summaryrefslogtreecommitdiffstats
path: root/Godeps/_workspace/src/github.com/disintegration/imaging/resize.go
diff options
context:
space:
mode:
Diffstat (limited to 'Godeps/_workspace/src/github.com/disintegration/imaging/resize.go')
-rw-r--r--Godeps/_workspace/src/github.com/disintegration/imaging/resize.go583
1 files changed, 0 insertions, 583 deletions
diff --git a/Godeps/_workspace/src/github.com/disintegration/imaging/resize.go b/Godeps/_workspace/src/github.com/disintegration/imaging/resize.go
deleted file mode 100644
index 3c792e904..000000000
--- a/Godeps/_workspace/src/github.com/disintegration/imaging/resize.go
+++ /dev/null
@@ -1,583 +0,0 @@
-package imaging
-
-import (
- "image"
- "math"
-)
-
-type iwpair struct {
- i int
- w int32
-}
-
-type pweights struct {
- iwpairs []iwpair
- wsum int32
-}
-
-func precomputeWeights(dstSize, srcSize int, filter ResampleFilter) []pweights {
- du := float64(srcSize) / float64(dstSize)
- scale := du
- if scale < 1.0 {
- scale = 1.0
- }
- ru := math.Ceil(scale * filter.Support)
-
- out := make([]pweights, dstSize)
-
- for v := 0; v < dstSize; v++ {
- fu := (float64(v)+0.5)*du - 0.5
-
- startu := int(math.Ceil(fu - ru))
- if startu < 0 {
- startu = 0
- }
- endu := int(math.Floor(fu + ru))
- if endu > srcSize-1 {
- endu = srcSize - 1
- }
-
- wsum := int32(0)
- for u := startu; u <= endu; u++ {
- w := int32(0xff * filter.Kernel((float64(u)-fu)/scale))
- if w != 0 {
- wsum += w
- out[v].iwpairs = append(out[v].iwpairs, iwpair{u, w})
- }
- }
- out[v].wsum = wsum
- }
-
- return out
-}
-
-// Resize resizes the image to the specified width and height using the specified resampling
-// filter and returns the transformed image. If one of width or height is 0, the image aspect
-// ratio is preserved.
-//
-// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
-// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
-//
-// Usage example:
-//
-// dstImage := imaging.Resize(srcImage, 800, 600, imaging.Lanczos)
-//
-func Resize(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
- dstW, dstH := width, height
-
- if dstW < 0 || dstH < 0 {
- return &image.NRGBA{}
- }
- if dstW == 0 && dstH == 0 {
- return &image.NRGBA{}
- }
-
- src := toNRGBA(img)
-
- srcW := src.Bounds().Max.X
- srcH := src.Bounds().Max.Y
-
- if srcW <= 0 || srcH <= 0 {
- return &image.NRGBA{}
- }
-
- // if new width or height is 0 then preserve aspect ratio, minimum 1px
- if dstW == 0 {
- tmpW := float64(dstH) * float64(srcW) / float64(srcH)
- dstW = int(math.Max(1.0, math.Floor(tmpW+0.5)))
- }
- if dstH == 0 {
- tmpH := float64(dstW) * float64(srcH) / float64(srcW)
- dstH = int(math.Max(1.0, math.Floor(tmpH+0.5)))
- }
-
- var dst *image.NRGBA
-
- if filter.Support <= 0.0 {
- // nearest-neighbor special case
- dst = resizeNearest(src, dstW, dstH)
-
- } else {
- // two-pass resize
- if srcW != dstW {
- dst = resizeHorizontal(src, dstW, filter)
- } else {
- dst = src
- }
-
- if srcH != dstH {
- dst = resizeVertical(dst, dstH, filter)
- }
- }
-
- return dst
-}
-
-func resizeHorizontal(src *image.NRGBA, width int, filter ResampleFilter) *image.NRGBA {
- srcBounds := src.Bounds()
- srcW := srcBounds.Max.X
- srcH := srcBounds.Max.Y
-
- dstW := width
- dstH := srcH
-
- dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
-
- weights := precomputeWeights(dstW, srcW, filter)
-
- parallel(dstH, func(partStart, partEnd int) {
- for dstY := partStart; dstY < partEnd; dstY++ {
- for dstX := 0; dstX < dstW; dstX++ {
- var c [4]int32
- for _, iw := range weights[dstX].iwpairs {
- i := dstY*src.Stride + iw.i*4
- c[0] += int32(src.Pix[i+0]) * iw.w
- c[1] += int32(src.Pix[i+1]) * iw.w
- c[2] += int32(src.Pix[i+2]) * iw.w
- c[3] += int32(src.Pix[i+3]) * iw.w
- }
- j := dstY*dst.Stride + dstX*4
- sum := weights[dstX].wsum
- dst.Pix[j+0] = clampint32(int32(float32(c[0])/float32(sum) + 0.5))
- dst.Pix[j+1] = clampint32(int32(float32(c[1])/float32(sum) + 0.5))
- dst.Pix[j+2] = clampint32(int32(float32(c[2])/float32(sum) + 0.5))
- dst.Pix[j+3] = clampint32(int32(float32(c[3])/float32(sum) + 0.5))
- }
- }
- })
-
- return dst
-}
-
-func resizeVertical(src *image.NRGBA, height int, filter ResampleFilter) *image.NRGBA {
- srcBounds := src.Bounds()
- srcW := srcBounds.Max.X
- srcH := srcBounds.Max.Y
-
- dstW := srcW
- dstH := height
-
- dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
-
- weights := precomputeWeights(dstH, srcH, filter)
-
- parallel(dstW, func(partStart, partEnd int) {
-
- for dstX := partStart; dstX < partEnd; dstX++ {
- for dstY := 0; dstY < dstH; dstY++ {
- var c [4]int32
- for _, iw := range weights[dstY].iwpairs {
- i := iw.i*src.Stride + dstX*4
- c[0] += int32(src.Pix[i+0]) * iw.w
- c[1] += int32(src.Pix[i+1]) * iw.w
- c[2] += int32(src.Pix[i+2]) * iw.w
- c[3] += int32(src.Pix[i+3]) * iw.w
- }
- j := dstY*dst.Stride + dstX*4
- sum := weights[dstY].wsum
- dst.Pix[j+0] = clampint32(int32(float32(c[0])/float32(sum) + 0.5))
- dst.Pix[j+1] = clampint32(int32(float32(c[1])/float32(sum) + 0.5))
- dst.Pix[j+2] = clampint32(int32(float32(c[2])/float32(sum) + 0.5))
- dst.Pix[j+3] = clampint32(int32(float32(c[3])/float32(sum) + 0.5))
- }
- }
-
- })
-
- return dst
-}
-
-// fast nearest-neighbor resize, no filtering
-func resizeNearest(src *image.NRGBA, width, height int) *image.NRGBA {
- dstW, dstH := width, height
-
- srcBounds := src.Bounds()
- srcW := srcBounds.Max.X
- srcH := srcBounds.Max.Y
-
- dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
-
- dx := float64(srcW) / float64(dstW)
- dy := float64(srcH) / float64(dstH)
-
- parallel(dstH, func(partStart, partEnd int) {
-
- for dstY := partStart; dstY < partEnd; dstY++ {
- fy := (float64(dstY)+0.5)*dy - 0.5
-
- for dstX := 0; dstX < dstW; dstX++ {
- fx := (float64(dstX)+0.5)*dx - 0.5
-
- srcX := int(math.Min(math.Max(math.Floor(fx+0.5), 0.0), float64(srcW)))
- srcY := int(math.Min(math.Max(math.Floor(fy+0.5), 0.0), float64(srcH)))
-
- srcOff := srcY*src.Stride + srcX*4
- dstOff := dstY*dst.Stride + dstX*4
-
- copy(dst.Pix[dstOff:dstOff+4], src.Pix[srcOff:srcOff+4])
- }
- }
-
- })
-
- return dst
-}
-
-// Fit scales down the image using the specified resample filter to fit the specified
-// maximum width and height and returns the transformed image.
-//
-// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
-// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
-//
-// Usage example:
-//
-// dstImage := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
-//
-func Fit(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
- maxW, maxH := width, height
-
- if maxW <= 0 || maxH <= 0 {
- return &image.NRGBA{}
- }
-
- srcBounds := img.Bounds()
- srcW := srcBounds.Dx()
- srcH := srcBounds.Dy()
-
- if srcW <= 0 || srcH <= 0 {
- return &image.NRGBA{}
- }
-
- if srcW <= maxW && srcH <= maxH {
- return Clone(img)
- }
-
- srcAspectRatio := float64(srcW) / float64(srcH)
- maxAspectRatio := float64(maxW) / float64(maxH)
-
- var newW, newH int
- if srcAspectRatio > maxAspectRatio {
- newW = maxW
- newH = int(float64(newW) / srcAspectRatio)
- } else {
- newH = maxH
- newW = int(float64(newH) * srcAspectRatio)
- }
-
- return Resize(img, newW, newH, filter)
-}
-
-// Fill scales the image to the smallest possible size that will cover the specified dimensions,
-// crops the resized image to the specified dimensions using the given anchor point and returns
-// the transformed image.
-//
-// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
-// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
-//
-// Usage example:
-//
-// dstImage := imaging.Fill(srcImage, 800, 600, imaging.Center, imaging.Lanczos)
-//
-func Fill(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA {
- minW, minH := width, height
-
- if minW <= 0 || minH <= 0 {
- return &image.NRGBA{}
- }
-
- srcBounds := img.Bounds()
- srcW := srcBounds.Dx()
- srcH := srcBounds.Dy()
-
- if srcW <= 0 || srcH <= 0 {
- return &image.NRGBA{}
- }
-
- if srcW == minW && srcH == minH {
- return Clone(img)
- }
-
- srcAspectRatio := float64(srcW) / float64(srcH)
- minAspectRatio := float64(minW) / float64(minH)
-
- var tmp *image.NRGBA
- if srcAspectRatio < minAspectRatio {
- tmp = Resize(img, minW, 0, filter)
- } else {
- tmp = Resize(img, 0, minH, filter)
- }
-
- return CropAnchor(tmp, minW, minH, anchor)
-}
-
-// Thumbnail scales the image up or down using the specified resample filter, crops it
-// to the specified width and hight and returns the transformed image.
-//
-// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
-// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
-//
-// Usage example:
-//
-// dstImage := imaging.Thumbnail(srcImage, 100, 100, imaging.Lanczos)
-//
-func Thumbnail(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
- return Fill(img, width, height, Center, filter)
-}
-
-// Resample filter struct. It can be used to make custom filters.
-//
-// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
-// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
-//
-// General filter recommendations:
-//
-// - Lanczos
-// Probably the best resampling filter for photographic images yielding sharp results,
-// but it's slower than cubic filters (see below).
-//
-// - CatmullRom
-// A sharp cubic filter. It's a good filter for both upscaling and downscaling if sharp results are needed.
-//
-// - MitchellNetravali
-// A high quality cubic filter that produces smoother results with less ringing than CatmullRom.
-//
-// - BSpline
-// A good filter if a very smooth output is needed.
-//
-// - Linear
-// Bilinear interpolation filter, produces reasonably good, smooth output. It's faster than cubic filters.
-//
-// - Box
-// Simple and fast resampling filter appropriate for downscaling.
-// When upscaling it's similar to NearestNeighbor.
-//
-// - NearestNeighbor
-// Fastest resample filter, no antialiasing at all. Rarely used.
-//
-type ResampleFilter struct {
- Support float64
- Kernel func(float64) float64
-}
-
-// Nearest-neighbor filter, no anti-aliasing.
-var NearestNeighbor ResampleFilter
-
-// Box filter (averaging pixels).
-var Box ResampleFilter
-
-// Linear filter.
-var Linear ResampleFilter
-
-// Hermite cubic spline filter (BC-spline; B=0; C=0).
-var Hermite ResampleFilter
-
-// Mitchell-Netravali cubic filter (BC-spline; B=1/3; C=1/3).
-var MitchellNetravali ResampleFilter
-
-// Catmull-Rom - sharp cubic filter (BC-spline; B=0; C=0.5).
-var CatmullRom ResampleFilter
-
-// Cubic B-spline - smooth cubic filter (BC-spline; B=1; C=0).
-var BSpline ResampleFilter
-
-// Gaussian Blurring Filter.
-var Gaussian ResampleFilter
-
-// Bartlett-windowed sinc filter (3 lobes).
-var Bartlett ResampleFilter
-
-// Lanczos filter (3 lobes).
-var Lanczos ResampleFilter
-
-// Hann-windowed sinc filter (3 lobes).
-var Hann ResampleFilter
-
-// Hamming-windowed sinc filter (3 lobes).
-var Hamming ResampleFilter
-
-// Blackman-windowed sinc filter (3 lobes).
-var Blackman ResampleFilter
-
-// Welch-windowed sinc filter (parabolic window, 3 lobes).
-var Welch ResampleFilter
-
-// Cosine-windowed sinc filter (3 lobes).
-var Cosine ResampleFilter
-
-func bcspline(x, b, c float64) float64 {
- x = math.Abs(x)
- if x < 1.0 {
- return ((12-9*b-6*c)*x*x*x + (-18+12*b+6*c)*x*x + (6 - 2*b)) / 6
- }
- if x < 2.0 {
- return ((-b-6*c)*x*x*x + (6*b+30*c)*x*x + (-12*b-48*c)*x + (8*b + 24*c)) / 6
- }
- return 0
-}
-
-func sinc(x float64) float64 {
- if x == 0 {
- return 1
- }
- return math.Sin(math.Pi*x) / (math.Pi * x)
-}
-
-func init() {
- NearestNeighbor = ResampleFilter{
- Support: 0.0, // special case - not applying the filter
- }
-
- Box = ResampleFilter{
- Support: 0.5,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x <= 0.5 {
- return 1.0
- }
- return 0
- },
- }
-
- Linear = ResampleFilter{
- Support: 1.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 1.0 {
- return 1.0 - x
- }
- return 0
- },
- }
-
- Hermite = ResampleFilter{
- Support: 1.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 1.0 {
- return bcspline(x, 0.0, 0.0)
- }
- return 0
- },
- }
-
- MitchellNetravali = ResampleFilter{
- Support: 2.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 2.0 {
- return bcspline(x, 1.0/3.0, 1.0/3.0)
- }
- return 0
- },
- }
-
- CatmullRom = ResampleFilter{
- Support: 2.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 2.0 {
- return bcspline(x, 0.0, 0.5)
- }
- return 0
- },
- }
-
- BSpline = ResampleFilter{
- Support: 2.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 2.0 {
- return bcspline(x, 1.0, 0.0)
- }
- return 0
- },
- }
-
- Gaussian = ResampleFilter{
- Support: 2.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 2.0 {
- return math.Exp(-2 * x * x)
- }
- return 0
- },
- }
-
- Bartlett = ResampleFilter{
- Support: 3.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 3.0 {
- return sinc(x) * (3.0 - x) / 3.0
- }
- return 0
- },
- }
-
- Lanczos = ResampleFilter{
- Support: 3.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 3.0 {
- return sinc(x) * sinc(x/3.0)
- }
- return 0
- },
- }
-
- Hann = ResampleFilter{
- Support: 3.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 3.0 {
- return sinc(x) * (0.5 + 0.5*math.Cos(math.Pi*x/3.0))
- }
- return 0
- },
- }
-
- Hamming = ResampleFilter{
- Support: 3.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 3.0 {
- return sinc(x) * (0.54 + 0.46*math.Cos(math.Pi*x/3.0))
- }
- return 0
- },
- }
-
- Blackman = ResampleFilter{
- Support: 3.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 3.0 {
- return sinc(x) * (0.42 - 0.5*math.Cos(math.Pi*x/3.0+math.Pi) + 0.08*math.Cos(2.0*math.Pi*x/3.0))
- }
- return 0
- },
- }
-
- Welch = ResampleFilter{
- Support: 3.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 3.0 {
- return sinc(x) * (1.0 - (x * x / 9.0))
- }
- return 0
- },
- }
-
- Cosine = ResampleFilter{
- Support: 3.0,
- Kernel: func(x float64) float64 {
- x = math.Abs(x)
- if x < 3.0 {
- return sinc(x) * math.Cos((math.Pi/2.0)*(x/3.0))
- }
- return 0
- },
- }
-}