summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go')
-rw-r--r--vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go1415
1 files changed, 0 insertions, 1415 deletions
diff --git a/vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go b/vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go
deleted file mode 100644
index 173b753db..000000000
--- a/vendor/github.com/miekg/dns/vendor/golang.org/x/crypto/otr/otr.go
+++ /dev/null
@@ -1,1415 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package otr implements the Off The Record protocol as specified in
-// http://www.cypherpunks.ca/otr/Protocol-v2-3.1.0.html
-package otr // import "golang.org/x/crypto/otr"
-
-import (
- "bytes"
- "crypto/aes"
- "crypto/cipher"
- "crypto/dsa"
- "crypto/hmac"
- "crypto/rand"
- "crypto/sha1"
- "crypto/sha256"
- "crypto/subtle"
- "encoding/base64"
- "encoding/hex"
- "errors"
- "hash"
- "io"
- "math/big"
- "strconv"
-)
-
-// SecurityChange describes a change in the security state of a Conversation.
-type SecurityChange int
-
-const (
- NoChange SecurityChange = iota
- // NewKeys indicates that a key exchange has completed. This occurs
- // when a conversation first becomes encrypted, and when the keys are
- // renegotiated within an encrypted conversation.
- NewKeys
- // SMPSecretNeeded indicates that the peer has started an
- // authentication and that we need to supply a secret. Call SMPQuestion
- // to get the optional, human readable challenge and then Authenticate
- // to supply the matching secret.
- SMPSecretNeeded
- // SMPComplete indicates that an authentication completed. The identity
- // of the peer has now been confirmed.
- SMPComplete
- // SMPFailed indicates that an authentication failed.
- SMPFailed
- // ConversationEnded indicates that the peer ended the secure
- // conversation.
- ConversationEnded
-)
-
-// QueryMessage can be sent to a peer to start an OTR conversation.
-var QueryMessage = "?OTRv2?"
-
-// ErrorPrefix can be used to make an OTR error by appending an error message
-// to it.
-var ErrorPrefix = "?OTR Error:"
-
-var (
- fragmentPartSeparator = []byte(",")
- fragmentPrefix = []byte("?OTR,")
- msgPrefix = []byte("?OTR:")
- queryMarker = []byte("?OTR")
-)
-
-// isQuery attempts to parse an OTR query from msg and returns the greatest
-// common version, or 0 if msg is not an OTR query.
-func isQuery(msg []byte) (greatestCommonVersion int) {
- pos := bytes.Index(msg, queryMarker)
- if pos == -1 {
- return 0
- }
- for i, c := range msg[pos+len(queryMarker):] {
- if i == 0 {
- if c == '?' {
- // Indicates support for version 1, but we don't
- // implement that.
- continue
- }
-
- if c != 'v' {
- // Invalid message
- return 0
- }
-
- continue
- }
-
- if c == '?' {
- // End of message
- return
- }
-
- if c == ' ' || c == '\t' {
- // Probably an invalid message
- return 0
- }
-
- if c == '2' {
- greatestCommonVersion = 2
- }
- }
-
- return 0
-}
-
-const (
- statePlaintext = iota
- stateEncrypted
- stateFinished
-)
-
-const (
- authStateNone = iota
- authStateAwaitingDHKey
- authStateAwaitingRevealSig
- authStateAwaitingSig
-)
-
-const (
- msgTypeDHCommit = 2
- msgTypeData = 3
- msgTypeDHKey = 10
- msgTypeRevealSig = 17
- msgTypeSig = 18
-)
-
-const (
- // If the requested fragment size is less than this, it will be ignored.
- minFragmentSize = 18
- // Messages are padded to a multiple of this number of bytes.
- paddingGranularity = 256
- // The number of bytes in a Diffie-Hellman private value (320-bits).
- dhPrivateBytes = 40
- // The number of bytes needed to represent an element of the DSA
- // subgroup (160-bits).
- dsaSubgroupBytes = 20
- // The number of bytes of the MAC that are sent on the wire (160-bits).
- macPrefixBytes = 20
-)
-
-// These are the global, common group parameters for OTR.
-var (
- p *big.Int // group prime
- g *big.Int // group generator
- q *big.Int // group order
- pMinus2 *big.Int
-)
-
-func init() {
- p, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", 16)
- q, _ = new(big.Int).SetString("7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68948127044533E63A0105DF531D89CD9128A5043CC71A026EF7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6F71C35FDAD44CFD2D74F9208BE258FF324943328F6722D9EE1003E5C50B1DF82CC6D241B0E2AE9CD348B1FD47E9267AFC1B2AE91EE51D6CB0E3179AB1042A95DCF6A9483B84B4B36B3861AA7255E4C0278BA36046511B993FFFFFFFFFFFFFFFF", 16)
- g = new(big.Int).SetInt64(2)
- pMinus2 = new(big.Int).Sub(p, g)
-}
-
-// Conversation represents a relation with a peer. The zero value is a valid
-// Conversation, although PrivateKey must be set.
-//
-// When communicating with a peer, all inbound messages should be passed to
-// Conversation.Receive and all outbound messages to Conversation.Send. The
-// Conversation will take care of maintaining the encryption state and
-// negotiating encryption as needed.
-type Conversation struct {
- // PrivateKey contains the private key to use to sign key exchanges.
- PrivateKey *PrivateKey
-
- // Rand can be set to override the entropy source. Otherwise,
- // crypto/rand will be used.
- Rand io.Reader
- // If FragmentSize is set, all messages produced by Receive and Send
- // will be fragmented into messages of, at most, this number of bytes.
- FragmentSize int
-
- // Once Receive has returned NewKeys once, the following fields are
- // valid.
- SSID [8]byte
- TheirPublicKey PublicKey
-
- state, authState int
-
- r [16]byte
- x, y *big.Int
- gx, gy *big.Int
- gxBytes []byte
- digest [sha256.Size]byte
-
- revealKeys, sigKeys akeKeys
-
- myKeyId uint32
- myCurrentDHPub *big.Int
- myCurrentDHPriv *big.Int
- myLastDHPub *big.Int
- myLastDHPriv *big.Int
-
- theirKeyId uint32
- theirCurrentDHPub *big.Int
- theirLastDHPub *big.Int
-
- keySlots [4]keySlot
-
- myCounter [8]byte
- theirLastCtr [8]byte
- oldMACs []byte
-
- k, n int // fragment state
- frag []byte
-
- smp smpState
-}
-
-// A keySlot contains key material for a specific (their keyid, my keyid) pair.
-type keySlot struct {
- // used is true if this slot is valid. If false, it's free for reuse.
- used bool
- theirKeyId uint32
- myKeyId uint32
- sendAESKey, recvAESKey []byte
- sendMACKey, recvMACKey []byte
- theirLastCtr [8]byte
-}
-
-// akeKeys are generated during key exchange. There's one set for the reveal
-// signature message and another for the signature message. In the protocol
-// spec the latter are indicated with a prime mark.
-type akeKeys struct {
- c [16]byte
- m1, m2 [32]byte
-}
-
-func (c *Conversation) rand() io.Reader {
- if c.Rand != nil {
- return c.Rand
- }
- return rand.Reader
-}
-
-func (c *Conversation) randMPI(buf []byte) *big.Int {
- _, err := io.ReadFull(c.rand(), buf)
- if err != nil {
- panic("otr: short read from random source")
- }
-
- return new(big.Int).SetBytes(buf)
-}
-
-// tlv represents the type-length value from the protocol.
-type tlv struct {
- typ, length uint16
- data []byte
-}
-
-const (
- tlvTypePadding = 0
- tlvTypeDisconnected = 1
- tlvTypeSMP1 = 2
- tlvTypeSMP2 = 3
- tlvTypeSMP3 = 4
- tlvTypeSMP4 = 5
- tlvTypeSMPAbort = 6
- tlvTypeSMP1WithQuestion = 7
-)
-
-// Receive handles a message from a peer. It returns a human readable message,
-// an indicator of whether that message was encrypted, a hint about the
-// encryption state and zero or more messages to send back to the peer.
-// These messages do not need to be passed to Send before transmission.
-func (c *Conversation) Receive(in []byte) (out []byte, encrypted bool, change SecurityChange, toSend [][]byte, err error) {
- if bytes.HasPrefix(in, fragmentPrefix) {
- in, err = c.processFragment(in)
- if in == nil || err != nil {
- return
- }
- }
-
- if bytes.HasPrefix(in, msgPrefix) && in[len(in)-1] == '.' {
- in = in[len(msgPrefix) : len(in)-1]
- } else if version := isQuery(in); version > 0 {
- c.authState = authStateAwaitingDHKey
- c.reset()
- toSend = c.encode(c.generateDHCommit())
- return
- } else {
- // plaintext message
- out = in
- return
- }
-
- msg := make([]byte, base64.StdEncoding.DecodedLen(len(in)))
- msgLen, err := base64.StdEncoding.Decode(msg, in)
- if err != nil {
- err = errors.New("otr: invalid base64 encoding in message")
- return
- }
- msg = msg[:msgLen]
-
- // The first two bytes are the protocol version (2)
- if len(msg) < 3 || msg[0] != 0 || msg[1] != 2 {
- err = errors.New("otr: invalid OTR message")
- return
- }
-
- msgType := int(msg[2])
- msg = msg[3:]
-
- switch msgType {
- case msgTypeDHCommit:
- switch c.authState {
- case authStateNone:
- c.authState = authStateAwaitingRevealSig
- if err = c.processDHCommit(msg); err != nil {
- return
- }
- c.reset()
- toSend = c.encode(c.generateDHKey())
- return
- case authStateAwaitingDHKey:
- // This is a 'SYN-crossing'. The greater digest wins.
- var cmp int
- if cmp, err = c.compareToDHCommit(msg); err != nil {
- return
- }
- if cmp > 0 {
- // We win. Retransmit DH commit.
- toSend = c.encode(c.serializeDHCommit())
- return
- } else {
- // They win. We forget about our DH commit.
- c.authState = authStateAwaitingRevealSig
- if err = c.processDHCommit(msg); err != nil {
- return
- }
- c.reset()
- toSend = c.encode(c.generateDHKey())
- return
- }
- case authStateAwaitingRevealSig:
- if err = c.processDHCommit(msg); err != nil {
- return
- }
- toSend = c.encode(c.serializeDHKey())
- case authStateAwaitingSig:
- if err = c.processDHCommit(msg); err != nil {
- return
- }
- c.reset()
- toSend = c.encode(c.generateDHKey())
- c.authState = authStateAwaitingRevealSig
- default:
- panic("bad state")
- }
- case msgTypeDHKey:
- switch c.authState {
- case authStateAwaitingDHKey:
- var isSame bool
- if isSame, err = c.processDHKey(msg); err != nil {
- return
- }
- if isSame {
- err = errors.New("otr: unexpected duplicate DH key")
- return
- }
- toSend = c.encode(c.generateRevealSig())
- c.authState = authStateAwaitingSig
- case authStateAwaitingSig:
- var isSame bool
- if isSame, err = c.processDHKey(msg); err != nil {
- return
- }
- if isSame {
- toSend = c.encode(c.serializeDHKey())
- }
- }
- case msgTypeRevealSig:
- if c.authState != authStateAwaitingRevealSig {
- return
- }
- if err = c.processRevealSig(msg); err != nil {
- return
- }
- toSend = c.encode(c.generateSig())
- c.authState = authStateNone
- c.state = stateEncrypted
- change = NewKeys
- case msgTypeSig:
- if c.authState != authStateAwaitingSig {
- return
- }
- if err = c.processSig(msg); err != nil {
- return
- }
- c.authState = authStateNone
- c.state = stateEncrypted
- change = NewKeys
- case msgTypeData:
- if c.state != stateEncrypted {
- err = errors.New("otr: encrypted message received without encrypted session established")
- return
- }
- var tlvs []tlv
- out, tlvs, err = c.processData(msg)
- encrypted = true
-
- EachTLV:
- for _, inTLV := range tlvs {
- switch inTLV.typ {
- case tlvTypeDisconnected:
- change = ConversationEnded
- c.state = stateFinished
- break EachTLV
- case tlvTypeSMP1, tlvTypeSMP2, tlvTypeSMP3, tlvTypeSMP4, tlvTypeSMPAbort, tlvTypeSMP1WithQuestion:
- var reply tlv
- var complete bool
- reply, complete, err = c.processSMP(inTLV)
- if err == smpSecretMissingError {
- err = nil
- change = SMPSecretNeeded
- c.smp.saved = &inTLV
- return
- }
- if err == smpFailureError {
- err = nil
- change = SMPFailed
- } else if complete {
- change = SMPComplete
- }
- if reply.typ != 0 {
- toSend = c.encode(c.generateData(nil, &reply))
- }
- break EachTLV
- default:
- // skip unknown TLVs
- }
- }
- default:
- err = errors.New("otr: unknown message type " + strconv.Itoa(msgType))
- }
-
- return
-}
-
-// Send takes a human readable message from the local user, possibly encrypts
-// it and returns zero one or more messages to send to the peer.
-func (c *Conversation) Send(msg []byte) ([][]byte, error) {
- switch c.state {
- case statePlaintext:
- return [][]byte{msg}, nil
- case stateEncrypted:
- return c.encode(c.generateData(msg, nil)), nil
- case stateFinished:
- return nil, errors.New("otr: cannot send message because secure conversation has finished")
- }
-
- return nil, errors.New("otr: cannot send message in current state")
-}
-
-// SMPQuestion returns the human readable challenge question from the peer.
-// It's only valid after Receive has returned SMPSecretNeeded.
-func (c *Conversation) SMPQuestion() string {
- return c.smp.question
-}
-
-// Authenticate begins an authentication with the peer. Authentication involves
-// an optional challenge message and a shared secret. The authentication
-// proceeds until either Receive returns SMPComplete, SMPSecretNeeded (which
-// indicates that a new authentication is happening and thus this one was
-// aborted) or SMPFailed.
-func (c *Conversation) Authenticate(question string, mutualSecret []byte) (toSend [][]byte, err error) {
- if c.state != stateEncrypted {
- err = errors.New("otr: can't authenticate a peer without a secure conversation established")
- return
- }
-
- if c.smp.saved != nil {
- c.calcSMPSecret(mutualSecret, false /* they started it */)
-
- var out tlv
- var complete bool
- out, complete, err = c.processSMP(*c.smp.saved)
- if complete {
- panic("SMP completed on the first message")
- }
- c.smp.saved = nil
- if out.typ != 0 {
- toSend = c.encode(c.generateData(nil, &out))
- }
- return
- }
-
- c.calcSMPSecret(mutualSecret, true /* we started it */)
- outs := c.startSMP(question)
- for _, out := range outs {
- toSend = append(toSend, c.encode(c.generateData(nil, &out))...)
- }
- return
-}
-
-// End ends a secure conversation by generating a termination message for
-// the peer and switches to unencrypted communication.
-func (c *Conversation) End() (toSend [][]byte) {
- switch c.state {
- case statePlaintext:
- return nil
- case stateEncrypted:
- c.state = statePlaintext
- return c.encode(c.generateData(nil, &tlv{typ: tlvTypeDisconnected}))
- case stateFinished:
- c.state = statePlaintext
- return nil
- }
- panic("unreachable")
-}
-
-// IsEncrypted returns true if a message passed to Send would be encrypted
-// before transmission. This result remains valid until the next call to
-// Receive or End, which may change the state of the Conversation.
-func (c *Conversation) IsEncrypted() bool {
- return c.state == stateEncrypted
-}
-
-var fragmentError = errors.New("otr: invalid OTR fragment")
-
-// processFragment processes a fragmented OTR message and possibly returns a
-// complete message. Fragmented messages look like "?OTR,k,n,msg," where k is
-// the fragment number (starting from 1), n is the number of fragments in this
-// message and msg is a substring of the base64 encoded message.
-func (c *Conversation) processFragment(in []byte) (out []byte, err error) {
- in = in[len(fragmentPrefix):] // remove "?OTR,"
- parts := bytes.Split(in, fragmentPartSeparator)
- if len(parts) != 4 || len(parts[3]) != 0 {
- return nil, fragmentError
- }
-
- k, err := strconv.Atoi(string(parts[0]))
- if err != nil {
- return nil, fragmentError
- }
-
- n, err := strconv.Atoi(string(parts[1]))
- if err != nil {
- return nil, fragmentError
- }
-
- if k < 1 || n < 1 || k > n {
- return nil, fragmentError
- }
-
- if k == 1 {
- c.frag = append(c.frag[:0], parts[2]...)
- c.k, c.n = k, n
- } else if n == c.n && k == c.k+1 {
- c.frag = append(c.frag, parts[2]...)
- c.k++
- } else {
- c.frag = c.frag[:0]
- c.n, c.k = 0, 0
- }
-
- if c.n > 0 && c.k == c.n {
- c.n, c.k = 0, 0
- return c.frag, nil
- }
-
- return nil, nil
-}
-
-func (c *Conversation) generateDHCommit() []byte {
- _, err := io.ReadFull(c.rand(), c.r[:])
- if err != nil {
- panic("otr: short read from random source")
- }
-
- var xBytes [dhPrivateBytes]byte
- c.x = c.randMPI(xBytes[:])
- c.gx = new(big.Int).Exp(g, c.x, p)
- c.gy = nil
- c.gxBytes = appendMPI(nil, c.gx)
-
- h := sha256.New()
- h.Write(c.gxBytes)
- h.Sum(c.digest[:0])
-
- aesCipher, err := aes.NewCipher(c.r[:])
- if err != nil {
- panic(err.Error())
- }
-
- var iv [aes.BlockSize]byte
- ctr := cipher.NewCTR(aesCipher, iv[:])
- ctr.XORKeyStream(c.gxBytes, c.gxBytes)
-
- return c.serializeDHCommit()
-}
-
-func (c *Conversation) serializeDHCommit() []byte {
- var ret []byte
- ret = appendU16(ret, 2) // protocol version
- ret = append(ret, msgTypeDHCommit)
- ret = appendData(ret, c.gxBytes)
- ret = appendData(ret, c.digest[:])
- return ret
-}
-
-func (c *Conversation) processDHCommit(in []byte) error {
- var ok1, ok2 bool
- c.gxBytes, in, ok1 = getData(in)
- digest, in, ok2 := getData(in)
- if !ok1 || !ok2 || len(in) > 0 {
- return errors.New("otr: corrupt DH commit message")
- }
- copy(c.digest[:], digest)
- return nil
-}
-
-func (c *Conversation) compareToDHCommit(in []byte) (int, error) {
- _, in, ok1 := getData(in)
- digest, in, ok2 := getData(in)
- if !ok1 || !ok2 || len(in) > 0 {
- return 0, errors.New("otr: corrupt DH commit message")
- }
- return bytes.Compare(c.digest[:], digest), nil
-}
-
-func (c *Conversation) generateDHKey() []byte {
- var yBytes [dhPrivateBytes]byte
- c.y = c.randMPI(yBytes[:])
- c.gy = new(big.Int).Exp(g, c.y, p)
- return c.serializeDHKey()
-}
-
-func (c *Conversation) serializeDHKey() []byte {
- var ret []byte
- ret = appendU16(ret, 2) // protocol version
- ret = append(ret, msgTypeDHKey)
- ret = appendMPI(ret, c.gy)
- return ret
-}
-
-func (c *Conversation) processDHKey(in []byte) (isSame bool, err error) {
- gy, in, ok := getMPI(in)
- if !ok {
- err = errors.New("otr: corrupt DH key message")
- return
- }
- if gy.Cmp(g) < 0 || gy.Cmp(pMinus2) > 0 {
- err = errors.New("otr: DH value out of range")
- return
- }
- if c.gy != nil {
- isSame = c.gy.Cmp(gy) == 0
- return
- }
- c.gy = gy
- return
-}
-
-func (c *Conversation) generateEncryptedSignature(keys *akeKeys, xFirst bool) ([]byte, []byte) {
- var xb []byte
- xb = c.PrivateKey.PublicKey.Serialize(xb)
-
- var verifyData []byte
- if xFirst {
- verifyData = appendMPI(verifyData, c.gx)
- verifyData = appendMPI(verifyData, c.gy)
- } else {
- verifyData = appendMPI(verifyData, c.gy)
- verifyData = appendMPI(verifyData, c.gx)
- }
- verifyData = append(verifyData, xb...)
- verifyData = appendU32(verifyData, c.myKeyId)
-
- mac := hmac.New(sha256.New, keys.m1[:])
- mac.Write(verifyData)
- mb := mac.Sum(nil)
-
- xb = appendU32(xb, c.myKeyId)
- xb = append(xb, c.PrivateKey.Sign(c.rand(), mb)...)
-
- aesCipher, err := aes.NewCipher(keys.c[:])
- if err != nil {
- panic(err.Error())
- }
- var iv [aes.BlockSize]byte
- ctr := cipher.NewCTR(aesCipher, iv[:])
- ctr.XORKeyStream(xb, xb)
-
- mac = hmac.New(sha256.New, keys.m2[:])
- encryptedSig := appendData(nil, xb)
- mac.Write(encryptedSig)
-
- return encryptedSig, mac.Sum(nil)
-}
-
-func (c *Conversation) generateRevealSig() []byte {
- s := new(big.Int).Exp(c.gy, c.x, p)
- c.calcAKEKeys(s)
- c.myKeyId++
-
- encryptedSig, mac := c.generateEncryptedSignature(&c.revealKeys, true /* gx comes first */)
-
- c.myCurrentDHPub = c.gx
- c.myCurrentDHPriv = c.x
- c.rotateDHKeys()
- incCounter(&c.myCounter)
-
- var ret []byte
- ret = appendU16(ret, 2)
- ret = append(ret, msgTypeRevealSig)
- ret = appendData(ret, c.r[:])
- ret = append(ret, encryptedSig...)
- ret = append(ret, mac[:20]...)
- return ret
-}
-
-func (c *Conversation) processEncryptedSig(encryptedSig, theirMAC []byte, keys *akeKeys, xFirst bool) error {
- mac := hmac.New(sha256.New, keys.m2[:])
- mac.Write(appendData(nil, encryptedSig))
- myMAC := mac.Sum(nil)[:20]
-
- if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 {
- return errors.New("bad signature MAC in encrypted signature")
- }
-
- aesCipher, err := aes.NewCipher(keys.c[:])
- if err != nil {
- panic(err.Error())
- }
- var iv [aes.BlockSize]byte
- ctr := cipher.NewCTR(aesCipher, iv[:])
- ctr.XORKeyStream(encryptedSig, encryptedSig)
-
- sig := encryptedSig
- sig, ok1 := c.TheirPublicKey.Parse(sig)
- keyId, sig, ok2 := getU32(sig)
- if !ok1 || !ok2 {
- return errors.New("otr: corrupt encrypted signature")
- }
-
- var verifyData []byte
- if xFirst {
- verifyData = appendMPI(verifyData, c.gx)
- verifyData = appendMPI(verifyData, c.gy)
- } else {
- verifyData = appendMPI(verifyData, c.gy)
- verifyData = appendMPI(verifyData, c.gx)
- }
- verifyData = c.TheirPublicKey.Serialize(verifyData)
- verifyData = appendU32(verifyData, keyId)
-
- mac = hmac.New(sha256.New, keys.m1[:])
- mac.Write(verifyData)
- mb := mac.Sum(nil)
-
- sig, ok1 = c.TheirPublicKey.Verify(mb, sig)
- if !ok1 {
- return errors.New("bad signature in encrypted signature")
- }
- if len(sig) > 0 {
- return errors.New("corrupt encrypted signature")
- }
-
- c.theirKeyId = keyId
- zero(c.theirLastCtr[:])
- return nil
-}
-
-func (c *Conversation) processRevealSig(in []byte) error {
- r, in, ok1 := getData(in)
- encryptedSig, in, ok2 := getData(in)
- theirMAC := in
- if !ok1 || !ok2 || len(theirMAC) != 20 {
- return errors.New("otr: corrupt reveal signature message")
- }
-
- aesCipher, err := aes.NewCipher(r)
- if err != nil {
- return errors.New("otr: cannot create AES cipher from reveal signature message: " + err.Error())
- }
- var iv [aes.BlockSize]byte
- ctr := cipher.NewCTR(aesCipher, iv[:])
- ctr.XORKeyStream(c.gxBytes, c.gxBytes)
- h := sha256.New()
- h.Write(c.gxBytes)
- digest := h.Sum(nil)
- if len(digest) != len(c.digest) || subtle.ConstantTimeCompare(digest, c.digest[:]) == 0 {
- return errors.New("otr: bad commit MAC in reveal signature message")
- }
- var rest []byte
- c.gx, rest, ok1 = getMPI(c.gxBytes)
- if !ok1 || len(rest) > 0 {
- return errors.New("otr: gx corrupt after decryption")
- }
- if c.gx.Cmp(g) < 0 || c.gx.Cmp(pMinus2) > 0 {
- return errors.New("otr: DH value out of range")
- }
- s := new(big.Int).Exp(c.gx, c.y, p)
- c.calcAKEKeys(s)
-
- if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.revealKeys, true /* gx comes first */); err != nil {
- return errors.New("otr: in reveal signature message: " + err.Error())
- }
-
- c.theirCurrentDHPub = c.gx
- c.theirLastDHPub = nil
-
- return nil
-}
-
-func (c *Conversation) generateSig() []byte {
- c.myKeyId++
-
- encryptedSig, mac := c.generateEncryptedSignature(&c.sigKeys, false /* gy comes first */)
-
- c.myCurrentDHPub = c.gy
- c.myCurrentDHPriv = c.y
- c.rotateDHKeys()
- incCounter(&c.myCounter)
-
- var ret []byte
- ret = appendU16(ret, 2)
- ret = append(ret, msgTypeSig)
- ret = append(ret, encryptedSig...)
- ret = append(ret, mac[:macPrefixBytes]...)
- return ret
-}
-
-func (c *Conversation) processSig(in []byte) error {
- encryptedSig, in, ok1 := getData(in)
- theirMAC := in
- if !ok1 || len(theirMAC) != macPrefixBytes {
- return errors.New("otr: corrupt signature message")
- }
-
- if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.sigKeys, false /* gy comes first */); err != nil {
- return errors.New("otr: in signature message: " + err.Error())
- }
-
- c.theirCurrentDHPub = c.gy
- c.theirLastDHPub = nil
-
- return nil
-}
-
-func (c *Conversation) rotateDHKeys() {
- // evict slots using our retired key id
- for i := range c.keySlots {
- slot := &c.keySlots[i]
- if slot.used && slot.myKeyId == c.myKeyId-1 {
- slot.used = false
- c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
- }
- }
-
- c.myLastDHPriv = c.myCurrentDHPriv
- c.myLastDHPub = c.myCurrentDHPub
-
- var xBytes [dhPrivateBytes]byte
- c.myCurrentDHPriv = c.randMPI(xBytes[:])
- c.myCurrentDHPub = new(big.Int).Exp(g, c.myCurrentDHPriv, p)
- c.myKeyId++
-}
-
-func (c *Conversation) processData(in []byte) (out []byte, tlvs []tlv, err error) {
- origIn := in
- flags, in, ok1 := getU8(in)
- theirKeyId, in, ok2 := getU32(in)
- myKeyId, in, ok3 := getU32(in)
- y, in, ok4 := getMPI(in)
- counter, in, ok5 := getNBytes(in, 8)
- encrypted, in, ok6 := getData(in)
- macedData := origIn[:len(origIn)-len(in)]
- theirMAC, in, ok7 := getNBytes(in, macPrefixBytes)
- _, in, ok8 := getData(in)
- if !ok1 || !ok2 || !ok3 || !ok4 || !ok5 || !ok6 || !ok7 || !ok8 || len(in) > 0 {
- err = errors.New("otr: corrupt data message")
- return
- }
-
- ignoreErrors := flags&1 != 0
-
- slot, err := c.calcDataKeys(myKeyId, theirKeyId)
- if err != nil {
- if ignoreErrors {
- err = nil
- }
- return
- }
-
- mac := hmac.New(sha1.New, slot.recvMACKey)
- mac.Write([]byte{0, 2, 3})
- mac.Write(macedData)
- myMAC := mac.Sum(nil)
- if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 {
- if !ignoreErrors {
- err = errors.New("otr: bad MAC on data message")
- }
- return
- }
-
- if bytes.Compare(counter, slot.theirLastCtr[:]) <= 0 {
- err = errors.New("otr: counter regressed")
- return
- }
- copy(slot.theirLastCtr[:], counter)
-
- var iv [aes.BlockSize]byte
- copy(iv[:], counter)
- aesCipher, err := aes.NewCipher(slot.recvAESKey)
- if err != nil {
- panic(err.Error())
- }
- ctr := cipher.NewCTR(aesCipher, iv[:])
- ctr.XORKeyStream(encrypted, encrypted)
- decrypted := encrypted
-
- if myKeyId == c.myKeyId {
- c.rotateDHKeys()
- }
- if theirKeyId == c.theirKeyId {
- // evict slots using their retired key id
- for i := range c.keySlots {
- slot := &c.keySlots[i]
- if slot.used && slot.theirKeyId == theirKeyId-1 {
- slot.used = false
- c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
- }
- }
-
- c.theirLastDHPub = c.theirCurrentDHPub
- c.theirKeyId++
- c.theirCurrentDHPub = y
- }
-
- if nulPos := bytes.IndexByte(decrypted, 0); nulPos >= 0 {
- out = decrypted[:nulPos]
- tlvData := decrypted[nulPos+1:]
- for len(tlvData) > 0 {
- var t tlv
- var ok1, ok2, ok3 bool
-
- t.typ, tlvData, ok1 = getU16(tlvData)
- t.length, tlvData, ok2 = getU16(tlvData)
- t.data, tlvData, ok3 = getNBytes(tlvData, int(t.length))
- if !ok1 || !ok2 || !ok3 {
- err = errors.New("otr: corrupt tlv data")
- return
- }
- tlvs = append(tlvs, t)
- }
- } else {
- out = decrypted
- }
-
- return
-}
-
-func (c *Conversation) generateData(msg []byte, extra *tlv) []byte {
- slot, err := c.calcDataKeys(c.myKeyId-1, c.theirKeyId)
- if err != nil {
- panic("otr: failed to generate sending keys: " + err.Error())
- }
-
- var plaintext []byte
- plaintext = append(plaintext, msg...)
- plaintext = append(plaintext, 0)
-
- padding := paddingGranularity - ((len(plaintext) + 4) % paddingGranularity)
- plaintext = appendU16(plaintext, tlvTypePadding)
- plaintext = appendU16(plaintext, uint16(padding))
- for i := 0; i < padding; i++ {
- plaintext = append(plaintext, 0)
- }
-
- if extra != nil {
- plaintext = appendU16(plaintext, extra.typ)
- plaintext = appendU16(plaintext, uint16(len(extra.data)))
- plaintext = append(plaintext, extra.data...)
- }
-
- encrypted := make([]byte, len(plaintext))
-
- var iv [aes.BlockSize]byte
- copy(iv[:], c.myCounter[:])
- aesCipher, err := aes.NewCipher(slot.sendAESKey)
- if err != nil {
- panic(err.Error())
- }
- ctr := cipher.NewCTR(aesCipher, iv[:])
- ctr.XORKeyStream(encrypted, plaintext)
-
- var ret []byte
- ret = appendU16(ret, 2)
- ret = append(ret, msgTypeData)
- ret = append(ret, 0 /* flags */)
- ret = appendU32(ret, c.myKeyId-1)
- ret = appendU32(ret, c.theirKeyId)
- ret = appendMPI(ret, c.myCurrentDHPub)
- ret = append(ret, c.myCounter[:]...)
- ret = appendData(ret, encrypted)
-
- mac := hmac.New(sha1.New, slot.sendMACKey)
- mac.Write(ret)
- ret = append(ret, mac.Sum(nil)[:macPrefixBytes]...)
- ret = appendData(ret, c.oldMACs)
- c.oldMACs = nil
- incCounter(&c.myCounter)
-
- return ret
-}
-
-func incCounter(counter *[8]byte) {
- for i := 7; i >= 0; i-- {
- counter[i]++
- if counter[i] > 0 {
- break
- }
- }
-}
-
-// calcDataKeys computes the keys used to encrypt a data message given the key
-// IDs.
-func (c *Conversation) calcDataKeys(myKeyId, theirKeyId uint32) (slot *keySlot, err error) {
- // Check for a cache hit.
- for i := range c.keySlots {
- slot = &c.keySlots[i]
- if slot.used && slot.theirKeyId == theirKeyId && slot.myKeyId == myKeyId {
- return
- }
- }
-
- // Find an empty slot to write into.
- slot = nil
- for i := range c.keySlots {
- if !c.keySlots[i].used {
- slot = &c.keySlots[i]
- break
- }
- }
- if slot == nil {
- return nil, errors.New("otr: internal error: no more key slots")
- }
-
- var myPriv, myPub, theirPub *big.Int
-
- if myKeyId == c.myKeyId {
- myPriv = c.myCurrentDHPriv
- myPub = c.myCurrentDHPub
- } else if myKeyId == c.myKeyId-1 {
- myPriv = c.myLastDHPriv
- myPub = c.myLastDHPub
- } else {
- err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when I'm on " + strconv.FormatUint(uint64(c.myKeyId), 10))
- return
- }
-
- if theirKeyId == c.theirKeyId {
- theirPub = c.theirCurrentDHPub
- } else if theirKeyId == c.theirKeyId-1 && c.theirLastDHPub != nil {
- theirPub = c.theirLastDHPub
- } else {
- err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when they're on " + strconv.FormatUint(uint64(c.myKeyId), 10))
- return
- }
-
- var sendPrefixByte, recvPrefixByte [1]byte
-
- if myPub.Cmp(theirPub) > 0 {
- // we're the high end
- sendPrefixByte[0], recvPrefixByte[0] = 1, 2
- } else {
- // we're the low end
- sendPrefixByte[0], recvPrefixByte[0] = 2, 1
- }
-
- s := new(big.Int).Exp(theirPub, myPriv, p)
- sBytes := appendMPI(nil, s)
-
- h := sha1.New()
- h.Write(sendPrefixByte[:])
- h.Write(sBytes)
- slot.sendAESKey = h.Sum(slot.sendAESKey[:0])[:16]
-
- h.Reset()
- h.Write(slot.sendAESKey)
- slot.sendMACKey = h.Sum(slot.sendMACKey[:0])
-
- h.Reset()
- h.Write(recvPrefixByte[:])
- h.Write(sBytes)
- slot.recvAESKey = h.Sum(slot.recvAESKey[:0])[:16]
-
- h.Reset()
- h.Write(slot.recvAESKey)
- slot.recvMACKey = h.Sum(slot.recvMACKey[:0])
-
- slot.theirKeyId = theirKeyId
- slot.myKeyId = myKeyId
- slot.used = true
-
- zero(slot.theirLastCtr[:])
- return
-}
-
-func (c *Conversation) calcAKEKeys(s *big.Int) {
- mpi := appendMPI(nil, s)
- h := sha256.New()
-
- var cBytes [32]byte
- hashWithPrefix(c.SSID[:], 0, mpi, h)
-
- hashWithPrefix(cBytes[:], 1, mpi, h)
- copy(c.revealKeys.c[:], cBytes[:16])
- copy(c.sigKeys.c[:], cBytes[16:])
-
- hashWithPrefix(c.revealKeys.m1[:], 2, mpi, h)
- hashWithPrefix(c.revealKeys.m2[:], 3, mpi, h)
- hashWithPrefix(c.sigKeys.m1[:], 4, mpi, h)
- hashWithPrefix(c.sigKeys.m2[:], 5, mpi, h)
-}
-
-func hashWithPrefix(out []byte, prefix byte, in []byte, h hash.Hash) {
- h.Reset()
- var p [1]byte
- p[0] = prefix
- h.Write(p[:])
- h.Write(in)
- if len(out) == h.Size() {
- h.Sum(out[:0])
- } else {
- digest := h.Sum(nil)
- copy(out, digest)
- }
-}
-
-func (c *Conversation) encode(msg []byte) [][]byte {
- b64 := make([]byte, base64.StdEncoding.EncodedLen(len(msg))+len(msgPrefix)+1)
- base64.StdEncoding.Encode(b64[len(msgPrefix):], msg)
- copy(b64, msgPrefix)
- b64[len(b64)-1] = '.'
-
- if c.FragmentSize < minFragmentSize || len(b64) <= c.FragmentSize {
- // We can encode this in a single fragment.
- return [][]byte{b64}
- }
-
- // We have to fragment this message.
- var ret [][]byte
- bytesPerFragment := c.FragmentSize - minFragmentSize
- numFragments := (len(b64) + bytesPerFragment) / bytesPerFragment
-
- for i := 0; i < numFragments; i++ {
- frag := []byte("?OTR," + strconv.Itoa(i+1) + "," + strconv.Itoa(numFragments) + ",")
- todo := bytesPerFragment
- if todo > len(b64) {
- todo = len(b64)
- }
- frag = append(frag, b64[:todo]...)
- b64 = b64[todo:]
- frag = append(frag, ',')
- ret = append(ret, frag)
- }
-
- return ret
-}
-
-func (c *Conversation) reset() {
- c.myKeyId = 0
-
- for i := range c.keySlots {
- c.keySlots[i].used = false
- }
-}
-
-type PublicKey struct {
- dsa.PublicKey
-}
-
-func (pk *PublicKey) Parse(in []byte) ([]byte, bool) {
- var ok bool
- var pubKeyType uint16
-
- if pubKeyType, in, ok = getU16(in); !ok || pubKeyType != 0 {
- return nil, false
- }
- if pk.P, in, ok = getMPI(in); !ok {
- return nil, false
- }
- if pk.Q, in, ok = getMPI(in); !ok {
- return nil, false
- }
- if pk.G, in, ok = getMPI(in); !ok {
- return nil, false
- }
- if pk.Y, in, ok = getMPI(in); !ok {
- return nil, false
- }
-
- return in, true
-}
-
-func (pk *PublicKey) Serialize(in []byte) []byte {
- in = appendU16(in, 0)
- in = appendMPI(in, pk.P)
- in = appendMPI(in, pk.Q)
- in = appendMPI(in, pk.G)
- in = appendMPI(in, pk.Y)
- return in
-}
-
-// Fingerprint returns the 20-byte, binary fingerprint of the PublicKey.
-func (pk *PublicKey) Fingerprint() []byte {
- b := pk.Serialize(nil)
- h := sha1.New()
- h.Write(b[2:])
- return h.Sum(nil)
-}
-
-func (pk *PublicKey) Verify(hashed, sig []byte) ([]byte, bool) {
- if len(sig) != 2*dsaSubgroupBytes {
- return nil, false
- }
- r := new(big.Int).SetBytes(sig[:dsaSubgroupBytes])
- s := new(big.Int).SetBytes(sig[dsaSubgroupBytes:])
- ok := dsa.Verify(&pk.PublicKey, hashed, r, s)
- return sig[dsaSubgroupBytes*2:], ok
-}
-
-type PrivateKey struct {
- PublicKey
- dsa.PrivateKey
-}
-
-func (priv *PrivateKey) Sign(rand io.Reader, hashed []byte) []byte {
- r, s, err := dsa.Sign(rand, &priv.PrivateKey, hashed)
- if err != nil {
- panic(err.Error())
- }
- rBytes := r.Bytes()
- sBytes := s.Bytes()
- if len(rBytes) > dsaSubgroupBytes || len(sBytes) > dsaSubgroupBytes {
- panic("DSA signature too large")
- }
-
- out := make([]byte, 2*dsaSubgroupBytes)
- copy(out[dsaSubgroupBytes-len(rBytes):], rBytes)
- copy(out[len(out)-len(sBytes):], sBytes)
- return out
-}
-
-func (priv *PrivateKey) Serialize(in []byte) []byte {
- in = priv.PublicKey.Serialize(in)
- in = appendMPI(in, priv.PrivateKey.X)
- return in
-}
-
-func (priv *PrivateKey) Parse(in []byte) ([]byte, bool) {
- in, ok := priv.PublicKey.Parse(in)
- if !ok {
- return in, ok
- }
- priv.PrivateKey.PublicKey = priv.PublicKey.PublicKey
- priv.PrivateKey.X, in, ok = getMPI(in)
- return in, ok
-}
-
-func (priv *PrivateKey) Generate(rand io.Reader) {
- if err := dsa.GenerateParameters(&priv.PrivateKey.PublicKey.Parameters, rand, dsa.L1024N160); err != nil {
- panic(err.Error())
- }
- if err := dsa.GenerateKey(&priv.PrivateKey, rand); err != nil {
- panic(err.Error())
- }
- priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey
-}
-
-func notHex(r rune) bool {
- if r >= '0' && r <= '9' ||
- r >= 'a' && r <= 'f' ||
- r >= 'A' && r <= 'F' {
- return false
- }
-
- return true
-}
-
-// Import parses the contents of a libotr private key file.
-func (priv *PrivateKey) Import(in []byte) bool {
- mpiStart := []byte(" #")
-
- mpis := make([]*big.Int, 5)
-
- for i := 0; i < len(mpis); i++ {
- start := bytes.Index(in, mpiStart)
- if start == -1 {
- return false
- }
- in = in[start+len(mpiStart):]
- end := bytes.IndexFunc(in, notHex)
- if end == -1 {
- return false
- }
- hexBytes := in[:end]
- in = in[end:]
-
- if len(hexBytes)&1 != 0 {
- return false
- }
-
- mpiBytes := make([]byte, len(hexBytes)/2)
- if _, err := hex.Decode(mpiBytes, hexBytes); err != nil {
- return false
- }
-
- mpis[i] = new(big.Int).SetBytes(mpiBytes)
- }
-
- for _, mpi := range mpis {
- if mpi.Sign() <= 0 {
- return false
- }
- }
-
- priv.PrivateKey.P = mpis[0]
- priv.PrivateKey.Q = mpis[1]
- priv.PrivateKey.G = mpis[2]
- priv.PrivateKey.Y = mpis[3]
- priv.PrivateKey.X = mpis[4]
- priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey
-
- a := new(big.Int).Exp(priv.PrivateKey.G, priv.PrivateKey.X, priv.PrivateKey.P)
- return a.Cmp(priv.PrivateKey.Y) == 0
-}
-
-func getU8(in []byte) (uint8, []byte, bool) {
- if len(in) < 1 {
- return 0, in, false
- }
- return in[0], in[1:], true
-}
-
-func getU16(in []byte) (uint16, []byte, bool) {
- if len(in) < 2 {
- return 0, in, false
- }
- r := uint16(in[0])<<8 | uint16(in[1])
- return r, in[2:], true
-}
-
-func getU32(in []byte) (uint32, []byte, bool) {
- if len(in) < 4 {
- return 0, in, false
- }
- r := uint32(in[0])<<24 | uint32(in[1])<<16 | uint32(in[2])<<8 | uint32(in[3])
- return r, in[4:], true
-}
-
-func getMPI(in []byte) (*big.Int, []byte, bool) {
- l, in, ok := getU32(in)
- if !ok || uint32(len(in)) < l {
- return nil, in, false
- }
- r := new(big.Int).SetBytes(in[:l])
- return r, in[l:], true
-}
-
-func getData(in []byte) ([]byte, []byte, bool) {
- l, in, ok := getU32(in)
- if !ok || uint32(len(in)) < l {
- return nil, in, false
- }
- return in[:l], in[l:], true
-}
-
-func getNBytes(in []byte, n int) ([]byte, []byte, bool) {
- if len(in) < n {
- return nil, in, false
- }
- return in[:n], in[n:], true
-}
-
-func appendU16(out []byte, v uint16) []byte {
- out = append(out, byte(v>>8), byte(v))
- return out
-}
-
-func appendU32(out []byte, v uint32) []byte {
- out = append(out, byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
- return out
-}
-
-func appendData(out, v []byte) []byte {
- out = appendU32(out, uint32(len(v)))
- out = append(out, v...)
- return out
-}
-
-func appendMPI(out []byte, v *big.Int) []byte {
- vBytes := v.Bytes()
- out = appendU32(out, uint32(len(vBytes)))
- out = append(out, vBytes...)
- return out
-}
-
-func appendMPIs(out []byte, mpis ...*big.Int) []byte {
- for _, mpi := range mpis {
- out = appendMPI(out, mpi)
- }
- return out
-}
-
-func zero(b []byte) {
- for i := range b {
- b[i] = 0
- }
-}