From 1e5c432e1029601a664454388ae366ef69618d62 Mon Sep 17 00:00:00 2001 From: Christopher Speller Date: Mon, 25 Jun 2018 12:33:13 -0700 Subject: MM-10702 Moving plugins to use hashicorp go-plugin. (#8978) * Moving plugins to use hashicorp go-plugin. * Tweaks from feedback. --- vendor/github.com/alecthomas/template/parse/lex.go | 556 ++++++++++++++ .../github.com/alecthomas/template/parse/node.go | 834 +++++++++++++++++++++ .../github.com/alecthomas/template/parse/parse.go | 700 +++++++++++++++++ 3 files changed, 2090 insertions(+) create mode 100644 vendor/github.com/alecthomas/template/parse/lex.go create mode 100644 vendor/github.com/alecthomas/template/parse/node.go create mode 100644 vendor/github.com/alecthomas/template/parse/parse.go (limited to 'vendor/github.com/alecthomas/template/parse') diff --git a/vendor/github.com/alecthomas/template/parse/lex.go b/vendor/github.com/alecthomas/template/parse/lex.go new file mode 100644 index 000000000..55f1c051e --- /dev/null +++ b/vendor/github.com/alecthomas/template/parse/lex.go @@ -0,0 +1,556 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package parse + +import ( + "fmt" + "strings" + "unicode" + "unicode/utf8" +) + +// item represents a token or text string returned from the scanner. +type item struct { + typ itemType // The type of this item. + pos Pos // The starting position, in bytes, of this item in the input string. + val string // The value of this item. +} + +func (i item) String() string { + switch { + case i.typ == itemEOF: + return "EOF" + case i.typ == itemError: + return i.val + case i.typ > itemKeyword: + return fmt.Sprintf("<%s>", i.val) + case len(i.val) > 10: + return fmt.Sprintf("%.10q...", i.val) + } + return fmt.Sprintf("%q", i.val) +} + +// itemType identifies the type of lex items. +type itemType int + +const ( + itemError itemType = iota // error occurred; value is text of error + itemBool // boolean constant + itemChar // printable ASCII character; grab bag for comma etc. + itemCharConstant // character constant + itemComplex // complex constant (1+2i); imaginary is just a number + itemColonEquals // colon-equals (':=') introducing a declaration + itemEOF + itemField // alphanumeric identifier starting with '.' + itemIdentifier // alphanumeric identifier not starting with '.' + itemLeftDelim // left action delimiter + itemLeftParen // '(' inside action + itemNumber // simple number, including imaginary + itemPipe // pipe symbol + itemRawString // raw quoted string (includes quotes) + itemRightDelim // right action delimiter + itemElideNewline // elide newline after right delim + itemRightParen // ')' inside action + itemSpace // run of spaces separating arguments + itemString // quoted string (includes quotes) + itemText // plain text + itemVariable // variable starting with '$', such as '$' or '$1' or '$hello' + // Keywords appear after all the rest. + itemKeyword // used only to delimit the keywords + itemDot // the cursor, spelled '.' + itemDefine // define keyword + itemElse // else keyword + itemEnd // end keyword + itemIf // if keyword + itemNil // the untyped nil constant, easiest to treat as a keyword + itemRange // range keyword + itemTemplate // template keyword + itemWith // with keyword +) + +var key = map[string]itemType{ + ".": itemDot, + "define": itemDefine, + "else": itemElse, + "end": itemEnd, + "if": itemIf, + "range": itemRange, + "nil": itemNil, + "template": itemTemplate, + "with": itemWith, +} + +const eof = -1 + +// stateFn represents the state of the scanner as a function that returns the next state. +type stateFn func(*lexer) stateFn + +// lexer holds the state of the scanner. +type lexer struct { + name string // the name of the input; used only for error reports + input string // the string being scanned + leftDelim string // start of action + rightDelim string // end of action + state stateFn // the next lexing function to enter + pos Pos // current position in the input + start Pos // start position of this item + width Pos // width of last rune read from input + lastPos Pos // position of most recent item returned by nextItem + items chan item // channel of scanned items + parenDepth int // nesting depth of ( ) exprs +} + +// next returns the next rune in the input. +func (l *lexer) next() rune { + if int(l.pos) >= len(l.input) { + l.width = 0 + return eof + } + r, w := utf8.DecodeRuneInString(l.input[l.pos:]) + l.width = Pos(w) + l.pos += l.width + return r +} + +// peek returns but does not consume the next rune in the input. +func (l *lexer) peek() rune { + r := l.next() + l.backup() + return r +} + +// backup steps back one rune. Can only be called once per call of next. +func (l *lexer) backup() { + l.pos -= l.width +} + +// emit passes an item back to the client. +func (l *lexer) emit(t itemType) { + l.items <- item{t, l.start, l.input[l.start:l.pos]} + l.start = l.pos +} + +// ignore skips over the pending input before this point. +func (l *lexer) ignore() { + l.start = l.pos +} + +// accept consumes the next rune if it's from the valid set. +func (l *lexer) accept(valid string) bool { + if strings.IndexRune(valid, l.next()) >= 0 { + return true + } + l.backup() + return false +} + +// acceptRun consumes a run of runes from the valid set. +func (l *lexer) acceptRun(valid string) { + for strings.IndexRune(valid, l.next()) >= 0 { + } + l.backup() +} + +// lineNumber reports which line we're on, based on the position of +// the previous item returned by nextItem. Doing it this way +// means we don't have to worry about peek double counting. +func (l *lexer) lineNumber() int { + return 1 + strings.Count(l.input[:l.lastPos], "\n") +} + +// errorf returns an error token and terminates the scan by passing +// back a nil pointer that will be the next state, terminating l.nextItem. +func (l *lexer) errorf(format string, args ...interface{}) stateFn { + l.items <- item{itemError, l.start, fmt.Sprintf(format, args...)} + return nil +} + +// nextItem returns the next item from the input. +func (l *lexer) nextItem() item { + item := <-l.items + l.lastPos = item.pos + return item +} + +// lex creates a new scanner for the input string. +func lex(name, input, left, right string) *lexer { + if left == "" { + left = leftDelim + } + if right == "" { + right = rightDelim + } + l := &lexer{ + name: name, + input: input, + leftDelim: left, + rightDelim: right, + items: make(chan item), + } + go l.run() + return l +} + +// run runs the state machine for the lexer. +func (l *lexer) run() { + for l.state = lexText; l.state != nil; { + l.state = l.state(l) + } +} + +// state functions + +const ( + leftDelim = "{{" + rightDelim = "}}" + leftComment = "/*" + rightComment = "*/" +) + +// lexText scans until an opening action delimiter, "{{". +func lexText(l *lexer) stateFn { + for { + if strings.HasPrefix(l.input[l.pos:], l.leftDelim) { + if l.pos > l.start { + l.emit(itemText) + } + return lexLeftDelim + } + if l.next() == eof { + break + } + } + // Correctly reached EOF. + if l.pos > l.start { + l.emit(itemText) + } + l.emit(itemEOF) + return nil +} + +// lexLeftDelim scans the left delimiter, which is known to be present. +func lexLeftDelim(l *lexer) stateFn { + l.pos += Pos(len(l.leftDelim)) + if strings.HasPrefix(l.input[l.pos:], leftComment) { + return lexComment + } + l.emit(itemLeftDelim) + l.parenDepth = 0 + return lexInsideAction +} + +// lexComment scans a comment. The left comment marker is known to be present. +func lexComment(l *lexer) stateFn { + l.pos += Pos(len(leftComment)) + i := strings.Index(l.input[l.pos:], rightComment) + if i < 0 { + return l.errorf("unclosed comment") + } + l.pos += Pos(i + len(rightComment)) + if !strings.HasPrefix(l.input[l.pos:], l.rightDelim) { + return l.errorf("comment ends before closing delimiter") + + } + l.pos += Pos(len(l.rightDelim)) + l.ignore() + return lexText +} + +// lexRightDelim scans the right delimiter, which is known to be present. +func lexRightDelim(l *lexer) stateFn { + l.pos += Pos(len(l.rightDelim)) + l.emit(itemRightDelim) + if l.peek() == '\\' { + l.pos++ + l.emit(itemElideNewline) + } + return lexText +} + +// lexInsideAction scans the elements inside action delimiters. +func lexInsideAction(l *lexer) stateFn { + // Either number, quoted string, or identifier. + // Spaces separate arguments; runs of spaces turn into itemSpace. + // Pipe symbols separate and are emitted. + if strings.HasPrefix(l.input[l.pos:], l.rightDelim+"\\") || strings.HasPrefix(l.input[l.pos:], l.rightDelim) { + if l.parenDepth == 0 { + return lexRightDelim + } + return l.errorf("unclosed left paren") + } + switch r := l.next(); { + case r == eof || isEndOfLine(r): + return l.errorf("unclosed action") + case isSpace(r): + return lexSpace + case r == ':': + if l.next() != '=' { + return l.errorf("expected :=") + } + l.emit(itemColonEquals) + case r == '|': + l.emit(itemPipe) + case r == '"': + return lexQuote + case r == '`': + return lexRawQuote + case r == '$': + return lexVariable + case r == '\'': + return lexChar + case r == '.': + // special look-ahead for ".field" so we don't break l.backup(). + if l.pos < Pos(len(l.input)) { + r := l.input[l.pos] + if r < '0' || '9' < r { + return lexField + } + } + fallthrough // '.' can start a number. + case r == '+' || r == '-' || ('0' <= r && r <= '9'): + l.backup() + return lexNumber + case isAlphaNumeric(r): + l.backup() + return lexIdentifier + case r == '(': + l.emit(itemLeftParen) + l.parenDepth++ + return lexInsideAction + case r == ')': + l.emit(itemRightParen) + l.parenDepth-- + if l.parenDepth < 0 { + return l.errorf("unexpected right paren %#U", r) + } + return lexInsideAction + case r <= unicode.MaxASCII && unicode.IsPrint(r): + l.emit(itemChar) + return lexInsideAction + default: + return l.errorf("unrecognized character in action: %#U", r) + } + return lexInsideAction +} + +// lexSpace scans a run of space characters. +// One space has already been seen. +func lexSpace(l *lexer) stateFn { + for isSpace(l.peek()) { + l.next() + } + l.emit(itemSpace) + return lexInsideAction +} + +// lexIdentifier scans an alphanumeric. +func lexIdentifier(l *lexer) stateFn { +Loop: + for { + switch r := l.next(); { + case isAlphaNumeric(r): + // absorb. + default: + l.backup() + word := l.input[l.start:l.pos] + if !l.atTerminator() { + return l.errorf("bad character %#U", r) + } + switch { + case key[word] > itemKeyword: + l.emit(key[word]) + case word[0] == '.': + l.emit(itemField) + case word == "true", word == "false": + l.emit(itemBool) + default: + l.emit(itemIdentifier) + } + break Loop + } + } + return lexInsideAction +} + +// lexField scans a field: .Alphanumeric. +// The . has been scanned. +func lexField(l *lexer) stateFn { + return lexFieldOrVariable(l, itemField) +} + +// lexVariable scans a Variable: $Alphanumeric. +// The $ has been scanned. +func lexVariable(l *lexer) stateFn { + if l.atTerminator() { // Nothing interesting follows -> "$". + l.emit(itemVariable) + return lexInsideAction + } + return lexFieldOrVariable(l, itemVariable) +} + +// lexVariable scans a field or variable: [.$]Alphanumeric. +// The . or $ has been scanned. +func lexFieldOrVariable(l *lexer, typ itemType) stateFn { + if l.atTerminator() { // Nothing interesting follows -> "." or "$". + if typ == itemVariable { + l.emit(itemVariable) + } else { + l.emit(itemDot) + } + return lexInsideAction + } + var r rune + for { + r = l.next() + if !isAlphaNumeric(r) { + l.backup() + break + } + } + if !l.atTerminator() { + return l.errorf("bad character %#U", r) + } + l.emit(typ) + return lexInsideAction +} + +// atTerminator reports whether the input is at valid termination character to +// appear after an identifier. Breaks .X.Y into two pieces. Also catches cases +// like "$x+2" not being acceptable without a space, in case we decide one +// day to implement arithmetic. +func (l *lexer) atTerminator() bool { + r := l.peek() + if isSpace(r) || isEndOfLine(r) { + return true + } + switch r { + case eof, '.', ',', '|', ':', ')', '(': + return true + } + // Does r start the delimiter? This can be ambiguous (with delim=="//", $x/2 will + // succeed but should fail) but only in extremely rare cases caused by willfully + // bad choice of delimiter. + if rd, _ := utf8.DecodeRuneInString(l.rightDelim); rd == r { + return true + } + return false +} + +// lexChar scans a character constant. The initial quote is already +// scanned. Syntax checking is done by the parser. +func lexChar(l *lexer) stateFn { +Loop: + for { + switch l.next() { + case '\\': + if r := l.next(); r != eof && r != '\n' { + break + } + fallthrough + case eof, '\n': + return l.errorf("unterminated character constant") + case '\'': + break Loop + } + } + l.emit(itemCharConstant) + return lexInsideAction +} + +// lexNumber scans a number: decimal, octal, hex, float, or imaginary. This +// isn't a perfect number scanner - for instance it accepts "." and "0x0.2" +// and "089" - but when it's wrong the input is invalid and the parser (via +// strconv) will notice. +func lexNumber(l *lexer) stateFn { + if !l.scanNumber() { + return l.errorf("bad number syntax: %q", l.input[l.start:l.pos]) + } + if sign := l.peek(); sign == '+' || sign == '-' { + // Complex: 1+2i. No spaces, must end in 'i'. + if !l.scanNumber() || l.input[l.pos-1] != 'i' { + return l.errorf("bad number syntax: %q", l.input[l.start:l.pos]) + } + l.emit(itemComplex) + } else { + l.emit(itemNumber) + } + return lexInsideAction +} + +func (l *lexer) scanNumber() bool { + // Optional leading sign. + l.accept("+-") + // Is it hex? + digits := "0123456789" + if l.accept("0") && l.accept("xX") { + digits = "0123456789abcdefABCDEF" + } + l.acceptRun(digits) + if l.accept(".") { + l.acceptRun(digits) + } + if l.accept("eE") { + l.accept("+-") + l.acceptRun("0123456789") + } + // Is it imaginary? + l.accept("i") + // Next thing mustn't be alphanumeric. + if isAlphaNumeric(l.peek()) { + l.next() + return false + } + return true +} + +// lexQuote scans a quoted string. +func lexQuote(l *lexer) stateFn { +Loop: + for { + switch l.next() { + case '\\': + if r := l.next(); r != eof && r != '\n' { + break + } + fallthrough + case eof, '\n': + return l.errorf("unterminated quoted string") + case '"': + break Loop + } + } + l.emit(itemString) + return lexInsideAction +} + +// lexRawQuote scans a raw quoted string. +func lexRawQuote(l *lexer) stateFn { +Loop: + for { + switch l.next() { + case eof, '\n': + return l.errorf("unterminated raw quoted string") + case '`': + break Loop + } + } + l.emit(itemRawString) + return lexInsideAction +} + +// isSpace reports whether r is a space character. +func isSpace(r rune) bool { + return r == ' ' || r == '\t' +} + +// isEndOfLine reports whether r is an end-of-line character. +func isEndOfLine(r rune) bool { + return r == '\r' || r == '\n' +} + +// isAlphaNumeric reports whether r is an alphabetic, digit, or underscore. +func isAlphaNumeric(r rune) bool { + return r == '_' || unicode.IsLetter(r) || unicode.IsDigit(r) +} diff --git a/vendor/github.com/alecthomas/template/parse/node.go b/vendor/github.com/alecthomas/template/parse/node.go new file mode 100644 index 000000000..55c37f6db --- /dev/null +++ b/vendor/github.com/alecthomas/template/parse/node.go @@ -0,0 +1,834 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Parse nodes. + +package parse + +import ( + "bytes" + "fmt" + "strconv" + "strings" +) + +var textFormat = "%s" // Changed to "%q" in tests for better error messages. + +// A Node is an element in the parse tree. The interface is trivial. +// The interface contains an unexported method so that only +// types local to this package can satisfy it. +type Node interface { + Type() NodeType + String() string + // Copy does a deep copy of the Node and all its components. + // To avoid type assertions, some XxxNodes also have specialized + // CopyXxx methods that return *XxxNode. + Copy() Node + Position() Pos // byte position of start of node in full original input string + // tree returns the containing *Tree. + // It is unexported so all implementations of Node are in this package. + tree() *Tree +} + +// NodeType identifies the type of a parse tree node. +type NodeType int + +// Pos represents a byte position in the original input text from which +// this template was parsed. +type Pos int + +func (p Pos) Position() Pos { + return p +} + +// Type returns itself and provides an easy default implementation +// for embedding in a Node. Embedded in all non-trivial Nodes. +func (t NodeType) Type() NodeType { + return t +} + +const ( + NodeText NodeType = iota // Plain text. + NodeAction // A non-control action such as a field evaluation. + NodeBool // A boolean constant. + NodeChain // A sequence of field accesses. + NodeCommand // An element of a pipeline. + NodeDot // The cursor, dot. + nodeElse // An else action. Not added to tree. + nodeEnd // An end action. Not added to tree. + NodeField // A field or method name. + NodeIdentifier // An identifier; always a function name. + NodeIf // An if action. + NodeList // A list of Nodes. + NodeNil // An untyped nil constant. + NodeNumber // A numerical constant. + NodePipe // A pipeline of commands. + NodeRange // A range action. + NodeString // A string constant. + NodeTemplate // A template invocation action. + NodeVariable // A $ variable. + NodeWith // A with action. +) + +// Nodes. + +// ListNode holds a sequence of nodes. +type ListNode struct { + NodeType + Pos + tr *Tree + Nodes []Node // The element nodes in lexical order. +} + +func (t *Tree) newList(pos Pos) *ListNode { + return &ListNode{tr: t, NodeType: NodeList, Pos: pos} +} + +func (l *ListNode) append(n Node) { + l.Nodes = append(l.Nodes, n) +} + +func (l *ListNode) tree() *Tree { + return l.tr +} + +func (l *ListNode) String() string { + b := new(bytes.Buffer) + for _, n := range l.Nodes { + fmt.Fprint(b, n) + } + return b.String() +} + +func (l *ListNode) CopyList() *ListNode { + if l == nil { + return l + } + n := l.tr.newList(l.Pos) + for _, elem := range l.Nodes { + n.append(elem.Copy()) + } + return n +} + +func (l *ListNode) Copy() Node { + return l.CopyList() +} + +// TextNode holds plain text. +type TextNode struct { + NodeType + Pos + tr *Tree + Text []byte // The text; may span newlines. +} + +func (t *Tree) newText(pos Pos, text string) *TextNode { + return &TextNode{tr: t, NodeType: NodeText, Pos: pos, Text: []byte(text)} +} + +func (t *TextNode) String() string { + return fmt.Sprintf(textFormat, t.Text) +} + +func (t *TextNode) tree() *Tree { + return t.tr +} + +func (t *TextNode) Copy() Node { + return &TextNode{tr: t.tr, NodeType: NodeText, Pos: t.Pos, Text: append([]byte{}, t.Text...)} +} + +// PipeNode holds a pipeline with optional declaration +type PipeNode struct { + NodeType + Pos + tr *Tree + Line int // The line number in the input (deprecated; kept for compatibility) + Decl []*VariableNode // Variable declarations in lexical order. + Cmds []*CommandNode // The commands in lexical order. +} + +func (t *Tree) newPipeline(pos Pos, line int, decl []*VariableNode) *PipeNode { + return &PipeNode{tr: t, NodeType: NodePipe, Pos: pos, Line: line, Decl: decl} +} + +func (p *PipeNode) append(command *CommandNode) { + p.Cmds = append(p.Cmds, command) +} + +func (p *PipeNode) String() string { + s := "" + if len(p.Decl) > 0 { + for i, v := range p.Decl { + if i > 0 { + s += ", " + } + s += v.String() + } + s += " := " + } + for i, c := range p.Cmds { + if i > 0 { + s += " | " + } + s += c.String() + } + return s +} + +func (p *PipeNode) tree() *Tree { + return p.tr +} + +func (p *PipeNode) CopyPipe() *PipeNode { + if p == nil { + return p + } + var decl []*VariableNode + for _, d := range p.Decl { + decl = append(decl, d.Copy().(*VariableNode)) + } + n := p.tr.newPipeline(p.Pos, p.Line, decl) + for _, c := range p.Cmds { + n.append(c.Copy().(*CommandNode)) + } + return n +} + +func (p *PipeNode) Copy() Node { + return p.CopyPipe() +} + +// ActionNode holds an action (something bounded by delimiters). +// Control actions have their own nodes; ActionNode represents simple +// ones such as field evaluations and parenthesized pipelines. +type ActionNode struct { + NodeType + Pos + tr *Tree + Line int // The line number in the input (deprecated; kept for compatibility) + Pipe *PipeNode // The pipeline in the action. +} + +func (t *Tree) newAction(pos Pos, line int, pipe *PipeNode) *ActionNode { + return &ActionNode{tr: t, NodeType: NodeAction, Pos: pos, Line: line, Pipe: pipe} +} + +func (a *ActionNode) String() string { + return fmt.Sprintf("{{%s}}", a.Pipe) + +} + +func (a *ActionNode) tree() *Tree { + return a.tr +} + +func (a *ActionNode) Copy() Node { + return a.tr.newAction(a.Pos, a.Line, a.Pipe.CopyPipe()) + +} + +// CommandNode holds a command (a pipeline inside an evaluating action). +type CommandNode struct { + NodeType + Pos + tr *Tree + Args []Node // Arguments in lexical order: Identifier, field, or constant. +} + +func (t *Tree) newCommand(pos Pos) *CommandNode { + return &CommandNode{tr: t, NodeType: NodeCommand, Pos: pos} +} + +func (c *CommandNode) append(arg Node) { + c.Args = append(c.Args, arg) +} + +func (c *CommandNode) String() string { + s := "" + for i, arg := range c.Args { + if i > 0 { + s += " " + } + if arg, ok := arg.(*PipeNode); ok { + s += "(" + arg.String() + ")" + continue + } + s += arg.String() + } + return s +} + +func (c *CommandNode) tree() *Tree { + return c.tr +} + +func (c *CommandNode) Copy() Node { + if c == nil { + return c + } + n := c.tr.newCommand(c.Pos) + for _, c := range c.Args { + n.append(c.Copy()) + } + return n +} + +// IdentifierNode holds an identifier. +type IdentifierNode struct { + NodeType + Pos + tr *Tree + Ident string // The identifier's name. +} + +// NewIdentifier returns a new IdentifierNode with the given identifier name. +func NewIdentifier(ident string) *IdentifierNode { + return &IdentifierNode{NodeType: NodeIdentifier, Ident: ident} +} + +// SetPos sets the position. NewIdentifier is a public method so we can't modify its signature. +// Chained for convenience. +// TODO: fix one day? +func (i *IdentifierNode) SetPos(pos Pos) *IdentifierNode { + i.Pos = pos + return i +} + +// SetTree sets the parent tree for the node. NewIdentifier is a public method so we can't modify its signature. +// Chained for convenience. +// TODO: fix one day? +func (i *IdentifierNode) SetTree(t *Tree) *IdentifierNode { + i.tr = t + return i +} + +func (i *IdentifierNode) String() string { + return i.Ident +} + +func (i *IdentifierNode) tree() *Tree { + return i.tr +} + +func (i *IdentifierNode) Copy() Node { + return NewIdentifier(i.Ident).SetTree(i.tr).SetPos(i.Pos) +} + +// VariableNode holds a list of variable names, possibly with chained field +// accesses. The dollar sign is part of the (first) name. +type VariableNode struct { + NodeType + Pos + tr *Tree + Ident []string // Variable name and fields in lexical order. +} + +func (t *Tree) newVariable(pos Pos, ident string) *VariableNode { + return &VariableNode{tr: t, NodeType: NodeVariable, Pos: pos, Ident: strings.Split(ident, ".")} +} + +func (v *VariableNode) String() string { + s := "" + for i, id := range v.Ident { + if i > 0 { + s += "." + } + s += id + } + return s +} + +func (v *VariableNode) tree() *Tree { + return v.tr +} + +func (v *VariableNode) Copy() Node { + return &VariableNode{tr: v.tr, NodeType: NodeVariable, Pos: v.Pos, Ident: append([]string{}, v.Ident...)} +} + +// DotNode holds the special identifier '.'. +type DotNode struct { + NodeType + Pos + tr *Tree +} + +func (t *Tree) newDot(pos Pos) *DotNode { + return &DotNode{tr: t, NodeType: NodeDot, Pos: pos} +} + +func (d *DotNode) Type() NodeType { + // Override method on embedded NodeType for API compatibility. + // TODO: Not really a problem; could change API without effect but + // api tool complains. + return NodeDot +} + +func (d *DotNode) String() string { + return "." +} + +func (d *DotNode) tree() *Tree { + return d.tr +} + +func (d *DotNode) Copy() Node { + return d.tr.newDot(d.Pos) +} + +// NilNode holds the special identifier 'nil' representing an untyped nil constant. +type NilNode struct { + NodeType + Pos + tr *Tree +} + +func (t *Tree) newNil(pos Pos) *NilNode { + return &NilNode{tr: t, NodeType: NodeNil, Pos: pos} +} + +func (n *NilNode) Type() NodeType { + // Override method on embedded NodeType for API compatibility. + // TODO: Not really a problem; could change API without effect but + // api tool complains. + return NodeNil +} + +func (n *NilNode) String() string { + return "nil" +} + +func (n *NilNode) tree() *Tree { + return n.tr +} + +func (n *NilNode) Copy() Node { + return n.tr.newNil(n.Pos) +} + +// FieldNode holds a field (identifier starting with '.'). +// The names may be chained ('.x.y'). +// The period is dropped from each ident. +type FieldNode struct { + NodeType + Pos + tr *Tree + Ident []string // The identifiers in lexical order. +} + +func (t *Tree) newField(pos Pos, ident string) *FieldNode { + return &FieldNode{tr: t, NodeType: NodeField, Pos: pos, Ident: strings.Split(ident[1:], ".")} // [1:] to drop leading period +} + +func (f *FieldNode) String() string { + s := "" + for _, id := range f.Ident { + s += "." + id + } + return s +} + +func (f *FieldNode) tree() *Tree { + return f.tr +} + +func (f *FieldNode) Copy() Node { + return &FieldNode{tr: f.tr, NodeType: NodeField, Pos: f.Pos, Ident: append([]string{}, f.Ident...)} +} + +// ChainNode holds a term followed by a chain of field accesses (identifier starting with '.'). +// The names may be chained ('.x.y'). +// The periods are dropped from each ident. +type ChainNode struct { + NodeType + Pos + tr *Tree + Node Node + Field []string // The identifiers in lexical order. +} + +func (t *Tree) newChain(pos Pos, node Node) *ChainNode { + return &ChainNode{tr: t, NodeType: NodeChain, Pos: pos, Node: node} +} + +// Add adds the named field (which should start with a period) to the end of the chain. +func (c *ChainNode) Add(field string) { + if len(field) == 0 || field[0] != '.' { + panic("no dot in field") + } + field = field[1:] // Remove leading dot. + if field == "" { + panic("empty field") + } + c.Field = append(c.Field, field) +} + +func (c *ChainNode) String() string { + s := c.Node.String() + if _, ok := c.Node.(*PipeNode); ok { + s = "(" + s + ")" + } + for _, field := range c.Field { + s += "." + field + } + return s +} + +func (c *ChainNode) tree() *Tree { + return c.tr +} + +func (c *ChainNode) Copy() Node { + return &ChainNode{tr: c.tr, NodeType: NodeChain, Pos: c.Pos, Node: c.Node, Field: append([]string{}, c.Field...)} +} + +// BoolNode holds a boolean constant. +type BoolNode struct { + NodeType + Pos + tr *Tree + True bool // The value of the boolean constant. +} + +func (t *Tree) newBool(pos Pos, true bool) *BoolNode { + return &BoolNode{tr: t, NodeType: NodeBool, Pos: pos, True: true} +} + +func (b *BoolNode) String() string { + if b.True { + return "true" + } + return "false" +} + +func (b *BoolNode) tree() *Tree { + return b.tr +} + +func (b *BoolNode) Copy() Node { + return b.tr.newBool(b.Pos, b.True) +} + +// NumberNode holds a number: signed or unsigned integer, float, or complex. +// The value is parsed and stored under all the types that can represent the value. +// This simulates in a small amount of code the behavior of Go's ideal constants. +type NumberNode struct { + NodeType + Pos + tr *Tree + IsInt bool // Number has an integral value. + IsUint bool // Number has an unsigned integral value. + IsFloat bool // Number has a floating-point value. + IsComplex bool // Number is complex. + Int64 int64 // The signed integer value. + Uint64 uint64 // The unsigned integer value. + Float64 float64 // The floating-point value. + Complex128 complex128 // The complex value. + Text string // The original textual representation from the input. +} + +func (t *Tree) newNumber(pos Pos, text string, typ itemType) (*NumberNode, error) { + n := &NumberNode{tr: t, NodeType: NodeNumber, Pos: pos, Text: text} + switch typ { + case itemCharConstant: + rune, _, tail, err := strconv.UnquoteChar(text[1:], text[0]) + if err != nil { + return nil, err + } + if tail != "'" { + return nil, fmt.Errorf("malformed character constant: %s", text) + } + n.Int64 = int64(rune) + n.IsInt = true + n.Uint64 = uint64(rune) + n.IsUint = true + n.Float64 = float64(rune) // odd but those are the rules. + n.IsFloat = true + return n, nil + case itemComplex: + // fmt.Sscan can parse the pair, so let it do the work. + if _, err := fmt.Sscan(text, &n.Complex128); err != nil { + return nil, err + } + n.IsComplex = true + n.simplifyComplex() + return n, nil + } + // Imaginary constants can only be complex unless they are zero. + if len(text) > 0 && text[len(text)-1] == 'i' { + f, err := strconv.ParseFloat(text[:len(text)-1], 64) + if err == nil { + n.IsComplex = true + n.Complex128 = complex(0, f) + n.simplifyComplex() + return n, nil + } + } + // Do integer test first so we get 0x123 etc. + u, err := strconv.ParseUint(text, 0, 64) // will fail for -0; fixed below. + if err == nil { + n.IsUint = true + n.Uint64 = u + } + i, err := strconv.ParseInt(text, 0, 64) + if err == nil { + n.IsInt = true + n.Int64 = i + if i == 0 { + n.IsUint = true // in case of -0. + n.Uint64 = u + } + } + // If an integer extraction succeeded, promote the float. + if n.IsInt { + n.IsFloat = true + n.Float64 = float64(n.Int64) + } else if n.IsUint { + n.IsFloat = true + n.Float64 = float64(n.Uint64) + } else { + f, err := strconv.ParseFloat(text, 64) + if err == nil { + n.IsFloat = true + n.Float64 = f + // If a floating-point extraction succeeded, extract the int if needed. + if !n.IsInt && float64(int64(f)) == f { + n.IsInt = true + n.Int64 = int64(f) + } + if !n.IsUint && float64(uint64(f)) == f { + n.IsUint = true + n.Uint64 = uint64(f) + } + } + } + if !n.IsInt && !n.IsUint && !n.IsFloat { + return nil, fmt.Errorf("illegal number syntax: %q", text) + } + return n, nil +} + +// simplifyComplex pulls out any other types that are represented by the complex number. +// These all require that the imaginary part be zero. +func (n *NumberNode) simplifyComplex() { + n.IsFloat = imag(n.Complex128) == 0 + if n.IsFloat { + n.Float64 = real(n.Complex128) + n.IsInt = float64(int64(n.Float64)) == n.Float64 + if n.IsInt { + n.Int64 = int64(n.Float64) + } + n.IsUint = float64(uint64(n.Float64)) == n.Float64 + if n.IsUint { + n.Uint64 = uint64(n.Float64) + } + } +} + +func (n *NumberNode) String() string { + return n.Text +} + +func (n *NumberNode) tree() *Tree { + return n.tr +} + +func (n *NumberNode) Copy() Node { + nn := new(NumberNode) + *nn = *n // Easy, fast, correct. + return nn +} + +// StringNode holds a string constant. The value has been "unquoted". +type StringNode struct { + NodeType + Pos + tr *Tree + Quoted string // The original text of the string, with quotes. + Text string // The string, after quote processing. +} + +func (t *Tree) newString(pos Pos, orig, text string) *StringNode { + return &StringNode{tr: t, NodeType: NodeString, Pos: pos, Quoted: orig, Text: text} +} + +func (s *StringNode) String() string { + return s.Quoted +} + +func (s *StringNode) tree() *Tree { + return s.tr +} + +func (s *StringNode) Copy() Node { + return s.tr.newString(s.Pos, s.Quoted, s.Text) +} + +// endNode represents an {{end}} action. +// It does not appear in the final parse tree. +type endNode struct { + NodeType + Pos + tr *Tree +} + +func (t *Tree) newEnd(pos Pos) *endNode { + return &endNode{tr: t, NodeType: nodeEnd, Pos: pos} +} + +func (e *endNode) String() string { + return "{{end}}" +} + +func (e *endNode) tree() *Tree { + return e.tr +} + +func (e *endNode) Copy() Node { + return e.tr.newEnd(e.Pos) +} + +// elseNode represents an {{else}} action. Does not appear in the final tree. +type elseNode struct { + NodeType + Pos + tr *Tree + Line int // The line number in the input (deprecated; kept for compatibility) +} + +func (t *Tree) newElse(pos Pos, line int) *elseNode { + return &elseNode{tr: t, NodeType: nodeElse, Pos: pos, Line: line} +} + +func (e *elseNode) Type() NodeType { + return nodeElse +} + +func (e *elseNode) String() string { + return "{{else}}" +} + +func (e *elseNode) tree() *Tree { + return e.tr +} + +func (e *elseNode) Copy() Node { + return e.tr.newElse(e.Pos, e.Line) +} + +// BranchNode is the common representation of if, range, and with. +type BranchNode struct { + NodeType + Pos + tr *Tree + Line int // The line number in the input (deprecated; kept for compatibility) + Pipe *PipeNode // The pipeline to be evaluated. + List *ListNode // What to execute if the value is non-empty. + ElseList *ListNode // What to execute if the value is empty (nil if absent). +} + +func (b *BranchNode) String() string { + name := "" + switch b.NodeType { + case NodeIf: + name = "if" + case NodeRange: + name = "range" + case NodeWith: + name = "with" + default: + panic("unknown branch type") + } + if b.ElseList != nil { + return fmt.Sprintf("{{%s %s}}%s{{else}}%s{{end}}", name, b.Pipe, b.List, b.ElseList) + } + return fmt.Sprintf("{{%s %s}}%s{{end}}", name, b.Pipe, b.List) +} + +func (b *BranchNode) tree() *Tree { + return b.tr +} + +func (b *BranchNode) Copy() Node { + switch b.NodeType { + case NodeIf: + return b.tr.newIf(b.Pos, b.Line, b.Pipe, b.List, b.ElseList) + case NodeRange: + return b.tr.newRange(b.Pos, b.Line, b.Pipe, b.List, b.ElseList) + case NodeWith: + return b.tr.newWith(b.Pos, b.Line, b.Pipe, b.List, b.ElseList) + default: + panic("unknown branch type") + } +} + +// IfNode represents an {{if}} action and its commands. +type IfNode struct { + BranchNode +} + +func (t *Tree) newIf(pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) *IfNode { + return &IfNode{BranchNode{tr: t, NodeType: NodeIf, Pos: pos, Line: line, Pipe: pipe, List: list, ElseList: elseList}} +} + +func (i *IfNode) Copy() Node { + return i.tr.newIf(i.Pos, i.Line, i.Pipe.CopyPipe(), i.List.CopyList(), i.ElseList.CopyList()) +} + +// RangeNode represents a {{range}} action and its commands. +type RangeNode struct { + BranchNode +} + +func (t *Tree) newRange(pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) *RangeNode { + return &RangeNode{BranchNode{tr: t, NodeType: NodeRange, Pos: pos, Line: line, Pipe: pipe, List: list, ElseList: elseList}} +} + +func (r *RangeNode) Copy() Node { + return r.tr.newRange(r.Pos, r.Line, r.Pipe.CopyPipe(), r.List.CopyList(), r.ElseList.CopyList()) +} + +// WithNode represents a {{with}} action and its commands. +type WithNode struct { + BranchNode +} + +func (t *Tree) newWith(pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) *WithNode { + return &WithNode{BranchNode{tr: t, NodeType: NodeWith, Pos: pos, Line: line, Pipe: pipe, List: list, ElseList: elseList}} +} + +func (w *WithNode) Copy() Node { + return w.tr.newWith(w.Pos, w.Line, w.Pipe.CopyPipe(), w.List.CopyList(), w.ElseList.CopyList()) +} + +// TemplateNode represents a {{template}} action. +type TemplateNode struct { + NodeType + Pos + tr *Tree + Line int // The line number in the input (deprecated; kept for compatibility) + Name string // The name of the template (unquoted). + Pipe *PipeNode // The command to evaluate as dot for the template. +} + +func (t *Tree) newTemplate(pos Pos, line int, name string, pipe *PipeNode) *TemplateNode { + return &TemplateNode{tr: t, NodeType: NodeTemplate, Pos: pos, Line: line, Name: name, Pipe: pipe} +} + +func (t *TemplateNode) String() string { + if t.Pipe == nil { + return fmt.Sprintf("{{template %q}}", t.Name) + } + return fmt.Sprintf("{{template %q %s}}", t.Name, t.Pipe) +} + +func (t *TemplateNode) tree() *Tree { + return t.tr +} + +func (t *TemplateNode) Copy() Node { + return t.tr.newTemplate(t.Pos, t.Line, t.Name, t.Pipe.CopyPipe()) +} diff --git a/vendor/github.com/alecthomas/template/parse/parse.go b/vendor/github.com/alecthomas/template/parse/parse.go new file mode 100644 index 000000000..0d77ade87 --- /dev/null +++ b/vendor/github.com/alecthomas/template/parse/parse.go @@ -0,0 +1,700 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package parse builds parse trees for templates as defined by text/template +// and html/template. Clients should use those packages to construct templates +// rather than this one, which provides shared internal data structures not +// intended for general use. +package parse + +import ( + "bytes" + "fmt" + "runtime" + "strconv" + "strings" +) + +// Tree is the representation of a single parsed template. +type Tree struct { + Name string // name of the template represented by the tree. + ParseName string // name of the top-level template during parsing, for error messages. + Root *ListNode // top-level root of the tree. + text string // text parsed to create the template (or its parent) + // Parsing only; cleared after parse. + funcs []map[string]interface{} + lex *lexer + token [3]item // three-token lookahead for parser. + peekCount int + vars []string // variables defined at the moment. +} + +// Copy returns a copy of the Tree. Any parsing state is discarded. +func (t *Tree) Copy() *Tree { + if t == nil { + return nil + } + return &Tree{ + Name: t.Name, + ParseName: t.ParseName, + Root: t.Root.CopyList(), + text: t.text, + } +} + +// Parse returns a map from template name to parse.Tree, created by parsing the +// templates described in the argument string. The top-level template will be +// given the specified name. If an error is encountered, parsing stops and an +// empty map is returned with the error. +func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]interface{}) (treeSet map[string]*Tree, err error) { + treeSet = make(map[string]*Tree) + t := New(name) + t.text = text + _, err = t.Parse(text, leftDelim, rightDelim, treeSet, funcs...) + return +} + +// next returns the next token. +func (t *Tree) next() item { + if t.peekCount > 0 { + t.peekCount-- + } else { + t.token[0] = t.lex.nextItem() + } + return t.token[t.peekCount] +} + +// backup backs the input stream up one token. +func (t *Tree) backup() { + t.peekCount++ +} + +// backup2 backs the input stream up two tokens. +// The zeroth token is already there. +func (t *Tree) backup2(t1 item) { + t.token[1] = t1 + t.peekCount = 2 +} + +// backup3 backs the input stream up three tokens +// The zeroth token is already there. +func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back. + t.token[1] = t1 + t.token[2] = t2 + t.peekCount = 3 +} + +// peek returns but does not consume the next token. +func (t *Tree) peek() item { + if t.peekCount > 0 { + return t.token[t.peekCount-1] + } + t.peekCount = 1 + t.token[0] = t.lex.nextItem() + return t.token[0] +} + +// nextNonSpace returns the next non-space token. +func (t *Tree) nextNonSpace() (token item) { + for { + token = t.next() + if token.typ != itemSpace { + break + } + } + return token +} + +// peekNonSpace returns but does not consume the next non-space token. +func (t *Tree) peekNonSpace() (token item) { + for { + token = t.next() + if token.typ != itemSpace { + break + } + } + t.backup() + return token +} + +// Parsing. + +// New allocates a new parse tree with the given name. +func New(name string, funcs ...map[string]interface{}) *Tree { + return &Tree{ + Name: name, + funcs: funcs, + } +} + +// ErrorContext returns a textual representation of the location of the node in the input text. +// The receiver is only used when the node does not have a pointer to the tree inside, +// which can occur in old code. +func (t *Tree) ErrorContext(n Node) (location, context string) { + pos := int(n.Position()) + tree := n.tree() + if tree == nil { + tree = t + } + text := tree.text[:pos] + byteNum := strings.LastIndex(text, "\n") + if byteNum == -1 { + byteNum = pos // On first line. + } else { + byteNum++ // After the newline. + byteNum = pos - byteNum + } + lineNum := 1 + strings.Count(text, "\n") + context = n.String() + if len(context) > 20 { + context = fmt.Sprintf("%.20s...", context) + } + return fmt.Sprintf("%s:%d:%d", tree.ParseName, lineNum, byteNum), context +} + +// errorf formats the error and terminates processing. +func (t *Tree) errorf(format string, args ...interface{}) { + t.Root = nil + format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.lex.lineNumber(), format) + panic(fmt.Errorf(format, args...)) +} + +// error terminates processing. +func (t *Tree) error(err error) { + t.errorf("%s", err) +} + +// expect consumes the next token and guarantees it has the required type. +func (t *Tree) expect(expected itemType, context string) item { + token := t.nextNonSpace() + if token.typ != expected { + t.unexpected(token, context) + } + return token +} + +// expectOneOf consumes the next token and guarantees it has one of the required types. +func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item { + token := t.nextNonSpace() + if token.typ != expected1 && token.typ != expected2 { + t.unexpected(token, context) + } + return token +} + +// unexpected complains about the token and terminates processing. +func (t *Tree) unexpected(token item, context string) { + t.errorf("unexpected %s in %s", token, context) +} + +// recover is the handler that turns panics into returns from the top level of Parse. +func (t *Tree) recover(errp *error) { + e := recover() + if e != nil { + if _, ok := e.(runtime.Error); ok { + panic(e) + } + if t != nil { + t.stopParse() + } + *errp = e.(error) + } + return +} + +// startParse initializes the parser, using the lexer. +func (t *Tree) startParse(funcs []map[string]interface{}, lex *lexer) { + t.Root = nil + t.lex = lex + t.vars = []string{"$"} + t.funcs = funcs +} + +// stopParse terminates parsing. +func (t *Tree) stopParse() { + t.lex = nil + t.vars = nil + t.funcs = nil +} + +// Parse parses the template definition string to construct a representation of +// the template for execution. If either action delimiter string is empty, the +// default ("{{" or "}}") is used. Embedded template definitions are added to +// the treeSet map. +func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]interface{}) (tree *Tree, err error) { + defer t.recover(&err) + t.ParseName = t.Name + t.startParse(funcs, lex(t.Name, text, leftDelim, rightDelim)) + t.text = text + t.parse(treeSet) + t.add(treeSet) + t.stopParse() + return t, nil +} + +// add adds tree to the treeSet. +func (t *Tree) add(treeSet map[string]*Tree) { + tree := treeSet[t.Name] + if tree == nil || IsEmptyTree(tree.Root) { + treeSet[t.Name] = t + return + } + if !IsEmptyTree(t.Root) { + t.errorf("template: multiple definition of template %q", t.Name) + } +} + +// IsEmptyTree reports whether this tree (node) is empty of everything but space. +func IsEmptyTree(n Node) bool { + switch n := n.(type) { + case nil: + return true + case *ActionNode: + case *IfNode: + case *ListNode: + for _, node := range n.Nodes { + if !IsEmptyTree(node) { + return false + } + } + return true + case *RangeNode: + case *TemplateNode: + case *TextNode: + return len(bytes.TrimSpace(n.Text)) == 0 + case *WithNode: + default: + panic("unknown node: " + n.String()) + } + return false +} + +// parse is the top-level parser for a template, essentially the same +// as itemList except it also parses {{define}} actions. +// It runs to EOF. +func (t *Tree) parse(treeSet map[string]*Tree) (next Node) { + t.Root = t.newList(t.peek().pos) + for t.peek().typ != itemEOF { + if t.peek().typ == itemLeftDelim { + delim := t.next() + if t.nextNonSpace().typ == itemDefine { + newT := New("definition") // name will be updated once we know it. + newT.text = t.text + newT.ParseName = t.ParseName + newT.startParse(t.funcs, t.lex) + newT.parseDefinition(treeSet) + continue + } + t.backup2(delim) + } + n := t.textOrAction() + if n.Type() == nodeEnd { + t.errorf("unexpected %s", n) + } + t.Root.append(n) + } + return nil +} + +// parseDefinition parses a {{define}} ... {{end}} template definition and +// installs the definition in the treeSet map. The "define" keyword has already +// been scanned. +func (t *Tree) parseDefinition(treeSet map[string]*Tree) { + const context = "define clause" + name := t.expectOneOf(itemString, itemRawString, context) + var err error + t.Name, err = strconv.Unquote(name.val) + if err != nil { + t.error(err) + } + t.expect(itemRightDelim, context) + var end Node + t.Root, end = t.itemList() + if end.Type() != nodeEnd { + t.errorf("unexpected %s in %s", end, context) + } + t.add(treeSet) + t.stopParse() +} + +// itemList: +// textOrAction* +// Terminates at {{end}} or {{else}}, returned separately. +func (t *Tree) itemList() (list *ListNode, next Node) { + list = t.newList(t.peekNonSpace().pos) + for t.peekNonSpace().typ != itemEOF { + n := t.textOrAction() + switch n.Type() { + case nodeEnd, nodeElse: + return list, n + } + list.append(n) + } + t.errorf("unexpected EOF") + return +} + +// textOrAction: +// text | action +func (t *Tree) textOrAction() Node { + switch token := t.nextNonSpace(); token.typ { + case itemElideNewline: + return t.elideNewline() + case itemText: + return t.newText(token.pos, token.val) + case itemLeftDelim: + return t.action() + default: + t.unexpected(token, "input") + } + return nil +} + +// elideNewline: +// Remove newlines trailing rightDelim if \\ is present. +func (t *Tree) elideNewline() Node { + token := t.peek() + if token.typ != itemText { + t.unexpected(token, "input") + return nil + } + + t.next() + stripped := strings.TrimLeft(token.val, "\n\r") + diff := len(token.val) - len(stripped) + if diff > 0 { + // This is a bit nasty. We mutate the token in-place to remove + // preceding newlines. + token.pos += Pos(diff) + token.val = stripped + } + return t.newText(token.pos, token.val) +} + +// Action: +// control +// command ("|" command)* +// Left delim is past. Now get actions. +// First word could be a keyword such as range. +func (t *Tree) action() (n Node) { + switch token := t.nextNonSpace(); token.typ { + case itemElse: + return t.elseControl() + case itemEnd: + return t.endControl() + case itemIf: + return t.ifControl() + case itemRange: + return t.rangeControl() + case itemTemplate: + return t.templateControl() + case itemWith: + return t.withControl() + } + t.backup() + // Do not pop variables; they persist until "end". + return t.newAction(t.peek().pos, t.lex.lineNumber(), t.pipeline("command")) +} + +// Pipeline: +// declarations? command ('|' command)* +func (t *Tree) pipeline(context string) (pipe *PipeNode) { + var decl []*VariableNode + pos := t.peekNonSpace().pos + // Are there declarations? + for { + if v := t.peekNonSpace(); v.typ == itemVariable { + t.next() + // Since space is a token, we need 3-token look-ahead here in the worst case: + // in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an + // argument variable rather than a declaration. So remember the token + // adjacent to the variable so we can push it back if necessary. + tokenAfterVariable := t.peek() + if next := t.peekNonSpace(); next.typ == itemColonEquals || (next.typ == itemChar && next.val == ",") { + t.nextNonSpace() + variable := t.newVariable(v.pos, v.val) + decl = append(decl, variable) + t.vars = append(t.vars, v.val) + if next.typ == itemChar && next.val == "," { + if context == "range" && len(decl) < 2 { + continue + } + t.errorf("too many declarations in %s", context) + } + } else if tokenAfterVariable.typ == itemSpace { + t.backup3(v, tokenAfterVariable) + } else { + t.backup2(v) + } + } + break + } + pipe = t.newPipeline(pos, t.lex.lineNumber(), decl) + for { + switch token := t.nextNonSpace(); token.typ { + case itemRightDelim, itemRightParen: + if len(pipe.Cmds) == 0 { + t.errorf("missing value for %s", context) + } + if token.typ == itemRightParen { + t.backup() + } + return + case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier, + itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen: + t.backup() + pipe.append(t.command()) + default: + t.unexpected(token, context) + } + } +} + +func (t *Tree) parseControl(allowElseIf bool, context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) { + defer t.popVars(len(t.vars)) + line = t.lex.lineNumber() + pipe = t.pipeline(context) + var next Node + list, next = t.itemList() + switch next.Type() { + case nodeEnd: //done + case nodeElse: + if allowElseIf { + // Special case for "else if". If the "else" is followed immediately by an "if", + // the elseControl will have left the "if" token pending. Treat + // {{if a}}_{{else if b}}_{{end}} + // as + // {{if a}}_{{else}}{{if b}}_{{end}}{{end}}. + // To do this, parse the if as usual and stop at it {{end}}; the subsequent{{end}} + // is assumed. This technique works even for long if-else-if chains. + // TODO: Should we allow else-if in with and range? + if t.peek().typ == itemIf { + t.next() // Consume the "if" token. + elseList = t.newList(next.Position()) + elseList.append(t.ifControl()) + // Do not consume the next item - only one {{end}} required. + break + } + } + elseList, next = t.itemList() + if next.Type() != nodeEnd { + t.errorf("expected end; found %s", next) + } + } + return pipe.Position(), line, pipe, list, elseList +} + +// If: +// {{if pipeline}} itemList {{end}} +// {{if pipeline}} itemList {{else}} itemList {{end}} +// If keyword is past. +func (t *Tree) ifControl() Node { + return t.newIf(t.parseControl(true, "if")) +} + +// Range: +// {{range pipeline}} itemList {{end}} +// {{range pipeline}} itemList {{else}} itemList {{end}} +// Range keyword is past. +func (t *Tree) rangeControl() Node { + return t.newRange(t.parseControl(false, "range")) +} + +// With: +// {{with pipeline}} itemList {{end}} +// {{with pipeline}} itemList {{else}} itemList {{end}} +// If keyword is past. +func (t *Tree) withControl() Node { + return t.newWith(t.parseControl(false, "with")) +} + +// End: +// {{end}} +// End keyword is past. +func (t *Tree) endControl() Node { + return t.newEnd(t.expect(itemRightDelim, "end").pos) +} + +// Else: +// {{else}} +// Else keyword is past. +func (t *Tree) elseControl() Node { + // Special case for "else if". + peek := t.peekNonSpace() + if peek.typ == itemIf { + // We see "{{else if ... " but in effect rewrite it to {{else}}{{if ... ". + return t.newElse(peek.pos, t.lex.lineNumber()) + } + return t.newElse(t.expect(itemRightDelim, "else").pos, t.lex.lineNumber()) +} + +// Template: +// {{template stringValue pipeline}} +// Template keyword is past. The name must be something that can evaluate +// to a string. +func (t *Tree) templateControl() Node { + var name string + token := t.nextNonSpace() + switch token.typ { + case itemString, itemRawString: + s, err := strconv.Unquote(token.val) + if err != nil { + t.error(err) + } + name = s + default: + t.unexpected(token, "template invocation") + } + var pipe *PipeNode + if t.nextNonSpace().typ != itemRightDelim { + t.backup() + // Do not pop variables; they persist until "end". + pipe = t.pipeline("template") + } + return t.newTemplate(token.pos, t.lex.lineNumber(), name, pipe) +} + +// command: +// operand (space operand)* +// space-separated arguments up to a pipeline character or right delimiter. +// we consume the pipe character but leave the right delim to terminate the action. +func (t *Tree) command() *CommandNode { + cmd := t.newCommand(t.peekNonSpace().pos) + for { + t.peekNonSpace() // skip leading spaces. + operand := t.operand() + if operand != nil { + cmd.append(operand) + } + switch token := t.next(); token.typ { + case itemSpace: + continue + case itemError: + t.errorf("%s", token.val) + case itemRightDelim, itemRightParen: + t.backup() + case itemPipe: + default: + t.errorf("unexpected %s in operand; missing space?", token) + } + break + } + if len(cmd.Args) == 0 { + t.errorf("empty command") + } + return cmd +} + +// operand: +// term .Field* +// An operand is a space-separated component of a command, +// a term possibly followed by field accesses. +// A nil return means the next item is not an operand. +func (t *Tree) operand() Node { + node := t.term() + if node == nil { + return nil + } + if t.peek().typ == itemField { + chain := t.newChain(t.peek().pos, node) + for t.peek().typ == itemField { + chain.Add(t.next().val) + } + // Compatibility with original API: If the term is of type NodeField + // or NodeVariable, just put more fields on the original. + // Otherwise, keep the Chain node. + // TODO: Switch to Chains always when we can. + switch node.Type() { + case NodeField: + node = t.newField(chain.Position(), chain.String()) + case NodeVariable: + node = t.newVariable(chain.Position(), chain.String()) + default: + node = chain + } + } + return node +} + +// term: +// literal (number, string, nil, boolean) +// function (identifier) +// . +// .Field +// $ +// '(' pipeline ')' +// A term is a simple "expression". +// A nil return means the next item is not a term. +func (t *Tree) term() Node { + switch token := t.nextNonSpace(); token.typ { + case itemError: + t.errorf("%s", token.val) + case itemIdentifier: + if !t.hasFunction(token.val) { + t.errorf("function %q not defined", token.val) + } + return NewIdentifier(token.val).SetTree(t).SetPos(token.pos) + case itemDot: + return t.newDot(token.pos) + case itemNil: + return t.newNil(token.pos) + case itemVariable: + return t.useVar(token.pos, token.val) + case itemField: + return t.newField(token.pos, token.val) + case itemBool: + return t.newBool(token.pos, token.val == "true") + case itemCharConstant, itemComplex, itemNumber: + number, err := t.newNumber(token.pos, token.val, token.typ) + if err != nil { + t.error(err) + } + return number + case itemLeftParen: + pipe := t.pipeline("parenthesized pipeline") + if token := t.next(); token.typ != itemRightParen { + t.errorf("unclosed right paren: unexpected %s", token) + } + return pipe + case itemString, itemRawString: + s, err := strconv.Unquote(token.val) + if err != nil { + t.error(err) + } + return t.newString(token.pos, token.val, s) + } + t.backup() + return nil +} + +// hasFunction reports if a function name exists in the Tree's maps. +func (t *Tree) hasFunction(name string) bool { + for _, funcMap := range t.funcs { + if funcMap == nil { + continue + } + if funcMap[name] != nil { + return true + } + } + return false +} + +// popVars trims the variable list to the specified length +func (t *Tree) popVars(n int) { + t.vars = t.vars[:n] +} + +// useVar returns a node for a variable reference. It errors if the +// variable is not defined. +func (t *Tree) useVar(pos Pos, name string) Node { + v := t.newVariable(pos, name) + for _, varName := range t.vars { + if varName == v.Ident[0] { + return v + } + } + t.errorf("undefined variable %q", v.Ident[0]) + return nil +} -- cgit v1.2.3-1-g7c22