From 4f4cd5e63573da4d6edcc7d4213afaca67c19f88 Mon Sep 17 00:00:00 2001 From: =Corey Hulen Date: Mon, 23 Nov 2015 15:53:48 -0800 Subject: upgrading libs --- .../p/freetype-go/freetype/raster/raster.go | 579 --------------------- 1 file changed, 579 deletions(-) delete mode 100644 Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go (limited to 'Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go') diff --git a/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go b/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go deleted file mode 100644 index 45af7eaa2..000000000 --- a/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go +++ /dev/null @@ -1,579 +0,0 @@ -// Copyright 2010 The Freetype-Go Authors. All rights reserved. -// Use of this source code is governed by your choice of either the -// FreeType License or the GNU General Public License version 2 (or -// any later version), both of which can be found in the LICENSE file. - -// The raster package provides an anti-aliasing 2-D rasterizer. -// -// It is part of the larger Freetype-Go suite of font-related packages, -// but the raster package is not specific to font rasterization, and can -// be used standalone without any other Freetype-Go package. -// -// Rasterization is done by the same area/coverage accumulation algorithm -// as the Freetype "smooth" module, and the Anti-Grain Geometry library. -// A description of the area/coverage algorithm is at -// http://projects.tuxee.net/cl-vectors/section-the-cl-aa-algorithm -package raster - -import ( - "strconv" -) - -// A cell is part of a linked list (for a given yi co-ordinate) of accumulated -// area/coverage for the pixel at (xi, yi). -type cell struct { - xi int - area, cover int - next int -} - -type Rasterizer struct { - // If false, the default behavior is to use the even-odd winding fill - // rule during Rasterize. - UseNonZeroWinding bool - // An offset (in pixels) to the painted spans. - Dx, Dy int - - // The width of the Rasterizer. The height is implicit in len(cellIndex). - width int - // splitScaleN is the scaling factor used to determine how many times - // to decompose a quadratic or cubic segment into a linear approximation. - splitScale2, splitScale3 int - - // The current pen position. - a Point - // The current cell and its area/coverage being accumulated. - xi, yi int - area, cover int - - // Saved cells. - cell []cell - // Linked list of cells, one per row. - cellIndex []int - // Buffers. - cellBuf [256]cell - cellIndexBuf [64]int - spanBuf [64]Span -} - -// findCell returns the index in r.cell for the cell corresponding to -// (r.xi, r.yi). The cell is created if necessary. -func (r *Rasterizer) findCell() int { - if r.yi < 0 || r.yi >= len(r.cellIndex) { - return -1 - } - xi := r.xi - if xi < 0 { - xi = -1 - } else if xi > r.width { - xi = r.width - } - i, prev := r.cellIndex[r.yi], -1 - for i != -1 && r.cell[i].xi <= xi { - if r.cell[i].xi == xi { - return i - } - i, prev = r.cell[i].next, i - } - c := len(r.cell) - if c == cap(r.cell) { - buf := make([]cell, c, 4*c) - copy(buf, r.cell) - r.cell = buf[0 : c+1] - } else { - r.cell = r.cell[0 : c+1] - } - r.cell[c] = cell{xi, 0, 0, i} - if prev == -1 { - r.cellIndex[r.yi] = c - } else { - r.cell[prev].next = c - } - return c -} - -// saveCell saves any accumulated r.area/r.cover for (r.xi, r.yi). -func (r *Rasterizer) saveCell() { - if r.area != 0 || r.cover != 0 { - i := r.findCell() - if i != -1 { - r.cell[i].area += r.area - r.cell[i].cover += r.cover - } - r.area = 0 - r.cover = 0 - } -} - -// setCell sets the (xi, yi) cell that r is accumulating area/coverage for. -func (r *Rasterizer) setCell(xi, yi int) { - if r.xi != xi || r.yi != yi { - r.saveCell() - r.xi, r.yi = xi, yi - } -} - -// scan accumulates area/coverage for the yi'th scanline, going from -// x0 to x1 in the horizontal direction (in 24.8 fixed point co-ordinates) -// and from y0f to y1f fractional vertical units within that scanline. -func (r *Rasterizer) scan(yi int, x0, y0f, x1, y1f Fix32) { - // Break the 24.8 fixed point X co-ordinates into integral and fractional parts. - x0i := int(x0) / 256 - x0f := x0 - Fix32(256*x0i) - x1i := int(x1) / 256 - x1f := x1 - Fix32(256*x1i) - - // A perfectly horizontal scan. - if y0f == y1f { - r.setCell(x1i, yi) - return - } - dx, dy := x1-x0, y1f-y0f - // A single cell scan. - if x0i == x1i { - r.area += int((x0f + x1f) * dy) - r.cover += int(dy) - return - } - // There are at least two cells. Apart from the first and last cells, - // all intermediate cells go through the full width of the cell, - // or 256 units in 24.8 fixed point format. - var ( - p, q, edge0, edge1 Fix32 - xiDelta int - ) - if dx > 0 { - p, q = (256-x0f)*dy, dx - edge0, edge1, xiDelta = 0, 256, 1 - } else { - p, q = x0f*dy, -dx - edge0, edge1, xiDelta = 256, 0, -1 - } - yDelta, yRem := p/q, p%q - if yRem < 0 { - yDelta -= 1 - yRem += q - } - // Do the first cell. - xi, y := x0i, y0f - r.area += int((x0f + edge1) * yDelta) - r.cover += int(yDelta) - xi, y = xi+xiDelta, y+yDelta - r.setCell(xi, yi) - if xi != x1i { - // Do all the intermediate cells. - p = 256 * (y1f - y + yDelta) - fullDelta, fullRem := p/q, p%q - if fullRem < 0 { - fullDelta -= 1 - fullRem += q - } - yRem -= q - for xi != x1i { - yDelta = fullDelta - yRem += fullRem - if yRem >= 0 { - yDelta += 1 - yRem -= q - } - r.area += int(256 * yDelta) - r.cover += int(yDelta) - xi, y = xi+xiDelta, y+yDelta - r.setCell(xi, yi) - } - } - // Do the last cell. - yDelta = y1f - y - r.area += int((edge0 + x1f) * yDelta) - r.cover += int(yDelta) -} - -// Start starts a new curve at the given point. -func (r *Rasterizer) Start(a Point) { - r.setCell(int(a.X/256), int(a.Y/256)) - r.a = a -} - -// Add1 adds a linear segment to the current curve. -func (r *Rasterizer) Add1(b Point) { - x0, y0 := r.a.X, r.a.Y - x1, y1 := b.X, b.Y - dx, dy := x1-x0, y1-y0 - // Break the 24.8 fixed point Y co-ordinates into integral and fractional parts. - y0i := int(y0) / 256 - y0f := y0 - Fix32(256*y0i) - y1i := int(y1) / 256 - y1f := y1 - Fix32(256*y1i) - - if y0i == y1i { - // There is only one scanline. - r.scan(y0i, x0, y0f, x1, y1f) - - } else if dx == 0 { - // This is a vertical line segment. We avoid calling r.scan and instead - // manipulate r.area and r.cover directly. - var ( - edge0, edge1 Fix32 - yiDelta int - ) - if dy > 0 { - edge0, edge1, yiDelta = 0, 256, 1 - } else { - edge0, edge1, yiDelta = 256, 0, -1 - } - x0i, yi := int(x0)/256, y0i - x0fTimes2 := (int(x0) - (256 * x0i)) * 2 - // Do the first pixel. - dcover := int(edge1 - y0f) - darea := int(x0fTimes2 * dcover) - r.area += darea - r.cover += dcover - yi += yiDelta - r.setCell(x0i, yi) - // Do all the intermediate pixels. - dcover = int(edge1 - edge0) - darea = int(x0fTimes2 * dcover) - for yi != y1i { - r.area += darea - r.cover += dcover - yi += yiDelta - r.setCell(x0i, yi) - } - // Do the last pixel. - dcover = int(y1f - edge0) - darea = int(x0fTimes2 * dcover) - r.area += darea - r.cover += dcover - - } else { - // There are at least two scanlines. Apart from the first and last scanlines, - // all intermediate scanlines go through the full height of the row, or 256 - // units in 24.8 fixed point format. - var ( - p, q, edge0, edge1 Fix32 - yiDelta int - ) - if dy > 0 { - p, q = (256-y0f)*dx, dy - edge0, edge1, yiDelta = 0, 256, 1 - } else { - p, q = y0f*dx, -dy - edge0, edge1, yiDelta = 256, 0, -1 - } - xDelta, xRem := p/q, p%q - if xRem < 0 { - xDelta -= 1 - xRem += q - } - // Do the first scanline. - x, yi := x0, y0i - r.scan(yi, x, y0f, x+xDelta, edge1) - x, yi = x+xDelta, yi+yiDelta - r.setCell(int(x)/256, yi) - if yi != y1i { - // Do all the intermediate scanlines. - p = 256 * dx - fullDelta, fullRem := p/q, p%q - if fullRem < 0 { - fullDelta -= 1 - fullRem += q - } - xRem -= q - for yi != y1i { - xDelta = fullDelta - xRem += fullRem - if xRem >= 0 { - xDelta += 1 - xRem -= q - } - r.scan(yi, x, edge0, x+xDelta, edge1) - x, yi = x+xDelta, yi+yiDelta - r.setCell(int(x)/256, yi) - } - } - // Do the last scanline. - r.scan(yi, x, edge0, x1, y1f) - } - // The next lineTo starts from b. - r.a = b -} - -// Add2 adds a quadratic segment to the current curve. -func (r *Rasterizer) Add2(b, c Point) { - // Calculate nSplit (the number of recursive decompositions) based on how `curvy' it is. - // Specifically, how much the middle point b deviates from (a+c)/2. - dev := maxAbs(r.a.X-2*b.X+c.X, r.a.Y-2*b.Y+c.Y) / Fix32(r.splitScale2) - nsplit := 0 - for dev > 0 { - dev /= 4 - nsplit++ - } - // dev is 32-bit, and nsplit++ every time we shift off 2 bits, so maxNsplit is 16. - const maxNsplit = 16 - if nsplit > maxNsplit { - panic("freetype/raster: Add2 nsplit too large: " + strconv.Itoa(nsplit)) - } - // Recursively decompose the curve nSplit levels deep. - var ( - pStack [2*maxNsplit + 3]Point - sStack [maxNsplit + 1]int - i int - ) - sStack[0] = nsplit - pStack[0] = c - pStack[1] = b - pStack[2] = r.a - for i >= 0 { - s := sStack[i] - p := pStack[2*i:] - if s > 0 { - // Split the quadratic curve p[:3] into an equivalent set of two shorter curves: - // p[:3] and p[2:5]. The new p[4] is the old p[2], and p[0] is unchanged. - mx := p[1].X - p[4].X = p[2].X - p[3].X = (p[4].X + mx) / 2 - p[1].X = (p[0].X + mx) / 2 - p[2].X = (p[1].X + p[3].X) / 2 - my := p[1].Y - p[4].Y = p[2].Y - p[3].Y = (p[4].Y + my) / 2 - p[1].Y = (p[0].Y + my) / 2 - p[2].Y = (p[1].Y + p[3].Y) / 2 - // The two shorter curves have one less split to do. - sStack[i] = s - 1 - sStack[i+1] = s - 1 - i++ - } else { - // Replace the level-0 quadratic with a two-linear-piece approximation. - midx := (p[0].X + 2*p[1].X + p[2].X) / 4 - midy := (p[0].Y + 2*p[1].Y + p[2].Y) / 4 - r.Add1(Point{midx, midy}) - r.Add1(p[0]) - i-- - } - } -} - -// Add3 adds a cubic segment to the current curve. -func (r *Rasterizer) Add3(b, c, d Point) { - // Calculate nSplit (the number of recursive decompositions) based on how `curvy' it is. - dev2 := maxAbs(r.a.X-3*(b.X+c.X)+d.X, r.a.Y-3*(b.Y+c.Y)+d.Y) / Fix32(r.splitScale2) - dev3 := maxAbs(r.a.X-2*b.X+d.X, r.a.Y-2*b.Y+d.Y) / Fix32(r.splitScale3) - nsplit := 0 - for dev2 > 0 || dev3 > 0 { - dev2 /= 8 - dev3 /= 4 - nsplit++ - } - // devN is 32-bit, and nsplit++ every time we shift off 2 bits, so maxNsplit is 16. - const maxNsplit = 16 - if nsplit > maxNsplit { - panic("freetype/raster: Add3 nsplit too large: " + strconv.Itoa(nsplit)) - } - // Recursively decompose the curve nSplit levels deep. - var ( - pStack [3*maxNsplit + 4]Point - sStack [maxNsplit + 1]int - i int - ) - sStack[0] = nsplit - pStack[0] = d - pStack[1] = c - pStack[2] = b - pStack[3] = r.a - for i >= 0 { - s := sStack[i] - p := pStack[3*i:] - if s > 0 { - // Split the cubic curve p[:4] into an equivalent set of two shorter curves: - // p[:4] and p[3:7]. The new p[6] is the old p[3], and p[0] is unchanged. - m01x := (p[0].X + p[1].X) / 2 - m12x := (p[1].X + p[2].X) / 2 - m23x := (p[2].X + p[3].X) / 2 - p[6].X = p[3].X - p[5].X = m23x - p[1].X = m01x - p[2].X = (m01x + m12x) / 2 - p[4].X = (m12x + m23x) / 2 - p[3].X = (p[2].X + p[4].X) / 2 - m01y := (p[0].Y + p[1].Y) / 2 - m12y := (p[1].Y + p[2].Y) / 2 - m23y := (p[2].Y + p[3].Y) / 2 - p[6].Y = p[3].Y - p[5].Y = m23y - p[1].Y = m01y - p[2].Y = (m01y + m12y) / 2 - p[4].Y = (m12y + m23y) / 2 - p[3].Y = (p[2].Y + p[4].Y) / 2 - // The two shorter curves have one less split to do. - sStack[i] = s - 1 - sStack[i+1] = s - 1 - i++ - } else { - // Replace the level-0 cubic with a two-linear-piece approximation. - midx := (p[0].X + 3*(p[1].X+p[2].X) + p[3].X) / 8 - midy := (p[0].Y + 3*(p[1].Y+p[2].Y) + p[3].Y) / 8 - r.Add1(Point{midx, midy}) - r.Add1(p[0]) - i-- - } - } -} - -// AddPath adds the given Path. -func (r *Rasterizer) AddPath(p Path) { - for i := 0; i < len(p); { - switch p[i] { - case 0: - r.Start(Point{p[i+1], p[i+2]}) - i += 4 - case 1: - r.Add1(Point{p[i+1], p[i+2]}) - i += 4 - case 2: - r.Add2(Point{p[i+1], p[i+2]}, Point{p[i+3], p[i+4]}) - i += 6 - case 3: - r.Add3(Point{p[i+1], p[i+2]}, Point{p[i+3], p[i+4]}, Point{p[i+5], p[i+6]}) - i += 8 - default: - panic("freetype/raster: bad path") - } - } -} - -// AddStroke adds a stroked Path. -func (r *Rasterizer) AddStroke(q Path, width Fix32, cr Capper, jr Joiner) { - Stroke(r, q, width, cr, jr) -} - -// Converts an area value to a uint32 alpha value. A completely filled pixel -// corresponds to an area of 256*256*2, and an alpha of 1<<32-1. The -// conversion of area values greater than this depends on the winding rule: -// even-odd or non-zero. -func (r *Rasterizer) areaToAlpha(area int) uint32 { - // The C Freetype implementation (version 2.3.12) does "alpha := area>>1" without - // the +1. Round-to-nearest gives a more symmetric result than round-down. - // The C implementation also returns 8-bit alpha, not 32-bit alpha. - a := (area + 1) >> 1 - if a < 0 { - a = -a - } - alpha := uint32(a) - if r.UseNonZeroWinding { - if alpha > 0xffff { - alpha = 0xffff - } - } else { - alpha &= 0x1ffff - if alpha > 0x10000 { - alpha = 0x20000 - alpha - } else if alpha == 0x10000 { - alpha = 0x0ffff - } - } - alpha |= alpha << 16 - return alpha -} - -// Rasterize converts r's accumulated curves into Spans for p. The Spans -// passed to p are non-overlapping, and sorted by Y and then X. They all -// have non-zero width (and 0 <= X0 < X1 <= r.width) and non-zero A, except -// for the final Span, which has Y, X0, X1 and A all equal to zero. -func (r *Rasterizer) Rasterize(p Painter) { - r.saveCell() - s := 0 - for yi := 0; yi < len(r.cellIndex); yi++ { - xi, cover := 0, 0 - for c := r.cellIndex[yi]; c != -1; c = r.cell[c].next { - if cover != 0 && r.cell[c].xi > xi { - alpha := r.areaToAlpha(cover * 256 * 2) - if alpha != 0 { - xi0, xi1 := xi, r.cell[c].xi - if xi0 < 0 { - xi0 = 0 - } - if xi1 >= r.width { - xi1 = r.width - } - if xi0 < xi1 { - r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha} - s++ - } - } - } - cover += r.cell[c].cover - alpha := r.areaToAlpha(cover*256*2 - r.cell[c].area) - xi = r.cell[c].xi + 1 - if alpha != 0 { - xi0, xi1 := r.cell[c].xi, xi - if xi0 < 0 { - xi0 = 0 - } - if xi1 >= r.width { - xi1 = r.width - } - if xi0 < xi1 { - r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha} - s++ - } - } - if s > len(r.spanBuf)-2 { - p.Paint(r.spanBuf[:s], false) - s = 0 - } - } - } - p.Paint(r.spanBuf[:s], true) -} - -// Clear cancels any previous calls to r.Start or r.AddXxx. -func (r *Rasterizer) Clear() { - r.a = Point{} - r.xi = 0 - r.yi = 0 - r.area = 0 - r.cover = 0 - r.cell = r.cell[:0] - for i := 0; i < len(r.cellIndex); i++ { - r.cellIndex[i] = -1 - } -} - -// SetBounds sets the maximum width and height of the rasterized image and -// calls Clear. The width and height are in pixels, not Fix32 units. -func (r *Rasterizer) SetBounds(width, height int) { - if width < 0 { - width = 0 - } - if height < 0 { - height = 0 - } - // Use the same ssN heuristic as the C Freetype implementation. - // The C implementation uses the values 32, 16, but those are in - // 26.6 fixed point units, and we use 24.8 fixed point everywhere. - ss2, ss3 := 128, 64 - if width > 24 || height > 24 { - ss2, ss3 = 2*ss2, 2*ss3 - if width > 120 || height > 120 { - ss2, ss3 = 2*ss2, 2*ss3 - } - } - r.width = width - r.splitScale2 = ss2 - r.splitScale3 = ss3 - r.cell = r.cellBuf[:0] - if height > len(r.cellIndexBuf) { - r.cellIndex = make([]int, height) - } else { - r.cellIndex = r.cellIndexBuf[:height] - } - r.Clear() -} - -// NewRasterizer creates a new Rasterizer with the given bounds. -func NewRasterizer(width, height int) *Rasterizer { - r := new(Rasterizer) - r.SetBounds(width, height) - return r -} -- cgit v1.2.3-1-g7c22