py syncdb
Creating table auth_permission
Creating table auth_group
Creating table auth_user
Creating table auth_message
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table django_admin_log
Creating table reports_client
Creating table reports_ping
Creating table reports_interaction
Creating table reports_reason
Creating table reports_entries
Creating table reports_entries_interactions
Creating table reports_performance
Creating table reports_internaldatabaseversion

You just installed Django’s auth system, which means you don’t have any superusers defined.
Would you like to create one now? (yes/no): no

11.7. Guides 231

Bcfg2 Documentation, Release 1.2.0

Installing index for auth.Permission model
Installing index for auth.Message model
Installing index for admin.LogEntry model
Installing index for reports.Client model
Installing index for reports.Ping model
Installing index for reports.Interaction model
Installing index for reports.Entries model
Installing index for reports.Entries_interactions model

The server should be tested to make sure that there are no mistakes:

[root@system01 ~]# python /usr/lib/python2.6/site-packages/Bcfg2/Server/Reports/manage.py testserver
Creating test database...
Creating table auth_permission
Creating table auth_group
Creating table auth_user
Creating table auth_message
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table django_admin_log
Creating table reports_client
Creating table reports_ping
Creating table reports_interaction
Creating table reports_reason
Creating table reports_entries
Creating table reports_entries_interactions
Creating table reports_performance
Creating table reports_internaldatabaseversion
Installing index for auth.Permission model
Installing index for auth.Message model
Installing index for admin.LogEntry model
Installing index for reports.Client model
Installing index for reports.Ping model
Installing index for reports.Interaction model
Installing index for reports.Entries model
Installing index for reports.Entries_interactions model
Validating models...
0 errors found

Django version 1.1.1, using settings ’Reports.settings’
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Add DBStats to the plugins line of bcfg2.conf. The resulting [server] section should look something
like this:

[server]
repository = /var/lib/bcfg2
plugins = Base,Bundler,Cfg,DBStats,Metadata,Packages,Probes,Rules,SSHbase

Start/restart the Bcfg2 server:

232 Chapter 11. Appendix

Bcfg2 Documentation, Release 1.2.0

[root@system01 ~]# /etc/init.d/bcfg2-server restart

Run the Bcfg2 client in order to populate the statistics database (this run should take a bit longer since you
are uploading the client statistics to the database).

Download the static reports content:

[root@system01 ~]# cd /var/www/
[root@system01 ~]# svn co https://svn.mcs.anl.gov/repos/bcfg/trunk/bcfg2/reports

Configure Apache using Apache configuration for web-based reports as a guide

Copy server/statistics sections of bcfg2.conf to /etc/bcfg2-web.conf (make sure it is world-
readable). You should then have something like this:

[server]
repository = /var/lib/bcfg2
plugins = Base,Bundler,Cfg,DBStats,Metadata,Packages,Probes,Rules,SSHbase

[statistics]
sendmailpath = /usr/lib/sendmail
database_engine = sqlite3
’postgresql’, ’mysql’, ’mysql_old’, ’sqlite3’ or ’ado_mssql’.
database_name =
Or path to database file if using sqlite3.
#<repository>/etc/brpt.sqlite is default path if left empty
database_user =
Not used with sqlite3.
database_password =
Not used with sqlite3.
database_host =
Not used with sqlite3.
database_port =
Set to empty string for default. Not used with sqlite3.
web_debug = True

Restart apache and point a browser to your Bcfg2 server.

If using sqlite be sure the sql database file and directory containing the database are writable to apache.

11.8 Tools

In the tools/ directory are several tools collected. Those tools can help you to maintain your Bcfg2
configuration, to make the initial setup easier, or to do some other tasks.

http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/bcfg2/tools

11.8. Tools 233

http://trac.mcs.anl.gov/projects/bcfg2/browser/trunk/bcfg2/tools

Bcfg2 Documentation, Release 1.2.0

234 Chapter 11. Appendix

CHAPTER

TWELVE

UNSORTED DOCS

These docs have yet to be sorted properly. The content for them can be found at the TitleIndex page on Trac.
Most should be converted to sphinx. Some may not need any conversion (e.g. The Download page). Once
converted and put in the proper place, you can remove the item from the list below.

• Plugins/Snapshots

• PrecompiledPackages

• Publications

• QuickStart2

• QuickStart3

• SchemaEvolution

• SecurityDevPlan

• ServerSideOverview

• UpgradeTesting

• VimSnippetSupport

12.1 Ways to get help

12.1.1 Interactive Help

• [wiki:IRCChannel IRC Channel, with indexed archives]

• [wiki:MailingList Mailing list, with indexed archives]

Note that the IRC channel tends to be much busier than the mailing list; use whichever seems most appro-
priate for your query, but don’t let the lack of mailing list activity make you think the project isn’t active.

12.1.2 Frequently Asked Questions

• [wiki:FAQ The FAQ]

235

https://trac.mcs.anl.gov/projects/bcfg2/wiki/TitleIndex

Bcfg2 Documentation, Release 1.2.0

12.1.3 Examples

• There are examples sprinkled throughout this wiki; we should link to them from here.

• The [http://www.fsf.org Free Software Foundation] is (very slowly) working towards having con-
figurations for the majority of the machines it administers available via [http://config.fsf.org con-
fig.fsf.org]. This is a tie-in with the [http://autonomo.us/2008/07/franklin-street-statement/ Franklin
Street Statement on Freedom and Network Services] (FSF offices are on Franklin Street). Documen-
tation on how to have a public access Bcfg2 configuration repository will be at PublicRepository.

12.1.4 Manuals

• The current canonical source of documentation are pages on this wiki ([wiki:UsingBcfg2]). Please
mail the MailingList for editor access to this wiki.

• There is a printed manual in the SAGE short topics series, ”!#19: Configuration Management with
Bcfg2”, that you can [https://db.usenix.org/cgi-bin/sage/booklets/order.cgi order] for $20 (or get for
free if you are a [http://www.sage.org/index.html SAGE] member and haven’t gotten a booklet yet
during your current membership year). The book includes documentation up to and including most
features in Bcfg2 0.9.6. Note that all proceeds from the sale of this book go to SAGE.

12.1.5 FLOSS Manual Project

A project is getting started to make a user-contributed manual using the [http://en.flossmanuals.net/ FLOSS
Manuals] web site and tools. The intention is for this manual to be based on but not a verbatim copy of the
information on the wiki, formatted in a way that is easier for new users to read, and written mostly by users
of Bcfg2, rather than the authors of Bcfg2. This manual will also be free (as in freedom and price).

One important point is that new contributors can get edit access to the manual in about a minute, and the
manual is edited via WYSIWYG tools, so there should be pretty much no barrier for new manual authors to
get started.

There will be an announcement to the mailing list about this soon.

If you are seriously interested in dedicating time to this manual, it would make sense to
read the [http://en.flossmanuals.net/FLOSSManuals FLOSS Manuals Manual] (free online) and the
[https://db.usenix.org/cgi-bin/sage/booklets/order.cgi Configuration Management with Bcfg2] manual
($20). If you are willing to commit time to manual writing, would like physical copies of these manu-
als, and purchasing them would be a financial hardship for you, email [http://pobox.com/~dclark Danny
Clark] at dclark@pobox.com (ping djbclark on [wiki:IRCChannel #bcfg2 irc] if you don’t get a reply) with
your postal address (don’t be shy, I already bought a bunch of these, and they aren’t doing much good sitting
on my shelf :-).

You can get to the Bcfg2 FLOSS Manual at http://docs.bcfg2.org (which just redirects to
http://en.flossmanuals.net/bin/view/BCFG2).

236 Chapter 12. Unsorted Docs

http://www.fsf.org
http://config.fsf.org
http://autonomo.us/2008/07/franklin-street-statement/
https://db.usenix.org/cgi-bin/sage/booklets/order.cgi
http://www.sage.org/index.html
http://en.flossmanuals.net/
http://en.flossmanuals.net/FLOSSManuals
https://db.usenix.org/cgi-bin/sage/booklets/order.cgi
http://pobox.com/~dclark
mailto:dclark@pobox.com
http://docs.bcfg2.org
http://en.flossmanuals.net/bin/view/BCFG2

Bcfg2 Documentation, Release 1.2.0

12.2 HOWTOs

Here are several howtos that describe different aspects of Bcfg2 deployment

• authentication - a description of the Bcfg2 authentication infrastructure

• AnnotatedExamples - a description of basic Bcfg2 specification operations

• BuildingDebianPackages - How to build debian packages

• unsorted-gentoo - Issues specific to running Bcfg2 on Gentoo

• TCheetah - Howto use the TCheetah template plugin

• Hostbase - How to use the Hostbase plugin and web interface

• Probes - How to use Probes to gather information from a client machine.

• Actions - How to use Actions

• unsorted-dynamic_groups - Using dynamic groups

• Paranoid mode - How to run an update in paranoid mode

12.3 Python SSL

The ssl module can be found here.

With this change, SSL certificate based client authentication is supported. In order to use this, based CA-
type capabilities are required. A central CA needs to be created, with each server and all clients getting a
signed cert. See [wiki:Authentication] for details.

Setting up keys is accomplished with three settings, each in the “[communication]” section of
bcfg2.conf:

key = /path/to/ssl private key
certificate = /path/to/signed cert for that key
ca = /path/to/cacert.pem

12.3.1 Python SSL Backport Packaging

Both the Bcfg2 server and client are able to use the in-tree ssl module included with python 2.6. The client
is also able to still use M2Crypto. A python ssl backport exists for 2.3, 2.4, and 2.5. With this, M2Crypto is
not needed, and tlslite is no longer included with Bcfg2 sources. See [wiki:Authentication] for details.

To build a package of the ssl backport for .deb based distributions that don’t ship with python 2.6, you can
follow these instructions, which use stdeb. Alternatively if you happen to have .deb packaging skills, it
would be great to get policy-complaint .debs into the major deb-based distributions.

The following commands were used to generate this debian package The easy_install command can
be found in the python-setuptools package.:

12.2. HOWTOs 237

http://pypi.python.org/pypi/ssl
http://github.com/astraw/stdeb/tree/master

Bcfg2 Documentation, Release 1.2.0

sudo aptitude install python-all-dev fakeroot
sudo easy_install stdeb
wget http://pypi.python.org/packages/source/s/ssl/ssl-1.14.tar.gz#md5=4e08aae0cd2c7388d1b4bbb7f374b14a
tar xvfz ssl-1.14.tar.gz
cd ssl-1.14
stdeb_run_setup
cd deb_dist/ssl-1.14
dpkg-buildpackage -rfakeroot -uc -us
sudo dpkg -i ../python-ssl_1.14-1_amd64.deb

Note: Version numbers for the SSL module have changed.

For complete Bcfg2 goodness, you’ll also want to package stdeb using stdeb. The completed debian package
can be grabbed from here, which was generated using the following:

sudo aptitude install apt-file
wget http://pypi.python.org/packages/source/s/stdeb/stdeb-0.3.tar.gz#md5=e692f745597dcdd9343ce133e3b910d0
tar xvfz stdeb-0.3.tar.gz
cd stdeb-0.3
stdeb_run_setup
cd deb_dist/stdeb-0.3
dpkg-buildpackage -rfakeroot -uc -us
sudo dpkg -i ../python-stdeb_0.3-1_all.deb

12.4 Notes on possible Windows support

• Windows Management Instrumentation (WMI) should be used wherever possible; there is an excellent
[http://tgolden.sc.sabren.com/python/wmi.html WMI Python Module] available, which also comes
with a [http://tgolden.sc.sabren.com/python/wmi_cookbook.html WMI Cookbook].

• Before Windows 2003 SP1, on 64-bit machines there are [http://msdn2.microsoft.com/en-
us/library/aa393067.aspx no API or WMI calls] to get to many 32-bit windows functions (such as
the 32-bit registry) from 64-bit programs, and vice versa. There also is no (official) x86_64 native
python distributions for Windows pre-Python 2.5. So the choice would be:

1. Only support Windows in Python 2.5+ (which wouldn’t be that bad because part of the build process
would probably be to create stand-alone bcfg2 executables using [http://www.py2exe.org/ py2exe]).
For 64-bit support there would have to be some kind of convoluted py2exe build process that built
some things with 32-bit python and some things with 64-bit python.

2. Wrap external command-line programs such as winreg, which is part of
[http://dmst.aueb.gr/dds/sw/outwit/ outwit], and screen scrape. Each external command-line
program would need to be compiled into 32 and 64 bit versions. This approach might lead to
licensing annoyances and having binary blobs in source control.

12.4.1 Services

With the exception of 32/64 bit issues, Windows Services support should be pretty trivial; it would differ
from *nix services in that it would be done via WMI API calls and not a 3rd party python module or

238 Chapter 12. Unsorted Docs

http://tgolden.sc.sabren.com/python/wmi.html
http://tgolden.sc.sabren.com/python/wmi_cookbook.html
http://msdn2.microsoft.com/en-us/library/aa393067.aspx
http://msdn2.microsoft.com/en-us/library/aa393067.aspx
http://www.py2exe.org/
http://dmst.aueb.gr/dds/sw/outwit/

Bcfg2 Documentation, Release 1.2.0

wrapping a binary.

12.4.2 Registry

The best way of handling the registry may be to map it into a file-based representation on the server end.
The Cfg and TCheetah plugins could then be used to set registry values as needed.

12.4.3 Files

For a first run there may be some way of utilizing [http://cygwin.com/ cygwin] to make use of the existing
*nix POSIX module for manipulating files. There would probably need to be some changes to deal with the
fact that open files can’t be manipulated/moved/deleted at all in Windows (other than to do some registry
magic that makes the changes on the next reboot).

12.4.4 Packages

Listing and removal of packages should be pretty easy via WMI. For installation in most cases the admin
would need to figure out the correct silent install flags (there is a [http://www.appdeploy.com/ web site]
that catalogs a lot of this information), and include that in the bcfg2 server-side XML along with a URL
(like with the RPM plugin); the bcfg2 client itself would need to take care of download, perhaps via the
[http://linux.duke.edu/projects/urlgrabber/ urlgrabber python module].

Another option would be to utilize one of the existing FLOSS tools for dealing with Windows packages,
such as [http://wpkg.org/ WPKG].

12.4.5 Prior FLOSS Art

• [http://www.autoitscript.com/autoit3/ AutoIt] - For dealing with packages that don’t have a silent in-
stall option

• [http://www.opensysadmin.com/trac/ticket/4 French Stuff]

• [http://ocsinventory.sourceforge.net/ Open Computers and Software Inventory - Next Generation]

• [http://www.glpi-project.org/spip.php?lang=en GLPI - Gestionnaire libre de parc informatique]

• Javascript thing a colleague of Desai’s at ANL wrote - Desai was going to see if this can be released

• [http://sial.org/howto/cfengine/windows/ Managing Windows with CFEngine and Perl]

• [http://www.dmst.aueb.gr/dds/sw/outwit/ Outwit] - Small unixy utilities for Windows stuff like the
registry and clipboard

• [http://www.cfengine.org/docs/cfengine-NT/ Porting cfengine to Windows NT]

• [http://isg.ee.ethz.ch/tools/realmen/ Real Men Don’t Click] - Tobi Oetiker’s stuff

• [http://isg.ee.ethz.ch/tools/realmen/res/index.en.html More Prior FLOSS Art]

• [http://unattended.sourceforge.net/ Unattended] - Bare Metal Installs, Package Management

12.4. Notes on possible Windows support 239

http://cygwin.com/
http://www.appdeploy.com/
http://linux.duke.edu/projects/urlgrabber/
http://wpkg.org/
http://www.autoitscript.com/autoit3/
http://www.opensysadmin.com/trac/ticket/4
http://ocsinventory.sourceforge.net/
http://www.glpi-project.org/spip.php?lang=en
http://sial.org/howto/cfengine/windows/
http://www.dmst.aueb.gr/dds/sw/outwit/
http://www.cfengine.org/docs/cfengine-NT/
http://isg.ee.ethz.ch/tools/realmen/
http://isg.ee.ethz.ch/tools/realmen/res/index.en.html
http://unattended.sourceforge.net/

Bcfg2 Documentation, Release 1.2.0

• [http://wpkg.org/ WPKG] - Package Management

12.5 Writing Bcfg2 Specification

Bcfg2 specifications are logically divided in to three areas:

• Metadata

• Abstract

• Literal

The metadata portion of the configuration assigns a client to its profile group and to its non-profile groups.
The profile group is assigned in Metadata/clients.xml and the non profile group assignments are in Meta-
data/groups.xml.

The group memberships contained in the metadata are then used to constuct an abstract configuration for
the client. An abstract configuration for a client identifies the configuration entities (packages, configuration
files, service, etc) that a client requires, but it does not identify them explicitly. For instance an abstract
configuration may identify that a client needs the Bcfg2 package with

<Package name=bcfg2/>

but this does not explicitly identify that an RPM package version 0.9.2 should be loaded from
http://rpm.repo.server/bcfg2-0.9.2-0.1.rpm. The abstract configuration is defined in the xml configuration
files for the Base and Bundles plugins.

A combination of a clients metadata (group memberships) and abstract configuration is then used to generate
the clients literal configuration. For instance the above abstract configuration entry may generate a literal
configuration of

<Package name=’bcfg2’ version=’0.9.2-0.1’ type=’yum’/>

A clients literal configuration is generated by a number of plugins that handle the different configuration
entities.

240 Chapter 12. Unsorted Docs

http://wpkg.org/
http://rpm.repo.server/bcfg2-0.9.2-0.1.rpm

Bcfg2 Documentation, Release 1.2.0

12.5.1 Dynamic Groups

Dynamic groups are likewise complex, and are covered on their own [wiki:DynamicGroups page]

12.5.2 Abstract Configuration (Structures)

A clients Abstract Configuration is the inventory of configuration entities that should be installed on a client.
Two plugins provide the basis for the abstract configuration, the Bundler and Base.

12.5. Writing Bcfg2 Specification 241

Bcfg2 Documentation, Release 1.2.0

The plugin Bundler builds descriptions of interrelated configuration entities. These are typically used for
the representation of services, or other complex groups of entities.

The Base provides a laundry list of configuration entities that need to be installed on hosts. These entities
are independent from one another, and can be installed individually without worrying about the impact on
other entities.

Usage of Groups in Base and Bundles

Groups are used by the Base and Bundles plugins for selecting Configuration Entity Types for inclusion in
a clients abstract configuration. They can be thought of as:

if client is a member of group1 then
assign to abstract config

Nested groups are conjunctive (logical and).:

if client is a member of group1 and group2 then
assign to abstract config

Group membership maybe negated. See “Writing Bundles” for an example.

Configuration Entity Types

Entities in the abstract configuration (and correspondingly in the literal configuration) can have one of sev-
eral types. In the abstract configuration, each of these entities only has a tag and the name attribute set.

The types of Configuration Entities that maybe assigned to the abstract configuration can be seen at Config-
uration Entries.

An example of each entity type is below.

<Package name=’bcfg2’/>
<Path name=’/etc/bcfg2.conf’/>
<Service name=’ntpd’/>
<Action name=’action_name’/>

Writing Bundles

Bundles consist of a set of configuration entities. These entities are grouped together due to a configuration-
time interdependency. Basic services tend to be the simplest example of these. They normally consist of

• some software package(s)

• some configuration files

• an indication that some service should be activated

If any of these pieces are installed or updated, all should be rechecked and any associated services should
be restarted.

242 Chapter 12. Unsorted Docs

Bcfg2 Documentation, Release 1.2.0

All files in the Bundles/ subdirectory of the repository are processed. Each bundle must be defined in its
own file and the filename must be the same as the bundle name with a .xml suffix.:

ls Bundler
Glide3.xml
LPRng.xml
Tivoli-backup.xml
Tivoli.xml
a2ps.xml
abiword.xml
account.xml
adsm-client.xml
amihappy.xml
apache-basic.xml
apache.xml
apache2-basic.xml
apt-proxy.xml
at.xml
atftp-server.xml
atftp.xml
....

Groups can be used inside of bundles to differentiate which entries particular clients will receive. This is
useful for the case where entries are named differently across systems; for example, one linux distro may
have a package called openssh while another uses the name ssh. Configuration entries nested inside of
Group elements only apply to clients who are a member of those groups; multiply nested groups must all
apply.

Also, groups may be negated; entries included in such groups will only apply to clients who are not a
member of said group.

When packages in a bundle are verified by the client toolset, the Paths included in the same bundle are
taken into consideration. That is, a package will not fail verification from a Bcfg2 perspective if the package
verification only failed because of configuration files that are defined in the same bundle.

The following is an annotated copy of a bundle:

<Bundle revision=’$Revision: 2668 $’ name=’ssh’ version=’2.0’
origin=’https://svn.mcs.anl.gov/repos/bcfg/trunk/repository/Bundler/ssh.xml’>

<Path name=’/etc/ssh/ssh_host_dsa_key’/>
<Path name=’/etc/ssh/ssh_host_rsa_key’/>
<Path name=’/etc/ssh/ssh_host_dsa_key.pub’/>
<Path name=’/etc/ssh/ssh_host_rsa_key.pub’/>
<Path name=’/etc/ssh/ssh_host_key’/>
<Path name=’/etc/ssh/ssh_host_key.pub’/>
<Path name=’/etc/ssh/sshd_config’/>
<Path name=’/etc/ssh/ssh_config’/>
<Path name=’/etc/ssh/ssh_known_hosts’/>
<Group name=’rpm’>

<Package name=’openssh’/>
<Package name=’openssh-askpass’/>
<Service name=’sshd’/>
<Group name=’fedora’ >

<Group name=’fc4’ negate=’true’>

12.5. Writing Bcfg2 Specification 243

Bcfg2 Documentation, Release 1.2.0

<Package name=’openssh-clients’/>
</Group>
<Package name=’openssh-server’/>

</Group>
</Group>
<Group name=’deb’>

<Package name=’ssh’/>
<Service name=’ssh’/>

</Group>
</Bundle>

In this bundle, most of the entries are common to all systems. Clients in group “deb” get one extra package
and service, while clients in group “rpm” get two extra packages and an extra service. In addition, clients
in group “fedora” and group “rpm” get one extra package entries, unless they are not in the fc4 group, in
which case, they get an extra package. Notice that this file doesn’t describe which versions of these entries
that clients should get, only that they should get them. (Admittedly, this example is slightly contrived, but
demonstrates how group entries can be used in bundles)

|| ‘’ ‘’‘Group ‘” ‘’ || ‘’ ‘’‘Entry ‘” ‘’ || || all || /etc/ssh/ssh_host_dsa_key || || all || /etc/ssh/ssh_host_rsa_key || ||
all || /etc/ssh/ssh_host_dsa_key.pub || || all || /etc/ssh/ssh_host_rsa_key.pub || || all || /etc/ssh/ssh_host_key
|| || all || /etc/ssh/ssh_host_key.pub || || all || /etc/ssh/sshd_config || || all || /etc/ssh/ssh_config || || all ||
/etc/ssh/ssh_known_hosts || || rpm || Package openssh || || rpm || Package openssh-askpass || || rpm || Service
sshd || || rpm and fedora || Package openssh-server || || rpm and fedora and not fc4 || Package openssh-clients
|| || deb || Package ssh || || deb || Service ssh ||

Bundle Tag

The Bundle Tag has the following possible attributes:

|| ‘’ ‘’‘Name’‘’ ‘’ || ‘’ ‘’‘Description’‘’ ‘’ || ‘’ ‘’‘Values’‘’ ‘’ || || name || The name of the bundle || String || ||
version || Bundle schema version || String || || origin || URL of master version (for common repo) || String || ||
revision || Master version control revision || String ||

As mentioned above the Configuration Entity Tags may only have the name attribute in Bundle definitions.

Abstract Group Tag

In the Abstract Configuration plugins (Base and Bundle) the Group Tag may have the following attributes:

|| ‘’ ‘’‘Name’‘’ ‘’ || ‘’ ‘’‘Description’‘’ ‘’ || ‘’ ‘’‘Values’‘’ ‘’ || || name || Name of group. || String || || negate ||
Negate the group association (is not a member of) || (True|False*) ||

An abstract group may contain any of the Configuration Entity types and other groups.

Using Base

The Base plugin provides a mechanism to add independent configuration entities to a client’s abstract con-
figuration. All files in the Base/ subdirectory of the repository are processed, and all entries that fall within

244 Chapter 12. Unsorted Docs

Bcfg2 Documentation, Release 1.2.0

the scope of the client metadata are included in its abstract configuration.:

$ ls Base/
centos-4-x86.xml
fedora-core-4-x86.xml
rhel-as-4-x86.xml
rhel-es-4-x86.xml
rhel-ws-4-x86_64.xml
rhel-ws-4-x86.xml

<Base>
<Group name=’Centos4.4-Standard’>

<Package name=’audit’/>
<Package name=’audit-libs’/>
<Package name=’basesystem’/>
<Package name=’bash’/>
<Package name=’bcfg2’/>
<Package name=’beecrypt’/>
....
<Package name=’yum’/>
<Package name=’zlib’/>
<Group name=’x86_64’>

<Package name=’systemimager-x86_64initrd_template’/>
</Group>

</Group>
</Base>

The format of the Base files are similar to those used by the Bundler. The majority of the elements are
usually Packages, but Paths of any type may all be defined. A partial example is below:

Base Tag

The Base Tag has no attributes

As mentioned above the Configuration Entity Tags contained in a Base definition may only have the name
attribute in Base definitions.

Abstract Group Tag

In the Abstract Configuration plugins (Base and Bundle) the Group Tag may have the following attributes:

|| ‘’ ‘’‘Name’‘’ ‘’ || ‘’ ‘’‘Description’‘’ ‘’ || ‘’ ‘’‘Values’‘’ ‘’ || || name || Name of group. || String || || negate ||
Negate the group association (is not a member of) || (True|False*) ||

An abstract group may contain any of the Configuration Entity types and other groups.

12.5.3 Literal Configuration (Generators)

A Generator is a Bcfg2 piece of code that is run to generate the literal configuration for a host using a
combination of the hosts metadata and abstract configuration.

12.5. Writing Bcfg2 Specification 245

Bcfg2 Documentation, Release 1.2.0

A Generator can take care of a particular configuration element. Any time this element is requested by
the client, the server dynamically generates it either by crunching data and creating new information or by
reading a file off of disk and passes it down to the client for installation.

Usage of Groups in Generators

Similar to Abstract Configuration plugins, groups are used by generator plugins for selecting Configuration
Entities for inclusion in a clients literal configuration. They can be thought of as:

if client is a member of group1 then
assign to abstract config

Nested groups are conjunctive (logical and).:

if client is a member of group1 and group2 then
assign to abstract config

How the groups are configured is specific to the plugin, but here are two common methods:

• xml configuration file (Pkgmgr, Rules)

• file name encoding (Cfg, TCheetah, SSHBase)

Details are included on each plugin’s page.

Generators

Each of the generators is covered on their own page.

|| ‘’ ‘’‘Plugin’‘’ ‘’ || ‘’ ‘’‘Description’‘’ ‘’ || || [wiki:Plugins/Actions Actions] || Action entries are commands
that are executed either before bundle installation, after bundle installation or both. ||

246 Chapter 12. Unsorted Docs

CHAPTER

THIRTEEN

DEPRECATED/OBSOLETE
DOCUMENTATION

These documents cover features that have been deprecated or that have been replaced in newer versions of
Bcfg2. They’re preserved here for folks using old versions of Bcfg2.

247

Bcfg2 Documentation, Release 1.2.0

248 Chapter 13. Deprecated/obsolete documentation

INDEX

G
generator, 183
Genshi, 183
group, 183

I
irc channel, 183

P
probe, 183
profile, 183

R
repository, 183

V
VCS, 183

249

	Introduction
	Architecture Overview
	What Operating Systems Does Bcfg2 Support?

	Installation
	Prerequisites
	Download
	Installation from source
	Building packages from source
	Distribution-specific notes

	Getting started
	Get and Install Bcfg2 Server
	Set up Repository
	Populate Repository
	Next Steps

	Architecture in Detail
	Goals
	The Bcfg2 Client
	The Bcfg2 Server
	The Literal Configuration Specification
	Design Considerations

	The Bcfg2 Server
	Plugins
	Admin
	Configuration Entries
	Info
	Bcfg2 Snapshots

	The Bcfg2 Client
	Available client tools
	Other client-related documentation

	The Bcfg2 Reporting System
	Bcfg2 Static Reporting System
	Bcfg2 Dynamic Reporting System

	Bcfg2 Development
	Tips for Bcfg2 Development
	Environment setup for development
	Writing A Client Tool Driver
	Bcfg2 Plugin development
	Writing Bcfg2 Plugins
	Server Plugin Types
	Writing Bcfg2 Specification
	Writing Server Plugins
	Packages
	Testing
	Documentation
	Documentation Style Guide for Bcfg2
	Emacs + YASnippet mode
	Vim Snippet Support

	Getting Help
	Reporting bugs
	Mailing List
	IRC Channel
	FAQ
	Error Messages
	Manual pages
	Troubleshooting

	Glossary
	Appendix
	Example files
	Example configuration
	Contributors
	Books
	Papers
	Articles
	Guides
	Tools

	Unsorted Docs
	Ways to get help
	HOWTOs
	Python SSL
	Notes on possible Windows support
	Writing Bcfg2 Specification

	Deprecated/obsolete documentation
	Index

