summaryrefslogtreecommitdiffstats
path: root/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go
diff options
context:
space:
mode:
Diffstat (limited to 'Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go')
-rw-r--r--Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go579
1 files changed, 579 insertions, 0 deletions
diff --git a/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go b/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go
new file mode 100644
index 000000000..45af7eaa2
--- /dev/null
+++ b/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go
@@ -0,0 +1,579 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+// The raster package provides an anti-aliasing 2-D rasterizer.
+//
+// It is part of the larger Freetype-Go suite of font-related packages,
+// but the raster package is not specific to font rasterization, and can
+// be used standalone without any other Freetype-Go package.
+//
+// Rasterization is done by the same area/coverage accumulation algorithm
+// as the Freetype "smooth" module, and the Anti-Grain Geometry library.
+// A description of the area/coverage algorithm is at
+// http://projects.tuxee.net/cl-vectors/section-the-cl-aa-algorithm
+package raster
+
+import (
+ "strconv"
+)
+
+// A cell is part of a linked list (for a given yi co-ordinate) of accumulated
+// area/coverage for the pixel at (xi, yi).
+type cell struct {
+ xi int
+ area, cover int
+ next int
+}
+
+type Rasterizer struct {
+ // If false, the default behavior is to use the even-odd winding fill
+ // rule during Rasterize.
+ UseNonZeroWinding bool
+ // An offset (in pixels) to the painted spans.
+ Dx, Dy int
+
+ // The width of the Rasterizer. The height is implicit in len(cellIndex).
+ width int
+ // splitScaleN is the scaling factor used to determine how many times
+ // to decompose a quadratic or cubic segment into a linear approximation.
+ splitScale2, splitScale3 int
+
+ // The current pen position.
+ a Point
+ // The current cell and its area/coverage being accumulated.
+ xi, yi int
+ area, cover int
+
+ // Saved cells.
+ cell []cell
+ // Linked list of cells, one per row.
+ cellIndex []int
+ // Buffers.
+ cellBuf [256]cell
+ cellIndexBuf [64]int
+ spanBuf [64]Span
+}
+
+// findCell returns the index in r.cell for the cell corresponding to
+// (r.xi, r.yi). The cell is created if necessary.
+func (r *Rasterizer) findCell() int {
+ if r.yi < 0 || r.yi >= len(r.cellIndex) {
+ return -1
+ }
+ xi := r.xi
+ if xi < 0 {
+ xi = -1
+ } else if xi > r.width {
+ xi = r.width
+ }
+ i, prev := r.cellIndex[r.yi], -1
+ for i != -1 && r.cell[i].xi <= xi {
+ if r.cell[i].xi == xi {
+ return i
+ }
+ i, prev = r.cell[i].next, i
+ }
+ c := len(r.cell)
+ if c == cap(r.cell) {
+ buf := make([]cell, c, 4*c)
+ copy(buf, r.cell)
+ r.cell = buf[0 : c+1]
+ } else {
+ r.cell = r.cell[0 : c+1]
+ }
+ r.cell[c] = cell{xi, 0, 0, i}
+ if prev == -1 {
+ r.cellIndex[r.yi] = c
+ } else {
+ r.cell[prev].next = c
+ }
+ return c
+}
+
+// saveCell saves any accumulated r.area/r.cover for (r.xi, r.yi).
+func (r *Rasterizer) saveCell() {
+ if r.area != 0 || r.cover != 0 {
+ i := r.findCell()
+ if i != -1 {
+ r.cell[i].area += r.area
+ r.cell[i].cover += r.cover
+ }
+ r.area = 0
+ r.cover = 0
+ }
+}
+
+// setCell sets the (xi, yi) cell that r is accumulating area/coverage for.
+func (r *Rasterizer) setCell(xi, yi int) {
+ if r.xi != xi || r.yi != yi {
+ r.saveCell()
+ r.xi, r.yi = xi, yi
+ }
+}
+
+// scan accumulates area/coverage for the yi'th scanline, going from
+// x0 to x1 in the horizontal direction (in 24.8 fixed point co-ordinates)
+// and from y0f to y1f fractional vertical units within that scanline.
+func (r *Rasterizer) scan(yi int, x0, y0f, x1, y1f Fix32) {
+ // Break the 24.8 fixed point X co-ordinates into integral and fractional parts.
+ x0i := int(x0) / 256
+ x0f := x0 - Fix32(256*x0i)
+ x1i := int(x1) / 256
+ x1f := x1 - Fix32(256*x1i)
+
+ // A perfectly horizontal scan.
+ if y0f == y1f {
+ r.setCell(x1i, yi)
+ return
+ }
+ dx, dy := x1-x0, y1f-y0f
+ // A single cell scan.
+ if x0i == x1i {
+ r.area += int((x0f + x1f) * dy)
+ r.cover += int(dy)
+ return
+ }
+ // There are at least two cells. Apart from the first and last cells,
+ // all intermediate cells go through the full width of the cell,
+ // or 256 units in 24.8 fixed point format.
+ var (
+ p, q, edge0, edge1 Fix32
+ xiDelta int
+ )
+ if dx > 0 {
+ p, q = (256-x0f)*dy, dx
+ edge0, edge1, xiDelta = 0, 256, 1
+ } else {
+ p, q = x0f*dy, -dx
+ edge0, edge1, xiDelta = 256, 0, -1
+ }
+ yDelta, yRem := p/q, p%q
+ if yRem < 0 {
+ yDelta -= 1
+ yRem += q
+ }
+ // Do the first cell.
+ xi, y := x0i, y0f
+ r.area += int((x0f + edge1) * yDelta)
+ r.cover += int(yDelta)
+ xi, y = xi+xiDelta, y+yDelta
+ r.setCell(xi, yi)
+ if xi != x1i {
+ // Do all the intermediate cells.
+ p = 256 * (y1f - y + yDelta)
+ fullDelta, fullRem := p/q, p%q
+ if fullRem < 0 {
+ fullDelta -= 1
+ fullRem += q
+ }
+ yRem -= q
+ for xi != x1i {
+ yDelta = fullDelta
+ yRem += fullRem
+ if yRem >= 0 {
+ yDelta += 1
+ yRem -= q
+ }
+ r.area += int(256 * yDelta)
+ r.cover += int(yDelta)
+ xi, y = xi+xiDelta, y+yDelta
+ r.setCell(xi, yi)
+ }
+ }
+ // Do the last cell.
+ yDelta = y1f - y
+ r.area += int((edge0 + x1f) * yDelta)
+ r.cover += int(yDelta)
+}
+
+// Start starts a new curve at the given point.
+func (r *Rasterizer) Start(a Point) {
+ r.setCell(int(a.X/256), int(a.Y/256))
+ r.a = a
+}
+
+// Add1 adds a linear segment to the current curve.
+func (r *Rasterizer) Add1(b Point) {
+ x0, y0 := r.a.X, r.a.Y
+ x1, y1 := b.X, b.Y
+ dx, dy := x1-x0, y1-y0
+ // Break the 24.8 fixed point Y co-ordinates into integral and fractional parts.
+ y0i := int(y0) / 256
+ y0f := y0 - Fix32(256*y0i)
+ y1i := int(y1) / 256
+ y1f := y1 - Fix32(256*y1i)
+
+ if y0i == y1i {
+ // There is only one scanline.
+ r.scan(y0i, x0, y0f, x1, y1f)
+
+ } else if dx == 0 {
+ // This is a vertical line segment. We avoid calling r.scan and instead
+ // manipulate r.area and r.cover directly.
+ var (
+ edge0, edge1 Fix32
+ yiDelta int
+ )
+ if dy > 0 {
+ edge0, edge1, yiDelta = 0, 256, 1
+ } else {
+ edge0, edge1, yiDelta = 256, 0, -1
+ }
+ x0i, yi := int(x0)/256, y0i
+ x0fTimes2 := (int(x0) - (256 * x0i)) * 2
+ // Do the first pixel.
+ dcover := int(edge1 - y0f)
+ darea := int(x0fTimes2 * dcover)
+ r.area += darea
+ r.cover += dcover
+ yi += yiDelta
+ r.setCell(x0i, yi)
+ // Do all the intermediate pixels.
+ dcover = int(edge1 - edge0)
+ darea = int(x0fTimes2 * dcover)
+ for yi != y1i {
+ r.area += darea
+ r.cover += dcover
+ yi += yiDelta
+ r.setCell(x0i, yi)
+ }
+ // Do the last pixel.
+ dcover = int(y1f - edge0)
+ darea = int(x0fTimes2 * dcover)
+ r.area += darea
+ r.cover += dcover
+
+ } else {
+ // There are at least two scanlines. Apart from the first and last scanlines,
+ // all intermediate scanlines go through the full height of the row, or 256
+ // units in 24.8 fixed point format.
+ var (
+ p, q, edge0, edge1 Fix32
+ yiDelta int
+ )
+ if dy > 0 {
+ p, q = (256-y0f)*dx, dy
+ edge0, edge1, yiDelta = 0, 256, 1
+ } else {
+ p, q = y0f*dx, -dy
+ edge0, edge1, yiDelta = 256, 0, -1
+ }
+ xDelta, xRem := p/q, p%q
+ if xRem < 0 {
+ xDelta -= 1
+ xRem += q
+ }
+ // Do the first scanline.
+ x, yi := x0, y0i
+ r.scan(yi, x, y0f, x+xDelta, edge1)
+ x, yi = x+xDelta, yi+yiDelta
+ r.setCell(int(x)/256, yi)
+ if yi != y1i {
+ // Do all the intermediate scanlines.
+ p = 256 * dx
+ fullDelta, fullRem := p/q, p%q
+ if fullRem < 0 {
+ fullDelta -= 1
+ fullRem += q
+ }
+ xRem -= q
+ for yi != y1i {
+ xDelta = fullDelta
+ xRem += fullRem
+ if xRem >= 0 {
+ xDelta += 1
+ xRem -= q
+ }
+ r.scan(yi, x, edge0, x+xDelta, edge1)
+ x, yi = x+xDelta, yi+yiDelta
+ r.setCell(int(x)/256, yi)
+ }
+ }
+ // Do the last scanline.
+ r.scan(yi, x, edge0, x1, y1f)
+ }
+ // The next lineTo starts from b.
+ r.a = b
+}
+
+// Add2 adds a quadratic segment to the current curve.
+func (r *Rasterizer) Add2(b, c Point) {
+ // Calculate nSplit (the number of recursive decompositions) based on how `curvy' it is.
+ // Specifically, how much the middle point b deviates from (a+c)/2.
+ dev := maxAbs(r.a.X-2*b.X+c.X, r.a.Y-2*b.Y+c.Y) / Fix32(r.splitScale2)
+ nsplit := 0
+ for dev > 0 {
+ dev /= 4
+ nsplit++
+ }
+ // dev is 32-bit, and nsplit++ every time we shift off 2 bits, so maxNsplit is 16.
+ const maxNsplit = 16
+ if nsplit > maxNsplit {
+ panic("freetype/raster: Add2 nsplit too large: " + strconv.Itoa(nsplit))
+ }
+ // Recursively decompose the curve nSplit levels deep.
+ var (
+ pStack [2*maxNsplit + 3]Point
+ sStack [maxNsplit + 1]int
+ i int
+ )
+ sStack[0] = nsplit
+ pStack[0] = c
+ pStack[1] = b
+ pStack[2] = r.a
+ for i >= 0 {
+ s := sStack[i]
+ p := pStack[2*i:]
+ if s > 0 {
+ // Split the quadratic curve p[:3] into an equivalent set of two shorter curves:
+ // p[:3] and p[2:5]. The new p[4] is the old p[2], and p[0] is unchanged.
+ mx := p[1].X
+ p[4].X = p[2].X
+ p[3].X = (p[4].X + mx) / 2
+ p[1].X = (p[0].X + mx) / 2
+ p[2].X = (p[1].X + p[3].X) / 2
+ my := p[1].Y
+ p[4].Y = p[2].Y
+ p[3].Y = (p[4].Y + my) / 2
+ p[1].Y = (p[0].Y + my) / 2
+ p[2].Y = (p[1].Y + p[3].Y) / 2
+ // The two shorter curves have one less split to do.
+ sStack[i] = s - 1
+ sStack[i+1] = s - 1
+ i++
+ } else {
+ // Replace the level-0 quadratic with a two-linear-piece approximation.
+ midx := (p[0].X + 2*p[1].X + p[2].X) / 4
+ midy := (p[0].Y + 2*p[1].Y + p[2].Y) / 4
+ r.Add1(Point{midx, midy})
+ r.Add1(p[0])
+ i--
+ }
+ }
+}
+
+// Add3 adds a cubic segment to the current curve.
+func (r *Rasterizer) Add3(b, c, d Point) {
+ // Calculate nSplit (the number of recursive decompositions) based on how `curvy' it is.
+ dev2 := maxAbs(r.a.X-3*(b.X+c.X)+d.X, r.a.Y-3*(b.Y+c.Y)+d.Y) / Fix32(r.splitScale2)
+ dev3 := maxAbs(r.a.X-2*b.X+d.X, r.a.Y-2*b.Y+d.Y) / Fix32(r.splitScale3)
+ nsplit := 0
+ for dev2 > 0 || dev3 > 0 {
+ dev2 /= 8
+ dev3 /= 4
+ nsplit++
+ }
+ // devN is 32-bit, and nsplit++ every time we shift off 2 bits, so maxNsplit is 16.
+ const maxNsplit = 16
+ if nsplit > maxNsplit {
+ panic("freetype/raster: Add3 nsplit too large: " + strconv.Itoa(nsplit))
+ }
+ // Recursively decompose the curve nSplit levels deep.
+ var (
+ pStack [3*maxNsplit + 4]Point
+ sStack [maxNsplit + 1]int
+ i int
+ )
+ sStack[0] = nsplit
+ pStack[0] = d
+ pStack[1] = c
+ pStack[2] = b
+ pStack[3] = r.a
+ for i >= 0 {
+ s := sStack[i]
+ p := pStack[3*i:]
+ if s > 0 {
+ // Split the cubic curve p[:4] into an equivalent set of two shorter curves:
+ // p[:4] and p[3:7]. The new p[6] is the old p[3], and p[0] is unchanged.
+ m01x := (p[0].X + p[1].X) / 2
+ m12x := (p[1].X + p[2].X) / 2
+ m23x := (p[2].X + p[3].X) / 2
+ p[6].X = p[3].X
+ p[5].X = m23x
+ p[1].X = m01x
+ p[2].X = (m01x + m12x) / 2
+ p[4].X = (m12x + m23x) / 2
+ p[3].X = (p[2].X + p[4].X) / 2
+ m01y := (p[0].Y + p[1].Y) / 2
+ m12y := (p[1].Y + p[2].Y) / 2
+ m23y := (p[2].Y + p[3].Y) / 2
+ p[6].Y = p[3].Y
+ p[5].Y = m23y
+ p[1].Y = m01y
+ p[2].Y = (m01y + m12y) / 2
+ p[4].Y = (m12y + m23y) / 2
+ p[3].Y = (p[2].Y + p[4].Y) / 2
+ // The two shorter curves have one less split to do.
+ sStack[i] = s - 1
+ sStack[i+1] = s - 1
+ i++
+ } else {
+ // Replace the level-0 cubic with a two-linear-piece approximation.
+ midx := (p[0].X + 3*(p[1].X+p[2].X) + p[3].X) / 8
+ midy := (p[0].Y + 3*(p[1].Y+p[2].Y) + p[3].Y) / 8
+ r.Add1(Point{midx, midy})
+ r.Add1(p[0])
+ i--
+ }
+ }
+}
+
+// AddPath adds the given Path.
+func (r *Rasterizer) AddPath(p Path) {
+ for i := 0; i < len(p); {
+ switch p[i] {
+ case 0:
+ r.Start(Point{p[i+1], p[i+2]})
+ i += 4
+ case 1:
+ r.Add1(Point{p[i+1], p[i+2]})
+ i += 4
+ case 2:
+ r.Add2(Point{p[i+1], p[i+2]}, Point{p[i+3], p[i+4]})
+ i += 6
+ case 3:
+ r.Add3(Point{p[i+1], p[i+2]}, Point{p[i+3], p[i+4]}, Point{p[i+5], p[i+6]})
+ i += 8
+ default:
+ panic("freetype/raster: bad path")
+ }
+ }
+}
+
+// AddStroke adds a stroked Path.
+func (r *Rasterizer) AddStroke(q Path, width Fix32, cr Capper, jr Joiner) {
+ Stroke(r, q, width, cr, jr)
+}
+
+// Converts an area value to a uint32 alpha value. A completely filled pixel
+// corresponds to an area of 256*256*2, and an alpha of 1<<32-1. The
+// conversion of area values greater than this depends on the winding rule:
+// even-odd or non-zero.
+func (r *Rasterizer) areaToAlpha(area int) uint32 {
+ // The C Freetype implementation (version 2.3.12) does "alpha := area>>1" without
+ // the +1. Round-to-nearest gives a more symmetric result than round-down.
+ // The C implementation also returns 8-bit alpha, not 32-bit alpha.
+ a := (area + 1) >> 1
+ if a < 0 {
+ a = -a
+ }
+ alpha := uint32(a)
+ if r.UseNonZeroWinding {
+ if alpha > 0xffff {
+ alpha = 0xffff
+ }
+ } else {
+ alpha &= 0x1ffff
+ if alpha > 0x10000 {
+ alpha = 0x20000 - alpha
+ } else if alpha == 0x10000 {
+ alpha = 0x0ffff
+ }
+ }
+ alpha |= alpha << 16
+ return alpha
+}
+
+// Rasterize converts r's accumulated curves into Spans for p. The Spans
+// passed to p are non-overlapping, and sorted by Y and then X. They all
+// have non-zero width (and 0 <= X0 < X1 <= r.width) and non-zero A, except
+// for the final Span, which has Y, X0, X1 and A all equal to zero.
+func (r *Rasterizer) Rasterize(p Painter) {
+ r.saveCell()
+ s := 0
+ for yi := 0; yi < len(r.cellIndex); yi++ {
+ xi, cover := 0, 0
+ for c := r.cellIndex[yi]; c != -1; c = r.cell[c].next {
+ if cover != 0 && r.cell[c].xi > xi {
+ alpha := r.areaToAlpha(cover * 256 * 2)
+ if alpha != 0 {
+ xi0, xi1 := xi, r.cell[c].xi
+ if xi0 < 0 {
+ xi0 = 0
+ }
+ if xi1 >= r.width {
+ xi1 = r.width
+ }
+ if xi0 < xi1 {
+ r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
+ s++
+ }
+ }
+ }
+ cover += r.cell[c].cover
+ alpha := r.areaToAlpha(cover*256*2 - r.cell[c].area)
+ xi = r.cell[c].xi + 1
+ if alpha != 0 {
+ xi0, xi1 := r.cell[c].xi, xi
+ if xi0 < 0 {
+ xi0 = 0
+ }
+ if xi1 >= r.width {
+ xi1 = r.width
+ }
+ if xi0 < xi1 {
+ r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
+ s++
+ }
+ }
+ if s > len(r.spanBuf)-2 {
+ p.Paint(r.spanBuf[:s], false)
+ s = 0
+ }
+ }
+ }
+ p.Paint(r.spanBuf[:s], true)
+}
+
+// Clear cancels any previous calls to r.Start or r.AddXxx.
+func (r *Rasterizer) Clear() {
+ r.a = Point{}
+ r.xi = 0
+ r.yi = 0
+ r.area = 0
+ r.cover = 0
+ r.cell = r.cell[:0]
+ for i := 0; i < len(r.cellIndex); i++ {
+ r.cellIndex[i] = -1
+ }
+}
+
+// SetBounds sets the maximum width and height of the rasterized image and
+// calls Clear. The width and height are in pixels, not Fix32 units.
+func (r *Rasterizer) SetBounds(width, height int) {
+ if width < 0 {
+ width = 0
+ }
+ if height < 0 {
+ height = 0
+ }
+ // Use the same ssN heuristic as the C Freetype implementation.
+ // The C implementation uses the values 32, 16, but those are in
+ // 26.6 fixed point units, and we use 24.8 fixed point everywhere.
+ ss2, ss3 := 128, 64
+ if width > 24 || height > 24 {
+ ss2, ss3 = 2*ss2, 2*ss3
+ if width > 120 || height > 120 {
+ ss2, ss3 = 2*ss2, 2*ss3
+ }
+ }
+ r.width = width
+ r.splitScale2 = ss2
+ r.splitScale3 = ss3
+ r.cell = r.cellBuf[:0]
+ if height > len(r.cellIndexBuf) {
+ r.cellIndex = make([]int, height)
+ } else {
+ r.cellIndex = r.cellIndexBuf[:height]
+ }
+ r.Clear()
+}
+
+// NewRasterizer creates a new Rasterizer with the given bounds.
+func NewRasterizer(width, height int) *Rasterizer {
+ r := new(Rasterizer)
+ r.SetBounds(width, height)
+ return r
+}