summaryrefslogtreecommitdiffstats
path: root/Godeps/_workspace/src/code.google.com/p/draw2d/draw2d/curves.go
diff options
context:
space:
mode:
Diffstat (limited to 'Godeps/_workspace/src/code.google.com/p/draw2d/draw2d/curves.go')
-rw-r--r--Godeps/_workspace/src/code.google.com/p/draw2d/draw2d/curves.go336
1 files changed, 336 insertions, 0 deletions
diff --git a/Godeps/_workspace/src/code.google.com/p/draw2d/draw2d/curves.go b/Godeps/_workspace/src/code.google.com/p/draw2d/draw2d/curves.go
new file mode 100644
index 000000000..4623cd4dc
--- /dev/null
+++ b/Godeps/_workspace/src/code.google.com/p/draw2d/draw2d/curves.go
@@ -0,0 +1,336 @@
+// Copyright 2010 The draw2d Authors. All rights reserved.
+// created: 21/11/2010 by Laurent Le Goff
+
+package draw2d
+
+import (
+ "math"
+)
+
+var (
+ CurveRecursionLimit = 32
+ CurveCollinearityEpsilon = 1e-30
+ CurveAngleToleranceEpsilon = 0.01
+)
+
+/*
+ The function has the following parameters:
+ approximationScale :
+ Eventually determines the approximation accuracy. In practice we need to transform points from the World coordinate system to the Screen one.
+ It always has some scaling coefficient.
+ The curves are usually processed in the World coordinates, while the approximation accuracy should be eventually in pixels.
+ Usually it looks as follows:
+ curved.approximationScale(transform.scale());
+ where transform is the affine matrix that includes all the transformations, including viewport and zoom.
+ angleTolerance :
+ You set it in radians.
+ The less this value is the more accurate will be the approximation at sharp turns.
+ But 0 means that we don't consider angle conditions at all.
+ cuspLimit :
+ An angle in radians.
+ If 0, only the real cusps will have bevel cuts.
+ If more than 0, it will restrict the sharpness.
+ The more this value is the less sharp turns will be cut.
+ Typically it should not exceed 10-15 degrees.
+*/
+func cubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4, approximationScale, angleTolerance, cuspLimit float64) {
+ cuspLimit = computeCuspLimit(cuspLimit)
+ distanceToleranceSquare := 0.5 / approximationScale
+ distanceToleranceSquare = distanceToleranceSquare * distanceToleranceSquare
+ recursiveCubicBezier(v, x1, y1, x2, y2, x3, y3, x4, y4, 0, distanceToleranceSquare, angleTolerance, cuspLimit)
+}
+
+/*
+ * see cubicBezier comments for approximationScale and angleTolerance definition
+ */
+func quadraticBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, approximationScale, angleTolerance float64) {
+ distanceToleranceSquare := 0.5 / approximationScale
+ distanceToleranceSquare = distanceToleranceSquare * distanceToleranceSquare
+
+ recursiveQuadraticBezierBezier(v, x1, y1, x2, y2, x3, y3, 0, distanceToleranceSquare, angleTolerance)
+}
+
+func computeCuspLimit(v float64) (r float64) {
+ if v == 0.0 {
+ r = 0.0
+ } else {
+ r = math.Pi - v
+ }
+ return
+}
+
+/**
+ * http://www.antigrain.com/research/adaptive_bezier/index.html
+ */
+func recursiveQuadraticBezierBezier(v VertexConverter, x1, y1, x2, y2, x3, y3 float64, level int, distanceToleranceSquare, angleTolerance float64) {
+ if level > CurveRecursionLimit {
+ return
+ }
+
+ // Calculate all the mid-points of the line segments
+ //----------------------
+ x12 := (x1 + x2) / 2
+ y12 := (y1 + y2) / 2
+ x23 := (x2 + x3) / 2
+ y23 := (y2 + y3) / 2
+ x123 := (x12 + x23) / 2
+ y123 := (y12 + y23) / 2
+
+ dx := x3 - x1
+ dy := y3 - y1
+ d := math.Abs(((x2-x3)*dy - (y2-y3)*dx))
+
+ if d > CurveCollinearityEpsilon {
+ // Regular case
+ //-----------------
+ if d*d <= distanceToleranceSquare*(dx*dx+dy*dy) {
+ // If the curvature doesn't exceed the distanceTolerance value
+ // we tend to finish subdivisions.
+ //----------------------
+ if angleTolerance < CurveAngleToleranceEpsilon {
+ v.Vertex(x123, y123)
+ return
+ }
+
+ // Angle & Cusp Condition
+ //----------------------
+ da := math.Abs(math.Atan2(y3-y2, x3-x2) - math.Atan2(y2-y1, x2-x1))
+ if da >= math.Pi {
+ da = 2*math.Pi - da
+ }
+
+ if da < angleTolerance {
+ // Finally we can stop the recursion
+ //----------------------
+ v.Vertex(x123, y123)
+ return
+ }
+ }
+ } else {
+ // Collinear case
+ //------------------
+ da := dx*dx + dy*dy
+ if da == 0 {
+ d = squareDistance(x1, y1, x2, y2)
+ } else {
+ d = ((x2-x1)*dx + (y2-y1)*dy) / da
+ if d > 0 && d < 1 {
+ // Simple collinear case, 1---2---3
+ // We can leave just two endpoints
+ return
+ }
+ if d <= 0 {
+ d = squareDistance(x2, y2, x1, y1)
+ } else if d >= 1 {
+ d = squareDistance(x2, y2, x3, y3)
+ } else {
+ d = squareDistance(x2, y2, x1+d*dx, y1+d*dy)
+ }
+ }
+ if d < distanceToleranceSquare {
+ v.Vertex(x2, y2)
+ return
+ }
+ }
+
+ // Continue subdivision
+ //----------------------
+ recursiveQuadraticBezierBezier(v, x1, y1, x12, y12, x123, y123, level+1, distanceToleranceSquare, angleTolerance)
+ recursiveQuadraticBezierBezier(v, x123, y123, x23, y23, x3, y3, level+1, distanceToleranceSquare, angleTolerance)
+}
+
+/**
+ * http://www.antigrain.com/research/adaptive_bezier/index.html
+ */
+func recursiveCubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4 float64, level int, distanceToleranceSquare, angleTolerance, cuspLimit float64) {
+ if level > CurveRecursionLimit {
+ return
+ }
+
+ // Calculate all the mid-points of the line segments
+ //----------------------
+ x12 := (x1 + x2) / 2
+ y12 := (y1 + y2) / 2
+ x23 := (x2 + x3) / 2
+ y23 := (y2 + y3) / 2
+ x34 := (x3 + x4) / 2
+ y34 := (y3 + y4) / 2
+ x123 := (x12 + x23) / 2
+ y123 := (y12 + y23) / 2
+ x234 := (x23 + x34) / 2
+ y234 := (y23 + y34) / 2
+ x1234 := (x123 + x234) / 2
+ y1234 := (y123 + y234) / 2
+
+ // Try to approximate the full cubic curve by a single straight line
+ //------------------
+ dx := x4 - x1
+ dy := y4 - y1
+
+ d2 := math.Abs(((x2-x4)*dy - (y2-y4)*dx))
+ d3 := math.Abs(((x3-x4)*dy - (y3-y4)*dx))
+
+ switch {
+ case d2 <= CurveCollinearityEpsilon && d3 <= CurveCollinearityEpsilon:
+ // All collinear OR p1==p4
+ //----------------------
+ k := dx*dx + dy*dy
+ if k == 0 {
+ d2 = squareDistance(x1, y1, x2, y2)
+ d3 = squareDistance(x4, y4, x3, y3)
+ } else {
+ k = 1 / k
+ da1 := x2 - x1
+ da2 := y2 - y1
+ d2 = k * (da1*dx + da2*dy)
+ da1 = x3 - x1
+ da2 = y3 - y1
+ d3 = k * (da1*dx + da2*dy)
+ if d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1 {
+ // Simple collinear case, 1---2---3---4
+ // We can leave just two endpoints
+ return
+ }
+ if d2 <= 0 {
+ d2 = squareDistance(x2, y2, x1, y1)
+ } else if d2 >= 1 {
+ d2 = squareDistance(x2, y2, x4, y4)
+ } else {
+ d2 = squareDistance(x2, y2, x1+d2*dx, y1+d2*dy)
+ }
+
+ if d3 <= 0 {
+ d3 = squareDistance(x3, y3, x1, y1)
+ } else if d3 >= 1 {
+ d3 = squareDistance(x3, y3, x4, y4)
+ } else {
+ d3 = squareDistance(x3, y3, x1+d3*dx, y1+d3*dy)
+ }
+ }
+ if d2 > d3 {
+ if d2 < distanceToleranceSquare {
+ v.Vertex(x2, y2)
+ return
+ }
+ } else {
+ if d3 < distanceToleranceSquare {
+ v.Vertex(x3, y3)
+ return
+ }
+ }
+ break
+
+ case d2 <= CurveCollinearityEpsilon && d3 > CurveCollinearityEpsilon:
+ // p1,p2,p4 are collinear, p3 is significant
+ //----------------------
+ if d3*d3 <= distanceToleranceSquare*(dx*dx+dy*dy) {
+ if angleTolerance < CurveAngleToleranceEpsilon {
+ v.Vertex(x23, y23)
+ return
+ }
+
+ // Angle Condition
+ //----------------------
+ da1 := math.Abs(math.Atan2(y4-y3, x4-x3) - math.Atan2(y3-y2, x3-x2))
+ if da1 >= math.Pi {
+ da1 = 2*math.Pi - da1
+ }
+
+ if da1 < angleTolerance {
+ v.Vertex(x2, y2)
+ v.Vertex(x3, y3)
+ return
+ }
+
+ if cuspLimit != 0.0 {
+ if da1 > cuspLimit {
+ v.Vertex(x3, y3)
+ return
+ }
+ }
+ }
+ break
+
+ case d2 > CurveCollinearityEpsilon && d3 <= CurveCollinearityEpsilon:
+ // p1,p3,p4 are collinear, p2 is significant
+ //----------------------
+ if d2*d2 <= distanceToleranceSquare*(dx*dx+dy*dy) {
+ if angleTolerance < CurveAngleToleranceEpsilon {
+ v.Vertex(x23, y23)
+ return
+ }
+
+ // Angle Condition
+ //----------------------
+ da1 := math.Abs(math.Atan2(y3-y2, x3-x2) - math.Atan2(y2-y1, x2-x1))
+ if da1 >= math.Pi {
+ da1 = 2*math.Pi - da1
+ }
+
+ if da1 < angleTolerance {
+ v.Vertex(x2, y2)
+ v.Vertex(x3, y3)
+ return
+ }
+
+ if cuspLimit != 0.0 {
+ if da1 > cuspLimit {
+ v.Vertex(x2, y2)
+ return
+ }
+ }
+ }
+ break
+
+ case d2 > CurveCollinearityEpsilon && d3 > CurveCollinearityEpsilon:
+ // Regular case
+ //-----------------
+ if (d2+d3)*(d2+d3) <= distanceToleranceSquare*(dx*dx+dy*dy) {
+ // If the curvature doesn't exceed the distanceTolerance value
+ // we tend to finish subdivisions.
+ //----------------------
+ if angleTolerance < CurveAngleToleranceEpsilon {
+ v.Vertex(x23, y23)
+ return
+ }
+
+ // Angle & Cusp Condition
+ //----------------------
+ k := math.Atan2(y3-y2, x3-x2)
+ da1 := math.Abs(k - math.Atan2(y2-y1, x2-x1))
+ da2 := math.Abs(math.Atan2(y4-y3, x4-x3) - k)
+ if da1 >= math.Pi {
+ da1 = 2*math.Pi - da1
+ }
+ if da2 >= math.Pi {
+ da2 = 2*math.Pi - da2
+ }
+
+ if da1+da2 < angleTolerance {
+ // Finally we can stop the recursion
+ //----------------------
+ v.Vertex(x23, y23)
+ return
+ }
+
+ if cuspLimit != 0.0 {
+ if da1 > cuspLimit {
+ v.Vertex(x2, y2)
+ return
+ }
+
+ if da2 > cuspLimit {
+ v.Vertex(x3, y3)
+ return
+ }
+ }
+ }
+ break
+ }
+
+ // Continue subdivision
+ //----------------------
+ recursiveCubicBezier(v, x1, y1, x12, y12, x123, y123, x1234, y1234, level+1, distanceToleranceSquare, angleTolerance, cuspLimit)
+ recursiveCubicBezier(v, x1234, y1234, x234, y234, x34, y34, x4, y4, level+1, distanceToleranceSquare, angleTolerance, cuspLimit)
+
+}