summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go')
-rw-r--r--vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go1415
1 files changed, 1415 insertions, 0 deletions
diff --git a/vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go b/vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go
new file mode 100644
index 000000000..173b753db
--- /dev/null
+++ b/vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go
@@ -0,0 +1,1415 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package otr implements the Off The Record protocol as specified in
+// http://www.cypherpunks.ca/otr/Protocol-v2-3.1.0.html
+package otr // import "golang.org/x/crypto/otr"
+
+import (
+ "bytes"
+ "crypto/aes"
+ "crypto/cipher"
+ "crypto/dsa"
+ "crypto/hmac"
+ "crypto/rand"
+ "crypto/sha1"
+ "crypto/sha256"
+ "crypto/subtle"
+ "encoding/base64"
+ "encoding/hex"
+ "errors"
+ "hash"
+ "io"
+ "math/big"
+ "strconv"
+)
+
+// SecurityChange describes a change in the security state of a Conversation.
+type SecurityChange int
+
+const (
+ NoChange SecurityChange = iota
+ // NewKeys indicates that a key exchange has completed. This occurs
+ // when a conversation first becomes encrypted, and when the keys are
+ // renegotiated within an encrypted conversation.
+ NewKeys
+ // SMPSecretNeeded indicates that the peer has started an
+ // authentication and that we need to supply a secret. Call SMPQuestion
+ // to get the optional, human readable challenge and then Authenticate
+ // to supply the matching secret.
+ SMPSecretNeeded
+ // SMPComplete indicates that an authentication completed. The identity
+ // of the peer has now been confirmed.
+ SMPComplete
+ // SMPFailed indicates that an authentication failed.
+ SMPFailed
+ // ConversationEnded indicates that the peer ended the secure
+ // conversation.
+ ConversationEnded
+)
+
+// QueryMessage can be sent to a peer to start an OTR conversation.
+var QueryMessage = "?OTRv2?"
+
+// ErrorPrefix can be used to make an OTR error by appending an error message
+// to it.
+var ErrorPrefix = "?OTR Error:"
+
+var (
+ fragmentPartSeparator = []byte(",")
+ fragmentPrefix = []byte("?OTR,")
+ msgPrefix = []byte("?OTR:")
+ queryMarker = []byte("?OTR")
+)
+
+// isQuery attempts to parse an OTR query from msg and returns the greatest
+// common version, or 0 if msg is not an OTR query.
+func isQuery(msg []byte) (greatestCommonVersion int) {
+ pos := bytes.Index(msg, queryMarker)
+ if pos == -1 {
+ return 0
+ }
+ for i, c := range msg[pos+len(queryMarker):] {
+ if i == 0 {
+ if c == '?' {
+ // Indicates support for version 1, but we don't
+ // implement that.
+ continue
+ }
+
+ if c != 'v' {
+ // Invalid message
+ return 0
+ }
+
+ continue
+ }
+
+ if c == '?' {
+ // End of message
+ return
+ }
+
+ if c == ' ' || c == '\t' {
+ // Probably an invalid message
+ return 0
+ }
+
+ if c == '2' {
+ greatestCommonVersion = 2
+ }
+ }
+
+ return 0
+}
+
+const (
+ statePlaintext = iota
+ stateEncrypted
+ stateFinished
+)
+
+const (
+ authStateNone = iota
+ authStateAwaitingDHKey
+ authStateAwaitingRevealSig
+ authStateAwaitingSig
+)
+
+const (
+ msgTypeDHCommit = 2
+ msgTypeData = 3
+ msgTypeDHKey = 10
+ msgTypeRevealSig = 17
+ msgTypeSig = 18
+)
+
+const (
+ // If the requested fragment size is less than this, it will be ignored.
+ minFragmentSize = 18
+ // Messages are padded to a multiple of this number of bytes.
+ paddingGranularity = 256
+ // The number of bytes in a Diffie-Hellman private value (320-bits).
+ dhPrivateBytes = 40
+ // The number of bytes needed to represent an element of the DSA
+ // subgroup (160-bits).
+ dsaSubgroupBytes = 20
+ // The number of bytes of the MAC that are sent on the wire (160-bits).
+ macPrefixBytes = 20
+)
+
+// These are the global, common group parameters for OTR.
+var (
+ p *big.Int // group prime
+ g *big.Int // group generator
+ q *big.Int // group order
+ pMinus2 *big.Int
+)
+
+func init() {
+ p, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", 16)
+ q, _ = new(big.Int).SetString("7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68948127044533E63A0105DF531D89CD9128A5043CC71A026EF7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6F71C35FDAD44CFD2D74F9208BE258FF324943328F6722D9EE1003E5C50B1DF82CC6D241B0E2AE9CD348B1FD47E9267AFC1B2AE91EE51D6CB0E3179AB1042A95DCF6A9483B84B4B36B3861AA7255E4C0278BA36046511B993FFFFFFFFFFFFFFFF", 16)
+ g = new(big.Int).SetInt64(2)
+ pMinus2 = new(big.Int).Sub(p, g)
+}
+
+// Conversation represents a relation with a peer. The zero value is a valid
+// Conversation, although PrivateKey must be set.
+//
+// When communicating with a peer, all inbound messages should be passed to
+// Conversation.Receive and all outbound messages to Conversation.Send. The
+// Conversation will take care of maintaining the encryption state and
+// negotiating encryption as needed.
+type Conversation struct {
+ // PrivateKey contains the private key to use to sign key exchanges.
+ PrivateKey *PrivateKey
+
+ // Rand can be set to override the entropy source. Otherwise,
+ // crypto/rand will be used.
+ Rand io.Reader
+ // If FragmentSize is set, all messages produced by Receive and Send
+ // will be fragmented into messages of, at most, this number of bytes.
+ FragmentSize int
+
+ // Once Receive has returned NewKeys once, the following fields are
+ // valid.
+ SSID [8]byte
+ TheirPublicKey PublicKey
+
+ state, authState int
+
+ r [16]byte
+ x, y *big.Int
+ gx, gy *big.Int
+ gxBytes []byte
+ digest [sha256.Size]byte
+
+ revealKeys, sigKeys akeKeys
+
+ myKeyId uint32
+ myCurrentDHPub *big.Int
+ myCurrentDHPriv *big.Int
+ myLastDHPub *big.Int
+ myLastDHPriv *big.Int
+
+ theirKeyId uint32
+ theirCurrentDHPub *big.Int
+ theirLastDHPub *big.Int
+
+ keySlots [4]keySlot
+
+ myCounter [8]byte
+ theirLastCtr [8]byte
+ oldMACs []byte
+
+ k, n int // fragment state
+ frag []byte
+
+ smp smpState
+}
+
+// A keySlot contains key material for a specific (their keyid, my keyid) pair.
+type keySlot struct {
+ // used is true if this slot is valid. If false, it's free for reuse.
+ used bool
+ theirKeyId uint32
+ myKeyId uint32
+ sendAESKey, recvAESKey []byte
+ sendMACKey, recvMACKey []byte
+ theirLastCtr [8]byte
+}
+
+// akeKeys are generated during key exchange. There's one set for the reveal
+// signature message and another for the signature message. In the protocol
+// spec the latter are indicated with a prime mark.
+type akeKeys struct {
+ c [16]byte
+ m1, m2 [32]byte
+}
+
+func (c *Conversation) rand() io.Reader {
+ if c.Rand != nil {
+ return c.Rand
+ }
+ return rand.Reader
+}
+
+func (c *Conversation) randMPI(buf []byte) *big.Int {
+ _, err := io.ReadFull(c.rand(), buf)
+ if err != nil {
+ panic("otr: short read from random source")
+ }
+
+ return new(big.Int).SetBytes(buf)
+}
+
+// tlv represents the type-length value from the protocol.
+type tlv struct {
+ typ, length uint16
+ data []byte
+}
+
+const (
+ tlvTypePadding = 0
+ tlvTypeDisconnected = 1
+ tlvTypeSMP1 = 2
+ tlvTypeSMP2 = 3
+ tlvTypeSMP3 = 4
+ tlvTypeSMP4 = 5
+ tlvTypeSMPAbort = 6
+ tlvTypeSMP1WithQuestion = 7
+)
+
+// Receive handles a message from a peer. It returns a human readable message,
+// an indicator of whether that message was encrypted, a hint about the
+// encryption state and zero or more messages to send back to the peer.
+// These messages do not need to be passed to Send before transmission.
+func (c *Conversation) Receive(in []byte) (out []byte, encrypted bool, change SecurityChange, toSend [][]byte, err error) {
+ if bytes.HasPrefix(in, fragmentPrefix) {
+ in, err = c.processFragment(in)
+ if in == nil || err != nil {
+ return
+ }
+ }
+
+ if bytes.HasPrefix(in, msgPrefix) && in[len(in)-1] == '.' {
+ in = in[len(msgPrefix) : len(in)-1]
+ } else if version := isQuery(in); version > 0 {
+ c.authState = authStateAwaitingDHKey
+ c.reset()
+ toSend = c.encode(c.generateDHCommit())
+ return
+ } else {
+ // plaintext message
+ out = in
+ return
+ }
+
+ msg := make([]byte, base64.StdEncoding.DecodedLen(len(in)))
+ msgLen, err := base64.StdEncoding.Decode(msg, in)
+ if err != nil {
+ err = errors.New("otr: invalid base64 encoding in message")
+ return
+ }
+ msg = msg[:msgLen]
+
+ // The first two bytes are the protocol version (2)
+ if len(msg) < 3 || msg[0] != 0 || msg[1] != 2 {
+ err = errors.New("otr: invalid OTR message")
+ return
+ }
+
+ msgType := int(msg[2])
+ msg = msg[3:]
+
+ switch msgType {
+ case msgTypeDHCommit:
+ switch c.authState {
+ case authStateNone:
+ c.authState = authStateAwaitingRevealSig
+ if err = c.processDHCommit(msg); err != nil {
+ return
+ }
+ c.reset()
+ toSend = c.encode(c.generateDHKey())
+ return
+ case authStateAwaitingDHKey:
+ // This is a 'SYN-crossing'. The greater digest wins.
+ var cmp int
+ if cmp, err = c.compareToDHCommit(msg); err != nil {
+ return
+ }
+ if cmp > 0 {
+ // We win. Retransmit DH commit.
+ toSend = c.encode(c.serializeDHCommit())
+ return
+ } else {
+ // They win. We forget about our DH commit.
+ c.authState = authStateAwaitingRevealSig
+ if err = c.processDHCommit(msg); err != nil {
+ return
+ }
+ c.reset()
+ toSend = c.encode(c.generateDHKey())
+ return
+ }
+ case authStateAwaitingRevealSig:
+ if err = c.processDHCommit(msg); err != nil {
+ return
+ }
+ toSend = c.encode(c.serializeDHKey())
+ case authStateAwaitingSig:
+ if err = c.processDHCommit(msg); err != nil {
+ return
+ }
+ c.reset()
+ toSend = c.encode(c.generateDHKey())
+ c.authState = authStateAwaitingRevealSig
+ default:
+ panic("bad state")
+ }
+ case msgTypeDHKey:
+ switch c.authState {
+ case authStateAwaitingDHKey:
+ var isSame bool
+ if isSame, err = c.processDHKey(msg); err != nil {
+ return
+ }
+ if isSame {
+ err = errors.New("otr: unexpected duplicate DH key")
+ return
+ }
+ toSend = c.encode(c.generateRevealSig())
+ c.authState = authStateAwaitingSig
+ case authStateAwaitingSig:
+ var isSame bool
+ if isSame, err = c.processDHKey(msg); err != nil {
+ return
+ }
+ if isSame {
+ toSend = c.encode(c.serializeDHKey())
+ }
+ }
+ case msgTypeRevealSig:
+ if c.authState != authStateAwaitingRevealSig {
+ return
+ }
+ if err = c.processRevealSig(msg); err != nil {
+ return
+ }
+ toSend = c.encode(c.generateSig())
+ c.authState = authStateNone
+ c.state = stateEncrypted
+ change = NewKeys
+ case msgTypeSig:
+ if c.authState != authStateAwaitingSig {
+ return
+ }
+ if err = c.processSig(msg); err != nil {
+ return
+ }
+ c.authState = authStateNone
+ c.state = stateEncrypted
+ change = NewKeys
+ case msgTypeData:
+ if c.state != stateEncrypted {
+ err = errors.New("otr: encrypted message received without encrypted session established")
+ return
+ }
+ var tlvs []tlv
+ out, tlvs, err = c.processData(msg)
+ encrypted = true
+
+ EachTLV:
+ for _, inTLV := range tlvs {
+ switch inTLV.typ {
+ case tlvTypeDisconnected:
+ change = ConversationEnded
+ c.state = stateFinished
+ break EachTLV
+ case tlvTypeSMP1, tlvTypeSMP2, tlvTypeSMP3, tlvTypeSMP4, tlvTypeSMPAbort, tlvTypeSMP1WithQuestion:
+ var reply tlv
+ var complete bool
+ reply, complete, err = c.processSMP(inTLV)
+ if err == smpSecretMissingError {
+ err = nil
+ change = SMPSecretNeeded
+ c.smp.saved = &inTLV
+ return
+ }
+ if err == smpFailureError {
+ err = nil
+ change = SMPFailed
+ } else if complete {
+ change = SMPComplete
+ }
+ if reply.typ != 0 {
+ toSend = c.encode(c.generateData(nil, &reply))
+ }
+ break EachTLV
+ default:
+ // skip unknown TLVs
+ }
+ }
+ default:
+ err = errors.New("otr: unknown message type " + strconv.Itoa(msgType))
+ }
+
+ return
+}
+
+// Send takes a human readable message from the local user, possibly encrypts
+// it and returns zero one or more messages to send to the peer.
+func (c *Conversation) Send(msg []byte) ([][]byte, error) {
+ switch c.state {
+ case statePlaintext:
+ return [][]byte{msg}, nil
+ case stateEncrypted:
+ return c.encode(c.generateData(msg, nil)), nil
+ case stateFinished:
+ return nil, errors.New("otr: cannot send message because secure conversation has finished")
+ }
+
+ return nil, errors.New("otr: cannot send message in current state")
+}
+
+// SMPQuestion returns the human readable challenge question from the peer.
+// It's only valid after Receive has returned SMPSecretNeeded.
+func (c *Conversation) SMPQuestion() string {
+ return c.smp.question
+}
+
+// Authenticate begins an authentication with the peer. Authentication involves
+// an optional challenge message and a shared secret. The authentication
+// proceeds until either Receive returns SMPComplete, SMPSecretNeeded (which
+// indicates that a new authentication is happening and thus this one was
+// aborted) or SMPFailed.
+func (c *Conversation) Authenticate(question string, mutualSecret []byte) (toSend [][]byte, err error) {
+ if c.state != stateEncrypted {
+ err = errors.New("otr: can't authenticate a peer without a secure conversation established")
+ return
+ }
+
+ if c.smp.saved != nil {
+ c.calcSMPSecret(mutualSecret, false /* they started it */)
+
+ var out tlv
+ var complete bool
+ out, complete, err = c.processSMP(*c.smp.saved)
+ if complete {
+ panic("SMP completed on the first message")
+ }
+ c.smp.saved = nil
+ if out.typ != 0 {
+ toSend = c.encode(c.generateData(nil, &out))
+ }
+ return
+ }
+
+ c.calcSMPSecret(mutualSecret, true /* we started it */)
+ outs := c.startSMP(question)
+ for _, out := range outs {
+ toSend = append(toSend, c.encode(c.generateData(nil, &out))...)
+ }
+ return
+}
+
+// End ends a secure conversation by generating a termination message for
+// the peer and switches to unencrypted communication.
+func (c *Conversation) End() (toSend [][]byte) {
+ switch c.state {
+ case statePlaintext:
+ return nil
+ case stateEncrypted:
+ c.state = statePlaintext
+ return c.encode(c.generateData(nil, &tlv{typ: tlvTypeDisconnected}))
+ case stateFinished:
+ c.state = statePlaintext
+ return nil
+ }
+ panic("unreachable")
+}
+
+// IsEncrypted returns true if a message passed to Send would be encrypted
+// before transmission. This result remains valid until the next call to
+// Receive or End, which may change the state of the Conversation.
+func (c *Conversation) IsEncrypted() bool {
+ return c.state == stateEncrypted
+}
+
+var fragmentError = errors.New("otr: invalid OTR fragment")
+
+// processFragment processes a fragmented OTR message and possibly returns a
+// complete message. Fragmented messages look like "?OTR,k,n,msg," where k is
+// the fragment number (starting from 1), n is the number of fragments in this
+// message and msg is a substring of the base64 encoded message.
+func (c *Conversation) processFragment(in []byte) (out []byte, err error) {
+ in = in[len(fragmentPrefix):] // remove "?OTR,"
+ parts := bytes.Split(in, fragmentPartSeparator)
+ if len(parts) != 4 || len(parts[3]) != 0 {
+ return nil, fragmentError
+ }
+
+ k, err := strconv.Atoi(string(parts[0]))
+ if err != nil {
+ return nil, fragmentError
+ }
+
+ n, err := strconv.Atoi(string(parts[1]))
+ if err != nil {
+ return nil, fragmentError
+ }
+
+ if k < 1 || n < 1 || k > n {
+ return nil, fragmentError
+ }
+
+ if k == 1 {
+ c.frag = append(c.frag[:0], parts[2]...)
+ c.k, c.n = k, n
+ } else if n == c.n && k == c.k+1 {
+ c.frag = append(c.frag, parts[2]...)
+ c.k++
+ } else {
+ c.frag = c.frag[:0]
+ c.n, c.k = 0, 0
+ }
+
+ if c.n > 0 && c.k == c.n {
+ c.n, c.k = 0, 0
+ return c.frag, nil
+ }
+
+ return nil, nil
+}
+
+func (c *Conversation) generateDHCommit() []byte {
+ _, err := io.ReadFull(c.rand(), c.r[:])
+ if err != nil {
+ panic("otr: short read from random source")
+ }
+
+ var xBytes [dhPrivateBytes]byte
+ c.x = c.randMPI(xBytes[:])
+ c.gx = new(big.Int).Exp(g, c.x, p)
+ c.gy = nil
+ c.gxBytes = appendMPI(nil, c.gx)
+
+ h := sha256.New()
+ h.Write(c.gxBytes)
+ h.Sum(c.digest[:0])
+
+ aesCipher, err := aes.NewCipher(c.r[:])
+ if err != nil {
+ panic(err.Error())
+ }
+
+ var iv [aes.BlockSize]byte
+ ctr := cipher.NewCTR(aesCipher, iv[:])
+ ctr.XORKeyStream(c.gxBytes, c.gxBytes)
+
+ return c.serializeDHCommit()
+}
+
+func (c *Conversation) serializeDHCommit() []byte {
+ var ret []byte
+ ret = appendU16(ret, 2) // protocol version
+ ret = append(ret, msgTypeDHCommit)
+ ret = appendData(ret, c.gxBytes)
+ ret = appendData(ret, c.digest[:])
+ return ret
+}
+
+func (c *Conversation) processDHCommit(in []byte) error {
+ var ok1, ok2 bool
+ c.gxBytes, in, ok1 = getData(in)
+ digest, in, ok2 := getData(in)
+ if !ok1 || !ok2 || len(in) > 0 {
+ return errors.New("otr: corrupt DH commit message")
+ }
+ copy(c.digest[:], digest)
+ return nil
+}
+
+func (c *Conversation) compareToDHCommit(in []byte) (int, error) {
+ _, in, ok1 := getData(in)
+ digest, in, ok2 := getData(in)
+ if !ok1 || !ok2 || len(in) > 0 {
+ return 0, errors.New("otr: corrupt DH commit message")
+ }
+ return bytes.Compare(c.digest[:], digest), nil
+}
+
+func (c *Conversation) generateDHKey() []byte {
+ var yBytes [dhPrivateBytes]byte
+ c.y = c.randMPI(yBytes[:])
+ c.gy = new(big.Int).Exp(g, c.y, p)
+ return c.serializeDHKey()
+}
+
+func (c *Conversation) serializeDHKey() []byte {
+ var ret []byte
+ ret = appendU16(ret, 2) // protocol version
+ ret = append(ret, msgTypeDHKey)
+ ret = appendMPI(ret, c.gy)
+ return ret
+}
+
+func (c *Conversation) processDHKey(in []byte) (isSame bool, err error) {
+ gy, in, ok := getMPI(in)
+ if !ok {
+ err = errors.New("otr: corrupt DH key message")
+ return
+ }
+ if gy.Cmp(g) < 0 || gy.Cmp(pMinus2) > 0 {
+ err = errors.New("otr: DH value out of range")
+ return
+ }
+ if c.gy != nil {
+ isSame = c.gy.Cmp(gy) == 0
+ return
+ }
+ c.gy = gy
+ return
+}
+
+func (c *Conversation) generateEncryptedSignature(keys *akeKeys, xFirst bool) ([]byte, []byte) {
+ var xb []byte
+ xb = c.PrivateKey.PublicKey.Serialize(xb)
+
+ var verifyData []byte
+ if xFirst {
+ verifyData = appendMPI(verifyData, c.gx)
+ verifyData = appendMPI(verifyData, c.gy)
+ } else {
+ verifyData = appendMPI(verifyData, c.gy)
+ verifyData = appendMPI(verifyData, c.gx)
+ }
+ verifyData = append(verifyData, xb...)
+ verifyData = appendU32(verifyData, c.myKeyId)
+
+ mac := hmac.New(sha256.New, keys.m1[:])
+ mac.Write(verifyData)
+ mb := mac.Sum(nil)
+
+ xb = appendU32(xb, c.myKeyId)
+ xb = append(xb, c.PrivateKey.Sign(c.rand(), mb)...)
+
+ aesCipher, err := aes.NewCipher(keys.c[:])
+ if err != nil {
+ panic(err.Error())
+ }
+ var iv [aes.BlockSize]byte
+ ctr := cipher.NewCTR(aesCipher, iv[:])
+ ctr.XORKeyStream(xb, xb)
+
+ mac = hmac.New(sha256.New, keys.m2[:])
+ encryptedSig := appendData(nil, xb)
+ mac.Write(encryptedSig)
+
+ return encryptedSig, mac.Sum(nil)
+}
+
+func (c *Conversation) generateRevealSig() []byte {
+ s := new(big.Int).Exp(c.gy, c.x, p)
+ c.calcAKEKeys(s)
+ c.myKeyId++
+
+ encryptedSig, mac := c.generateEncryptedSignature(&c.revealKeys, true /* gx comes first */)
+
+ c.myCurrentDHPub = c.gx
+ c.myCurrentDHPriv = c.x
+ c.rotateDHKeys()
+ incCounter(&c.myCounter)
+
+ var ret []byte
+ ret = appendU16(ret, 2)
+ ret = append(ret, msgTypeRevealSig)
+ ret = appendData(ret, c.r[:])
+ ret = append(ret, encryptedSig...)
+ ret = append(ret, mac[:20]...)
+ return ret
+}
+
+func (c *Conversation) processEncryptedSig(encryptedSig, theirMAC []byte, keys *akeKeys, xFirst bool) error {
+ mac := hmac.New(sha256.New, keys.m2[:])
+ mac.Write(appendData(nil, encryptedSig))
+ myMAC := mac.Sum(nil)[:20]
+
+ if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 {
+ return errors.New("bad signature MAC in encrypted signature")
+ }
+
+ aesCipher, err := aes.NewCipher(keys.c[:])
+ if err != nil {
+ panic(err.Error())
+ }
+ var iv [aes.BlockSize]byte
+ ctr := cipher.NewCTR(aesCipher, iv[:])
+ ctr.XORKeyStream(encryptedSig, encryptedSig)
+
+ sig := encryptedSig
+ sig, ok1 := c.TheirPublicKey.Parse(sig)
+ keyId, sig, ok2 := getU32(sig)
+ if !ok1 || !ok2 {
+ return errors.New("otr: corrupt encrypted signature")
+ }
+
+ var verifyData []byte
+ if xFirst {
+ verifyData = appendMPI(verifyData, c.gx)
+ verifyData = appendMPI(verifyData, c.gy)
+ } else {
+ verifyData = appendMPI(verifyData, c.gy)
+ verifyData = appendMPI(verifyData, c.gx)
+ }
+ verifyData = c.TheirPublicKey.Serialize(verifyData)
+ verifyData = appendU32(verifyData, keyId)
+
+ mac = hmac.New(sha256.New, keys.m1[:])
+ mac.Write(verifyData)
+ mb := mac.Sum(nil)
+
+ sig, ok1 = c.TheirPublicKey.Verify(mb, sig)
+ if !ok1 {
+ return errors.New("bad signature in encrypted signature")
+ }
+ if len(sig) > 0 {
+ return errors.New("corrupt encrypted signature")
+ }
+
+ c.theirKeyId = keyId
+ zero(c.theirLastCtr[:])
+ return nil
+}
+
+func (c *Conversation) processRevealSig(in []byte) error {
+ r, in, ok1 := getData(in)
+ encryptedSig, in, ok2 := getData(in)
+ theirMAC := in
+ if !ok1 || !ok2 || len(theirMAC) != 20 {
+ return errors.New("otr: corrupt reveal signature message")
+ }
+
+ aesCipher, err := aes.NewCipher(r)
+ if err != nil {
+ return errors.New("otr: cannot create AES cipher from reveal signature message: " + err.Error())
+ }
+ var iv [aes.BlockSize]byte
+ ctr := cipher.NewCTR(aesCipher, iv[:])
+ ctr.XORKeyStream(c.gxBytes, c.gxBytes)
+ h := sha256.New()
+ h.Write(c.gxBytes)
+ digest := h.Sum(nil)
+ if len(digest) != len(c.digest) || subtle.ConstantTimeCompare(digest, c.digest[:]) == 0 {
+ return errors.New("otr: bad commit MAC in reveal signature message")
+ }
+ var rest []byte
+ c.gx, rest, ok1 = getMPI(c.gxBytes)
+ if !ok1 || len(rest) > 0 {
+ return errors.New("otr: gx corrupt after decryption")
+ }
+ if c.gx.Cmp(g) < 0 || c.gx.Cmp(pMinus2) > 0 {
+ return errors.New("otr: DH value out of range")
+ }
+ s := new(big.Int).Exp(c.gx, c.y, p)
+ c.calcAKEKeys(s)
+
+ if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.revealKeys, true /* gx comes first */); err != nil {
+ return errors.New("otr: in reveal signature message: " + err.Error())
+ }
+
+ c.theirCurrentDHPub = c.gx
+ c.theirLastDHPub = nil
+
+ return nil
+}
+
+func (c *Conversation) generateSig() []byte {
+ c.myKeyId++
+
+ encryptedSig, mac := c.generateEncryptedSignature(&c.sigKeys, false /* gy comes first */)
+
+ c.myCurrentDHPub = c.gy
+ c.myCurrentDHPriv = c.y
+ c.rotateDHKeys()
+ incCounter(&c.myCounter)
+
+ var ret []byte
+ ret = appendU16(ret, 2)
+ ret = append(ret, msgTypeSig)
+ ret = append(ret, encryptedSig...)
+ ret = append(ret, mac[:macPrefixBytes]...)
+ return ret
+}
+
+func (c *Conversation) processSig(in []byte) error {
+ encryptedSig, in, ok1 := getData(in)
+ theirMAC := in
+ if !ok1 || len(theirMAC) != macPrefixBytes {
+ return errors.New("otr: corrupt signature message")
+ }
+
+ if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.sigKeys, false /* gy comes first */); err != nil {
+ return errors.New("otr: in signature message: " + err.Error())
+ }
+
+ c.theirCurrentDHPub = c.gy
+ c.theirLastDHPub = nil
+
+ return nil
+}
+
+func (c *Conversation) rotateDHKeys() {
+ // evict slots using our retired key id
+ for i := range c.keySlots {
+ slot := &c.keySlots[i]
+ if slot.used && slot.myKeyId == c.myKeyId-1 {
+ slot.used = false
+ c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
+ }
+ }
+
+ c.myLastDHPriv = c.myCurrentDHPriv
+ c.myLastDHPub = c.myCurrentDHPub
+
+ var xBytes [dhPrivateBytes]byte
+ c.myCurrentDHPriv = c.randMPI(xBytes[:])
+ c.myCurrentDHPub = new(big.Int).Exp(g, c.myCurrentDHPriv, p)
+ c.myKeyId++
+}
+
+func (c *Conversation) processData(in []byte) (out []byte, tlvs []tlv, err error) {
+ origIn := in
+ flags, in, ok1 := getU8(in)
+ theirKeyId, in, ok2 := getU32(in)
+ myKeyId, in, ok3 := getU32(in)
+ y, in, ok4 := getMPI(in)
+ counter, in, ok5 := getNBytes(in, 8)
+ encrypted, in, ok6 := getData(in)
+ macedData := origIn[:len(origIn)-len(in)]
+ theirMAC, in, ok7 := getNBytes(in, macPrefixBytes)
+ _, in, ok8 := getData(in)
+ if !ok1 || !ok2 || !ok3 || !ok4 || !ok5 || !ok6 || !ok7 || !ok8 || len(in) > 0 {
+ err = errors.New("otr: corrupt data message")
+ return
+ }
+
+ ignoreErrors := flags&1 != 0
+
+ slot, err := c.calcDataKeys(myKeyId, theirKeyId)
+ if err != nil {
+ if ignoreErrors {
+ err = nil
+ }
+ return
+ }
+
+ mac := hmac.New(sha1.New, slot.recvMACKey)
+ mac.Write([]byte{0, 2, 3})
+ mac.Write(macedData)
+ myMAC := mac.Sum(nil)
+ if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 {
+ if !ignoreErrors {
+ err = errors.New("otr: bad MAC on data message")
+ }
+ return
+ }
+
+ if bytes.Compare(counter, slot.theirLastCtr[:]) <= 0 {
+ err = errors.New("otr: counter regressed")
+ return
+ }
+ copy(slot.theirLastCtr[:], counter)
+
+ var iv [aes.BlockSize]byte
+ copy(iv[:], counter)
+ aesCipher, err := aes.NewCipher(slot.recvAESKey)
+ if err != nil {
+ panic(err.Error())
+ }
+ ctr := cipher.NewCTR(aesCipher, iv[:])
+ ctr.XORKeyStream(encrypted, encrypted)
+ decrypted := encrypted
+
+ if myKeyId == c.myKeyId {
+ c.rotateDHKeys()
+ }
+ if theirKeyId == c.theirKeyId {
+ // evict slots using their retired key id
+ for i := range c.keySlots {
+ slot := &c.keySlots[i]
+ if slot.used && slot.theirKeyId == theirKeyId-1 {
+ slot.used = false
+ c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
+ }
+ }
+
+ c.theirLastDHPub = c.theirCurrentDHPub
+ c.theirKeyId++
+ c.theirCurrentDHPub = y
+ }
+
+ if nulPos := bytes.IndexByte(decrypted, 0); nulPos >= 0 {
+ out = decrypted[:nulPos]
+ tlvData := decrypted[nulPos+1:]
+ for len(tlvData) > 0 {
+ var t tlv
+ var ok1, ok2, ok3 bool
+
+ t.typ, tlvData, ok1 = getU16(tlvData)
+ t.length, tlvData, ok2 = getU16(tlvData)
+ t.data, tlvData, ok3 = getNBytes(tlvData, int(t.length))
+ if !ok1 || !ok2 || !ok3 {
+ err = errors.New("otr: corrupt tlv data")
+ return
+ }
+ tlvs = append(tlvs, t)
+ }
+ } else {
+ out = decrypted
+ }
+
+ return
+}
+
+func (c *Conversation) generateData(msg []byte, extra *tlv) []byte {
+ slot, err := c.calcDataKeys(c.myKeyId-1, c.theirKeyId)
+ if err != nil {
+ panic("otr: failed to generate sending keys: " + err.Error())
+ }
+
+ var plaintext []byte
+ plaintext = append(plaintext, msg...)
+ plaintext = append(plaintext, 0)
+
+ padding := paddingGranularity - ((len(plaintext) + 4) % paddingGranularity)
+ plaintext = appendU16(plaintext, tlvTypePadding)
+ plaintext = appendU16(plaintext, uint16(padding))
+ for i := 0; i < padding; i++ {
+ plaintext = append(plaintext, 0)
+ }
+
+ if extra != nil {
+ plaintext = appendU16(plaintext, extra.typ)
+ plaintext = appendU16(plaintext, uint16(len(extra.data)))
+ plaintext = append(plaintext, extra.data...)
+ }
+
+ encrypted := make([]byte, len(plaintext))
+
+ var iv [aes.BlockSize]byte
+ copy(iv[:], c.myCounter[:])
+ aesCipher, err := aes.NewCipher(slot.sendAESKey)
+ if err != nil {
+ panic(err.Error())
+ }
+ ctr := cipher.NewCTR(aesCipher, iv[:])
+ ctr.XORKeyStream(encrypted, plaintext)
+
+ var ret []byte
+ ret = appendU16(ret, 2)
+ ret = append(ret, msgTypeData)
+ ret = append(ret, 0 /* flags */)
+ ret = appendU32(ret, c.myKeyId-1)
+ ret = appendU32(ret, c.theirKeyId)
+ ret = appendMPI(ret, c.myCurrentDHPub)
+ ret = append(ret, c.myCounter[:]...)
+ ret = appendData(ret, encrypted)
+
+ mac := hmac.New(sha1.New, slot.sendMACKey)
+ mac.Write(ret)
+ ret = append(ret, mac.Sum(nil)[:macPrefixBytes]...)
+ ret = appendData(ret, c.oldMACs)
+ c.oldMACs = nil
+ incCounter(&c.myCounter)
+
+ return ret
+}
+
+func incCounter(counter *[8]byte) {
+ for i := 7; i >= 0; i-- {
+ counter[i]++
+ if counter[i] > 0 {
+ break
+ }
+ }
+}
+
+// calcDataKeys computes the keys used to encrypt a data message given the key
+// IDs.
+func (c *Conversation) calcDataKeys(myKeyId, theirKeyId uint32) (slot *keySlot, err error) {
+ // Check for a cache hit.
+ for i := range c.keySlots {
+ slot = &c.keySlots[i]
+ if slot.used && slot.theirKeyId == theirKeyId && slot.myKeyId == myKeyId {
+ return
+ }
+ }
+
+ // Find an empty slot to write into.
+ slot = nil
+ for i := range c.keySlots {
+ if !c.keySlots[i].used {
+ slot = &c.keySlots[i]
+ break
+ }
+ }
+ if slot == nil {
+ return nil, errors.New("otr: internal error: no more key slots")
+ }
+
+ var myPriv, myPub, theirPub *big.Int
+
+ if myKeyId == c.myKeyId {
+ myPriv = c.myCurrentDHPriv
+ myPub = c.myCurrentDHPub
+ } else if myKeyId == c.myKeyId-1 {
+ myPriv = c.myLastDHPriv
+ myPub = c.myLastDHPub
+ } else {
+ err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when I'm on " + strconv.FormatUint(uint64(c.myKeyId), 10))
+ return
+ }
+
+ if theirKeyId == c.theirKeyId {
+ theirPub = c.theirCurrentDHPub
+ } else if theirKeyId == c.theirKeyId-1 && c.theirLastDHPub != nil {
+ theirPub = c.theirLastDHPub
+ } else {
+ err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when they're on " + strconv.FormatUint(uint64(c.myKeyId), 10))
+ return
+ }
+
+ var sendPrefixByte, recvPrefixByte [1]byte
+
+ if myPub.Cmp(theirPub) > 0 {
+ // we're the high end
+ sendPrefixByte[0], recvPrefixByte[0] = 1, 2
+ } else {
+ // we're the low end
+ sendPrefixByte[0], recvPrefixByte[0] = 2, 1
+ }
+
+ s := new(big.Int).Exp(theirPub, myPriv, p)
+ sBytes := appendMPI(nil, s)
+
+ h := sha1.New()
+ h.Write(sendPrefixByte[:])
+ h.Write(sBytes)
+ slot.sendAESKey = h.Sum(slot.sendAESKey[:0])[:16]
+
+ h.Reset()
+ h.Write(slot.sendAESKey)
+ slot.sendMACKey = h.Sum(slot.sendMACKey[:0])
+
+ h.Reset()
+ h.Write(recvPrefixByte[:])
+ h.Write(sBytes)
+ slot.recvAESKey = h.Sum(slot.recvAESKey[:0])[:16]
+
+ h.Reset()
+ h.Write(slot.recvAESKey)
+ slot.recvMACKey = h.Sum(slot.recvMACKey[:0])
+
+ slot.theirKeyId = theirKeyId
+ slot.myKeyId = myKeyId
+ slot.used = true
+
+ zero(slot.theirLastCtr[:])
+ return
+}
+
+func (c *Conversation) calcAKEKeys(s *big.Int) {
+ mpi := appendMPI(nil, s)
+ h := sha256.New()
+
+ var cBytes [32]byte
+ hashWithPrefix(c.SSID[:], 0, mpi, h)
+
+ hashWithPrefix(cBytes[:], 1, mpi, h)
+ copy(c.revealKeys.c[:], cBytes[:16])
+ copy(c.sigKeys.c[:], cBytes[16:])
+
+ hashWithPrefix(c.revealKeys.m1[:], 2, mpi, h)
+ hashWithPrefix(c.revealKeys.m2[:], 3, mpi, h)
+ hashWithPrefix(c.sigKeys.m1[:], 4, mpi, h)
+ hashWithPrefix(c.sigKeys.m2[:], 5, mpi, h)
+}
+
+func hashWithPrefix(out []byte, prefix byte, in []byte, h hash.Hash) {
+ h.Reset()
+ var p [1]byte
+ p[0] = prefix
+ h.Write(p[:])
+ h.Write(in)
+ if len(out) == h.Size() {
+ h.Sum(out[:0])
+ } else {
+ digest := h.Sum(nil)
+ copy(out, digest)
+ }
+}
+
+func (c *Conversation) encode(msg []byte) [][]byte {
+ b64 := make([]byte, base64.StdEncoding.EncodedLen(len(msg))+len(msgPrefix)+1)
+ base64.StdEncoding.Encode(b64[len(msgPrefix):], msg)
+ copy(b64, msgPrefix)
+ b64[len(b64)-1] = '.'
+
+ if c.FragmentSize < minFragmentSize || len(b64) <= c.FragmentSize {
+ // We can encode this in a single fragment.
+ return [][]byte{b64}
+ }
+
+ // We have to fragment this message.
+ var ret [][]byte
+ bytesPerFragment := c.FragmentSize - minFragmentSize
+ numFragments := (len(b64) + bytesPerFragment) / bytesPerFragment
+
+ for i := 0; i < numFragments; i++ {
+ frag := []byte("?OTR," + strconv.Itoa(i+1) + "," + strconv.Itoa(numFragments) + ",")
+ todo := bytesPerFragment
+ if todo > len(b64) {
+ todo = len(b64)
+ }
+ frag = append(frag, b64[:todo]...)
+ b64 = b64[todo:]
+ frag = append(frag, ',')
+ ret = append(ret, frag)
+ }
+
+ return ret
+}
+
+func (c *Conversation) reset() {
+ c.myKeyId = 0
+
+ for i := range c.keySlots {
+ c.keySlots[i].used = false
+ }
+}
+
+type PublicKey struct {
+ dsa.PublicKey
+}
+
+func (pk *PublicKey) Parse(in []byte) ([]byte, bool) {
+ var ok bool
+ var pubKeyType uint16
+
+ if pubKeyType, in, ok = getU16(in); !ok || pubKeyType != 0 {
+ return nil, false
+ }
+ if pk.P, in, ok = getMPI(in); !ok {
+ return nil, false
+ }
+ if pk.Q, in, ok = getMPI(in); !ok {
+ return nil, false
+ }
+ if pk.G, in, ok = getMPI(in); !ok {
+ return nil, false
+ }
+ if pk.Y, in, ok = getMPI(in); !ok {
+ return nil, false
+ }
+
+ return in, true
+}
+
+func (pk *PublicKey) Serialize(in []byte) []byte {
+ in = appendU16(in, 0)
+ in = appendMPI(in, pk.P)
+ in = appendMPI(in, pk.Q)
+ in = appendMPI(in, pk.G)
+ in = appendMPI(in, pk.Y)
+ return in
+}
+
+// Fingerprint returns the 20-byte, binary fingerprint of the PublicKey.
+func (pk *PublicKey) Fingerprint() []byte {
+ b := pk.Serialize(nil)
+ h := sha1.New()
+ h.Write(b[2:])
+ return h.Sum(nil)
+}
+
+func (pk *PublicKey) Verify(hashed, sig []byte) ([]byte, bool) {
+ if len(sig) != 2*dsaSubgroupBytes {
+ return nil, false
+ }
+ r := new(big.Int).SetBytes(sig[:dsaSubgroupBytes])
+ s := new(big.Int).SetBytes(sig[dsaSubgroupBytes:])
+ ok := dsa.Verify(&pk.PublicKey, hashed, r, s)
+ return sig[dsaSubgroupBytes*2:], ok
+}
+
+type PrivateKey struct {
+ PublicKey
+ dsa.PrivateKey
+}
+
+func (priv *PrivateKey) Sign(rand io.Reader, hashed []byte) []byte {
+ r, s, err := dsa.Sign(rand, &priv.PrivateKey, hashed)
+ if err != nil {
+ panic(err.Error())
+ }
+ rBytes := r.Bytes()
+ sBytes := s.Bytes()
+ if len(rBytes) > dsaSubgroupBytes || len(sBytes) > dsaSubgroupBytes {
+ panic("DSA signature too large")
+ }
+
+ out := make([]byte, 2*dsaSubgroupBytes)
+ copy(out[dsaSubgroupBytes-len(rBytes):], rBytes)
+ copy(out[len(out)-len(sBytes):], sBytes)
+ return out
+}
+
+func (priv *PrivateKey) Serialize(in []byte) []byte {
+ in = priv.PublicKey.Serialize(in)
+ in = appendMPI(in, priv.PrivateKey.X)
+ return in
+}
+
+func (priv *PrivateKey) Parse(in []byte) ([]byte, bool) {
+ in, ok := priv.PublicKey.Parse(in)
+ if !ok {
+ return in, ok
+ }
+ priv.PrivateKey.PublicKey = priv.PublicKey.PublicKey
+ priv.PrivateKey.X, in, ok = getMPI(in)
+ return in, ok
+}
+
+func (priv *PrivateKey) Generate(rand io.Reader) {
+ if err := dsa.GenerateParameters(&priv.PrivateKey.PublicKey.Parameters, rand, dsa.L1024N160); err != nil {
+ panic(err.Error())
+ }
+ if err := dsa.GenerateKey(&priv.PrivateKey, rand); err != nil {
+ panic(err.Error())
+ }
+ priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey
+}
+
+func notHex(r rune) bool {
+ if r >= '0' && r <= '9' ||
+ r >= 'a' && r <= 'f' ||
+ r >= 'A' && r <= 'F' {
+ return false
+ }
+
+ return true
+}
+
+// Import parses the contents of a libotr private key file.
+func (priv *PrivateKey) Import(in []byte) bool {
+ mpiStart := []byte(" #")
+
+ mpis := make([]*big.Int, 5)
+
+ for i := 0; i < len(mpis); i++ {
+ start := bytes.Index(in, mpiStart)
+ if start == -1 {
+ return false
+ }
+ in = in[start+len(mpiStart):]
+ end := bytes.IndexFunc(in, notHex)
+ if end == -1 {
+ return false
+ }
+ hexBytes := in[:end]
+ in = in[end:]
+
+ if len(hexBytes)&1 != 0 {
+ return false
+ }
+
+ mpiBytes := make([]byte, len(hexBytes)/2)
+ if _, err := hex.Decode(mpiBytes, hexBytes); err != nil {
+ return false
+ }
+
+ mpis[i] = new(big.Int).SetBytes(mpiBytes)
+ }
+
+ for _, mpi := range mpis {
+ if mpi.Sign() <= 0 {
+ return false
+ }
+ }
+
+ priv.PrivateKey.P = mpis[0]
+ priv.PrivateKey.Q = mpis[1]
+ priv.PrivateKey.G = mpis[2]
+ priv.PrivateKey.Y = mpis[3]
+ priv.PrivateKey.X = mpis[4]
+ priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey
+
+ a := new(big.Int).Exp(priv.PrivateKey.G, priv.PrivateKey.X, priv.PrivateKey.P)
+ return a.Cmp(priv.PrivateKey.Y) == 0
+}
+
+func getU8(in []byte) (uint8, []byte, bool) {
+ if len(in) < 1 {
+ return 0, in, false
+ }
+ return in[0], in[1:], true
+}
+
+func getU16(in []byte) (uint16, []byte, bool) {
+ if len(in) < 2 {
+ return 0, in, false
+ }
+ r := uint16(in[0])<<8 | uint16(in[1])
+ return r, in[2:], true
+}
+
+func getU32(in []byte) (uint32, []byte, bool) {
+ if len(in) < 4 {
+ return 0, in, false
+ }
+ r := uint32(in[0])<<24 | uint32(in[1])<<16 | uint32(in[2])<<8 | uint32(in[3])
+ return r, in[4:], true
+}
+
+func getMPI(in []byte) (*big.Int, []byte, bool) {
+ l, in, ok := getU32(in)
+ if !ok || uint32(len(in)) < l {
+ return nil, in, false
+ }
+ r := new(big.Int).SetBytes(in[:l])
+ return r, in[l:], true
+}
+
+func getData(in []byte) ([]byte, []byte, bool) {
+ l, in, ok := getU32(in)
+ if !ok || uint32(len(in)) < l {
+ return nil, in, false
+ }
+ return in[:l], in[l:], true
+}
+
+func getNBytes(in []byte, n int) ([]byte, []byte, bool) {
+ if len(in) < n {
+ return nil, in, false
+ }
+ return in[:n], in[n:], true
+}
+
+func appendU16(out []byte, v uint16) []byte {
+ out = append(out, byte(v>>8), byte(v))
+ return out
+}
+
+func appendU32(out []byte, v uint32) []byte {
+ out = append(out, byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
+ return out
+}
+
+func appendData(out, v []byte) []byte {
+ out = appendU32(out, uint32(len(v)))
+ out = append(out, v...)
+ return out
+}
+
+func appendMPI(out []byte, v *big.Int) []byte {
+ vBytes := v.Bytes()
+ out = appendU32(out, uint32(len(vBytes)))
+ out = append(out, vBytes...)
+ return out
+}
+
+func appendMPIs(out []byte, mpis ...*big.Int) []byte {
+ for _, mpi := range mpis {
+ out = appendMPI(out, mpi)
+ }
+ return out
+}
+
+func zero(b []byte) {
+ for i := range b {
+ b[i] = 0
+ }
+}