From d103ed6ca97ca5a2669f6cf5fe4b3d2a9c945f26 Mon Sep 17 00:00:00 2001 From: Christopher Speller Date: Wed, 17 May 2017 16:51:25 -0400 Subject: Upgrading server dependancies (#6431) --- .../hashicorp/go-msgpack/codec/encode.go | 1001 ++++++++++++++++++++ 1 file changed, 1001 insertions(+) create mode 100644 vendor/github.com/hashicorp/go-msgpack/codec/encode.go (limited to 'vendor/github.com/hashicorp/go-msgpack/codec/encode.go') diff --git a/vendor/github.com/hashicorp/go-msgpack/codec/encode.go b/vendor/github.com/hashicorp/go-msgpack/codec/encode.go new file mode 100644 index 000000000..4914be0c7 --- /dev/null +++ b/vendor/github.com/hashicorp/go-msgpack/codec/encode.go @@ -0,0 +1,1001 @@ +// Copyright (c) 2012, 2013 Ugorji Nwoke. All rights reserved. +// Use of this source code is governed by a BSD-style license found in the LICENSE file. + +package codec + +import ( + "io" + "reflect" +) + +const ( + // Some tagging information for error messages. + msgTagEnc = "codec.encoder" + defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024 + // maxTimeSecs32 = math.MaxInt32 / 60 / 24 / 366 +) + +// AsSymbolFlag defines what should be encoded as symbols. +type AsSymbolFlag uint8 + +const ( + // AsSymbolDefault is default. + // Currently, this means only encode struct field names as symbols. + // The default is subject to change. + AsSymbolDefault AsSymbolFlag = iota + + // AsSymbolAll means encode anything which could be a symbol as a symbol. + AsSymbolAll = 0xfe + + // AsSymbolNone means do not encode anything as a symbol. + AsSymbolNone = 1 << iota + + // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols. + AsSymbolMapStringKeysFlag + + // AsSymbolStructFieldName means encode struct field names as symbols. + AsSymbolStructFieldNameFlag +) + +// encWriter abstracting writing to a byte array or to an io.Writer. +type encWriter interface { + writeUint16(uint16) + writeUint32(uint32) + writeUint64(uint64) + writeb([]byte) + writestr(string) + writen1(byte) + writen2(byte, byte) + atEndOfEncode() +} + +// encDriver abstracts the actual codec (binc vs msgpack, etc) +type encDriver interface { + isBuiltinType(rt uintptr) bool + encodeBuiltin(rt uintptr, v interface{}) + encodeNil() + encodeInt(i int64) + encodeUint(i uint64) + encodeBool(b bool) + encodeFloat32(f float32) + encodeFloat64(f float64) + encodeExtPreamble(xtag byte, length int) + encodeArrayPreamble(length int) + encodeMapPreamble(length int) + encodeString(c charEncoding, v string) + encodeSymbol(v string) + encodeStringBytes(c charEncoding, v []byte) + //TODO + //encBignum(f *big.Int) + //encStringRunes(c charEncoding, v []rune) +} + +type ioEncWriterWriter interface { + WriteByte(c byte) error + WriteString(s string) (n int, err error) + Write(p []byte) (n int, err error) +} + +type ioEncStringWriter interface { + WriteString(s string) (n int, err error) +} + +type EncodeOptions struct { + // Encode a struct as an array, and not as a map. + StructToArray bool + + // AsSymbols defines what should be encoded as symbols. + // + // Encoding as symbols can reduce the encoded size significantly. + // + // However, during decoding, each string to be encoded as a symbol must + // be checked to see if it has been seen before. Consequently, encoding time + // will increase if using symbols, because string comparisons has a clear cost. + // + // Sample values: + // AsSymbolNone + // AsSymbolAll + // AsSymbolMapStringKeys + // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag + AsSymbols AsSymbolFlag +} + +// --------------------------------------------- + +type simpleIoEncWriterWriter struct { + w io.Writer + bw io.ByteWriter + sw ioEncStringWriter +} + +func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) { + if o.bw != nil { + return o.bw.WriteByte(c) + } + _, err = o.w.Write([]byte{c}) + return +} + +func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) { + if o.sw != nil { + return o.sw.WriteString(s) + } + return o.w.Write([]byte(s)) +} + +func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) { + return o.w.Write(p) +} + +// ---------------------------------------- + +// ioEncWriter implements encWriter and can write to an io.Writer implementation +type ioEncWriter struct { + w ioEncWriterWriter + x [8]byte // temp byte array re-used internally for efficiency +} + +func (z *ioEncWriter) writeUint16(v uint16) { + bigen.PutUint16(z.x[:2], v) + z.writeb(z.x[:2]) +} + +func (z *ioEncWriter) writeUint32(v uint32) { + bigen.PutUint32(z.x[:4], v) + z.writeb(z.x[:4]) +} + +func (z *ioEncWriter) writeUint64(v uint64) { + bigen.PutUint64(z.x[:8], v) + z.writeb(z.x[:8]) +} + +func (z *ioEncWriter) writeb(bs []byte) { + if len(bs) == 0 { + return + } + n, err := z.w.Write(bs) + if err != nil { + panic(err) + } + if n != len(bs) { + encErr("write: Incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n) + } +} + +func (z *ioEncWriter) writestr(s string) { + n, err := z.w.WriteString(s) + if err != nil { + panic(err) + } + if n != len(s) { + encErr("write: Incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n) + } +} + +func (z *ioEncWriter) writen1(b byte) { + if err := z.w.WriteByte(b); err != nil { + panic(err) + } +} + +func (z *ioEncWriter) writen2(b1 byte, b2 byte) { + z.writen1(b1) + z.writen1(b2) +} + +func (z *ioEncWriter) atEndOfEncode() {} + +// ---------------------------------------- + +// bytesEncWriter implements encWriter and can write to an byte slice. +// It is used by Marshal function. +type bytesEncWriter struct { + b []byte + c int // cursor + out *[]byte // write out on atEndOfEncode +} + +func (z *bytesEncWriter) writeUint16(v uint16) { + c := z.grow(2) + z.b[c] = byte(v >> 8) + z.b[c+1] = byte(v) +} + +func (z *bytesEncWriter) writeUint32(v uint32) { + c := z.grow(4) + z.b[c] = byte(v >> 24) + z.b[c+1] = byte(v >> 16) + z.b[c+2] = byte(v >> 8) + z.b[c+3] = byte(v) +} + +func (z *bytesEncWriter) writeUint64(v uint64) { + c := z.grow(8) + z.b[c] = byte(v >> 56) + z.b[c+1] = byte(v >> 48) + z.b[c+2] = byte(v >> 40) + z.b[c+3] = byte(v >> 32) + z.b[c+4] = byte(v >> 24) + z.b[c+5] = byte(v >> 16) + z.b[c+6] = byte(v >> 8) + z.b[c+7] = byte(v) +} + +func (z *bytesEncWriter) writeb(s []byte) { + if len(s) == 0 { + return + } + c := z.grow(len(s)) + copy(z.b[c:], s) +} + +func (z *bytesEncWriter) writestr(s string) { + c := z.grow(len(s)) + copy(z.b[c:], s) +} + +func (z *bytesEncWriter) writen1(b1 byte) { + c := z.grow(1) + z.b[c] = b1 +} + +func (z *bytesEncWriter) writen2(b1 byte, b2 byte) { + c := z.grow(2) + z.b[c] = b1 + z.b[c+1] = b2 +} + +func (z *bytesEncWriter) atEndOfEncode() { + *(z.out) = z.b[:z.c] +} + +func (z *bytesEncWriter) grow(n int) (oldcursor int) { + oldcursor = z.c + z.c = oldcursor + n + if z.c > cap(z.b) { + // Tried using appendslice logic: (if cap < 1024, *2, else *1.25). + // However, it was too expensive, causing too many iterations of copy. + // Using bytes.Buffer model was much better (2*cap + n) + bs := make([]byte, 2*cap(z.b)+n) + copy(bs, z.b[:oldcursor]) + z.b = bs + } else if z.c > len(z.b) { + z.b = z.b[:cap(z.b)] + } + return +} + +// --------------------------------------------- + +type encFnInfo struct { + ti *typeInfo + e *Encoder + ee encDriver + xfFn func(reflect.Value) ([]byte, error) + xfTag byte +} + +func (f *encFnInfo) builtin(rv reflect.Value) { + f.ee.encodeBuiltin(f.ti.rtid, rv.Interface()) +} + +func (f *encFnInfo) rawExt(rv reflect.Value) { + f.e.encRawExt(rv.Interface().(RawExt)) +} + +func (f *encFnInfo) ext(rv reflect.Value) { + bs, fnerr := f.xfFn(rv) + if fnerr != nil { + panic(fnerr) + } + if bs == nil { + f.ee.encodeNil() + return + } + if f.e.hh.writeExt() { + f.ee.encodeExtPreamble(f.xfTag, len(bs)) + f.e.w.writeb(bs) + } else { + f.ee.encodeStringBytes(c_RAW, bs) + } + +} + +func (f *encFnInfo) binaryMarshal(rv reflect.Value) { + var bm binaryMarshaler + if f.ti.mIndir == 0 { + bm = rv.Interface().(binaryMarshaler) + } else if f.ti.mIndir == -1 { + bm = rv.Addr().Interface().(binaryMarshaler) + } else { + for j, k := int8(0), f.ti.mIndir; j < k; j++ { + if rv.IsNil() { + f.ee.encodeNil() + return + } + rv = rv.Elem() + } + bm = rv.Interface().(binaryMarshaler) + } + // debugf(">>>> binaryMarshaler: %T", rv.Interface()) + bs, fnerr := bm.MarshalBinary() + if fnerr != nil { + panic(fnerr) + } + if bs == nil { + f.ee.encodeNil() + } else { + f.ee.encodeStringBytes(c_RAW, bs) + } +} + +func (f *encFnInfo) kBool(rv reflect.Value) { + f.ee.encodeBool(rv.Bool()) +} + +func (f *encFnInfo) kString(rv reflect.Value) { + f.ee.encodeString(c_UTF8, rv.String()) +} + +func (f *encFnInfo) kFloat64(rv reflect.Value) { + f.ee.encodeFloat64(rv.Float()) +} + +func (f *encFnInfo) kFloat32(rv reflect.Value) { + f.ee.encodeFloat32(float32(rv.Float())) +} + +func (f *encFnInfo) kInt(rv reflect.Value) { + f.ee.encodeInt(rv.Int()) +} + +func (f *encFnInfo) kUint(rv reflect.Value) { + f.ee.encodeUint(rv.Uint()) +} + +func (f *encFnInfo) kInvalid(rv reflect.Value) { + f.ee.encodeNil() +} + +func (f *encFnInfo) kErr(rv reflect.Value) { + encErr("Unsupported kind: %s, for: %#v", rv.Kind(), rv) +} + +func (f *encFnInfo) kSlice(rv reflect.Value) { + if rv.IsNil() { + f.ee.encodeNil() + return + } + + if shortCircuitReflectToFastPath { + switch f.ti.rtid { + case intfSliceTypId: + f.e.encSliceIntf(rv.Interface().([]interface{})) + return + case strSliceTypId: + f.e.encSliceStr(rv.Interface().([]string)) + return + case uint64SliceTypId: + f.e.encSliceUint64(rv.Interface().([]uint64)) + return + case int64SliceTypId: + f.e.encSliceInt64(rv.Interface().([]int64)) + return + } + } + + // If in this method, then there was no extension function defined. + // So it's okay to treat as []byte. + if f.ti.rtid == uint8SliceTypId || f.ti.rt.Elem().Kind() == reflect.Uint8 { + f.ee.encodeStringBytes(c_RAW, rv.Bytes()) + return + } + + l := rv.Len() + if f.ti.mbs { + if l%2 == 1 { + encErr("mapBySlice: invalid length (must be divisible by 2): %v", l) + } + f.ee.encodeMapPreamble(l / 2) + } else { + f.ee.encodeArrayPreamble(l) + } + if l == 0 { + return + } + for j := 0; j < l; j++ { + // TODO: Consider perf implication of encoding odd index values as symbols if type is string + f.e.encodeValue(rv.Index(j)) + } +} + +func (f *encFnInfo) kArray(rv reflect.Value) { + // We cannot share kSlice method, because the array may be non-addressable. + // E.g. type struct S{B [2]byte}; Encode(S{}) will bomb on "panic: slice of unaddressable array". + // So we have to duplicate the functionality here. + // f.e.encodeValue(rv.Slice(0, rv.Len())) + // f.kSlice(rv.Slice(0, rv.Len())) + + l := rv.Len() + // Handle an array of bytes specially (in line with what is done for slices) + if f.ti.rt.Elem().Kind() == reflect.Uint8 { + if l == 0 { + f.ee.encodeStringBytes(c_RAW, nil) + return + } + var bs []byte + if rv.CanAddr() { + bs = rv.Slice(0, l).Bytes() + } else { + bs = make([]byte, l) + for i := 0; i < l; i++ { + bs[i] = byte(rv.Index(i).Uint()) + } + } + f.ee.encodeStringBytes(c_RAW, bs) + return + } + + if f.ti.mbs { + if l%2 == 1 { + encErr("mapBySlice: invalid length (must be divisible by 2): %v", l) + } + f.ee.encodeMapPreamble(l / 2) + } else { + f.ee.encodeArrayPreamble(l) + } + if l == 0 { + return + } + for j := 0; j < l; j++ { + // TODO: Consider perf implication of encoding odd index values as symbols if type is string + f.e.encodeValue(rv.Index(j)) + } +} + +func (f *encFnInfo) kStruct(rv reflect.Value) { + fti := f.ti + newlen := len(fti.sfi) + rvals := make([]reflect.Value, newlen) + var encnames []string + e := f.e + tisfi := fti.sfip + toMap := !(fti.toArray || e.h.StructToArray) + // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct) + if toMap { + tisfi = fti.sfi + encnames = make([]string, newlen) + } + newlen = 0 + for _, si := range tisfi { + if si.i != -1 { + rvals[newlen] = rv.Field(int(si.i)) + } else { + rvals[newlen] = rv.FieldByIndex(si.is) + } + if toMap { + if si.omitEmpty && isEmptyValue(rvals[newlen]) { + continue + } + encnames[newlen] = si.encName + } else { + if si.omitEmpty && isEmptyValue(rvals[newlen]) { + rvals[newlen] = reflect.Value{} //encode as nil + } + } + newlen++ + } + + // debugf(">>>> kStruct: newlen: %v", newlen) + if toMap { + ee := f.ee //don't dereference everytime + ee.encodeMapPreamble(newlen) + // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0 + asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0 + for j := 0; j < newlen; j++ { + if asSymbols { + ee.encodeSymbol(encnames[j]) + } else { + ee.encodeString(c_UTF8, encnames[j]) + } + e.encodeValue(rvals[j]) + } + } else { + f.ee.encodeArrayPreamble(newlen) + for j := 0; j < newlen; j++ { + e.encodeValue(rvals[j]) + } + } +} + +// func (f *encFnInfo) kPtr(rv reflect.Value) { +// debugf(">>>>>>> ??? encode kPtr called - shouldn't get called") +// if rv.IsNil() { +// f.ee.encodeNil() +// return +// } +// f.e.encodeValue(rv.Elem()) +// } + +func (f *encFnInfo) kInterface(rv reflect.Value) { + if rv.IsNil() { + f.ee.encodeNil() + return + } + f.e.encodeValue(rv.Elem()) +} + +func (f *encFnInfo) kMap(rv reflect.Value) { + if rv.IsNil() { + f.ee.encodeNil() + return + } + + if shortCircuitReflectToFastPath { + switch f.ti.rtid { + case mapIntfIntfTypId: + f.e.encMapIntfIntf(rv.Interface().(map[interface{}]interface{})) + return + case mapStrIntfTypId: + f.e.encMapStrIntf(rv.Interface().(map[string]interface{})) + return + case mapStrStrTypId: + f.e.encMapStrStr(rv.Interface().(map[string]string)) + return + case mapInt64IntfTypId: + f.e.encMapInt64Intf(rv.Interface().(map[int64]interface{})) + return + case mapUint64IntfTypId: + f.e.encMapUint64Intf(rv.Interface().(map[uint64]interface{})) + return + } + } + + l := rv.Len() + f.ee.encodeMapPreamble(l) + if l == 0 { + return + } + // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String + keyTypeIsString := f.ti.rt.Key() == stringTyp + var asSymbols bool + if keyTypeIsString { + asSymbols = f.e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0 + } + mks := rv.MapKeys() + // for j, lmks := 0, len(mks); j < lmks; j++ { + for j := range mks { + if keyTypeIsString { + if asSymbols { + f.ee.encodeSymbol(mks[j].String()) + } else { + f.ee.encodeString(c_UTF8, mks[j].String()) + } + } else { + f.e.encodeValue(mks[j]) + } + f.e.encodeValue(rv.MapIndex(mks[j])) + } + +} + +// -------------------------------------------------- + +// encFn encapsulates the captured variables and the encode function. +// This way, we only do some calculations one times, and pass to the +// code block that should be called (encapsulated in a function) +// instead of executing the checks every time. +type encFn struct { + i *encFnInfo + f func(*encFnInfo, reflect.Value) +} + +// -------------------------------------------------- + +// An Encoder writes an object to an output stream in the codec format. +type Encoder struct { + w encWriter + e encDriver + h *BasicHandle + hh Handle + f map[uintptr]encFn + x []uintptr + s []encFn +} + +// NewEncoder returns an Encoder for encoding into an io.Writer. +// +// For efficiency, Users are encouraged to pass in a memory buffered writer +// (eg bufio.Writer, bytes.Buffer). +func NewEncoder(w io.Writer, h Handle) *Encoder { + ww, ok := w.(ioEncWriterWriter) + if !ok { + sww := simpleIoEncWriterWriter{w: w} + sww.bw, _ = w.(io.ByteWriter) + sww.sw, _ = w.(ioEncStringWriter) + ww = &sww + //ww = bufio.NewWriterSize(w, defEncByteBufSize) + } + z := ioEncWriter{ + w: ww, + } + return &Encoder{w: &z, hh: h, h: h.getBasicHandle(), e: h.newEncDriver(&z)} +} + +// NewEncoderBytes returns an encoder for encoding directly and efficiently +// into a byte slice, using zero-copying to temporary slices. +// +// It will potentially replace the output byte slice pointed to. +// After encoding, the out parameter contains the encoded contents. +func NewEncoderBytes(out *[]byte, h Handle) *Encoder { + in := *out + if in == nil { + in = make([]byte, defEncByteBufSize) + } + z := bytesEncWriter{ + b: in, + out: out, + } + return &Encoder{w: &z, hh: h, h: h.getBasicHandle(), e: h.newEncDriver(&z)} +} + +// Encode writes an object into a stream in the codec format. +// +// Encoding can be configured via the "codec" struct tag for the fields. +// +// The "codec" key in struct field's tag value is the key name, +// followed by an optional comma and options. +// +// To set an option on all fields (e.g. omitempty on all fields), you +// can create a field called _struct, and set flags on it. +// +// Struct values "usually" encode as maps. Each exported struct field is encoded unless: +// - the field's codec tag is "-", OR +// - the field is empty and its codec tag specifies the "omitempty" option. +// +// When encoding as a map, the first string in the tag (before the comma) +// is the map key string to use when encoding. +// +// However, struct values may encode as arrays. This happens when: +// - StructToArray Encode option is set, OR +// - the codec tag on the _struct field sets the "toarray" option +// +// Values with types that implement MapBySlice are encoded as stream maps. +// +// The empty values (for omitempty option) are false, 0, any nil pointer +// or interface value, and any array, slice, map, or string of length zero. +// +// Anonymous fields are encoded inline if no struct tag is present. +// Else they are encoded as regular fields. +// +// Examples: +// +// type MyStruct struct { +// _struct bool `codec:",omitempty"` //set omitempty for every field +// Field1 string `codec:"-"` //skip this field +// Field2 int `codec:"myName"` //Use key "myName" in encode stream +// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty. +// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty. +// ... +// } +// +// type MyStruct struct { +// _struct bool `codec:",omitempty,toarray"` //set omitempty for every field +// //and encode struct as an array +// } +// +// The mode of encoding is based on the type of the value. When a value is seen: +// - If an extension is registered for it, call that extension function +// - If it implements BinaryMarshaler, call its MarshalBinary() (data []byte, err error) +// - Else encode it based on its reflect.Kind +// +// Note that struct field names and keys in map[string]XXX will be treated as symbols. +// Some formats support symbols (e.g. binc) and will properly encode the string +// only once in the stream, and use a tag to refer to it thereafter. +func (e *Encoder) Encode(v interface{}) (err error) { + defer panicToErr(&err) + e.encode(v) + e.w.atEndOfEncode() + return +} + +func (e *Encoder) encode(iv interface{}) { + switch v := iv.(type) { + case nil: + e.e.encodeNil() + + case reflect.Value: + e.encodeValue(v) + + case string: + e.e.encodeString(c_UTF8, v) + case bool: + e.e.encodeBool(v) + case int: + e.e.encodeInt(int64(v)) + case int8: + e.e.encodeInt(int64(v)) + case int16: + e.e.encodeInt(int64(v)) + case int32: + e.e.encodeInt(int64(v)) + case int64: + e.e.encodeInt(v) + case uint: + e.e.encodeUint(uint64(v)) + case uint8: + e.e.encodeUint(uint64(v)) + case uint16: + e.e.encodeUint(uint64(v)) + case uint32: + e.e.encodeUint(uint64(v)) + case uint64: + e.e.encodeUint(v) + case float32: + e.e.encodeFloat32(v) + case float64: + e.e.encodeFloat64(v) + + case []interface{}: + e.encSliceIntf(v) + case []string: + e.encSliceStr(v) + case []int64: + e.encSliceInt64(v) + case []uint64: + e.encSliceUint64(v) + case []uint8: + e.e.encodeStringBytes(c_RAW, v) + + case map[interface{}]interface{}: + e.encMapIntfIntf(v) + case map[string]interface{}: + e.encMapStrIntf(v) + case map[string]string: + e.encMapStrStr(v) + case map[int64]interface{}: + e.encMapInt64Intf(v) + case map[uint64]interface{}: + e.encMapUint64Intf(v) + + case *string: + e.e.encodeString(c_UTF8, *v) + case *bool: + e.e.encodeBool(*v) + case *int: + e.e.encodeInt(int64(*v)) + case *int8: + e.e.encodeInt(int64(*v)) + case *int16: + e.e.encodeInt(int64(*v)) + case *int32: + e.e.encodeInt(int64(*v)) + case *int64: + e.e.encodeInt(*v) + case *uint: + e.e.encodeUint(uint64(*v)) + case *uint8: + e.e.encodeUint(uint64(*v)) + case *uint16: + e.e.encodeUint(uint64(*v)) + case *uint32: + e.e.encodeUint(uint64(*v)) + case *uint64: + e.e.encodeUint(*v) + case *float32: + e.e.encodeFloat32(*v) + case *float64: + e.e.encodeFloat64(*v) + + case *[]interface{}: + e.encSliceIntf(*v) + case *[]string: + e.encSliceStr(*v) + case *[]int64: + e.encSliceInt64(*v) + case *[]uint64: + e.encSliceUint64(*v) + case *[]uint8: + e.e.encodeStringBytes(c_RAW, *v) + + case *map[interface{}]interface{}: + e.encMapIntfIntf(*v) + case *map[string]interface{}: + e.encMapStrIntf(*v) + case *map[string]string: + e.encMapStrStr(*v) + case *map[int64]interface{}: + e.encMapInt64Intf(*v) + case *map[uint64]interface{}: + e.encMapUint64Intf(*v) + + default: + e.encodeValue(reflect.ValueOf(iv)) + } +} + +func (e *Encoder) encodeValue(rv reflect.Value) { + for rv.Kind() == reflect.Ptr { + if rv.IsNil() { + e.e.encodeNil() + return + } + rv = rv.Elem() + } + + rt := rv.Type() + rtid := reflect.ValueOf(rt).Pointer() + + // if e.f == nil && e.s == nil { debugf("---->Creating new enc f map for type: %v\n", rt) } + var fn encFn + var ok bool + if useMapForCodecCache { + fn, ok = e.f[rtid] + } else { + for i, v := range e.x { + if v == rtid { + fn, ok = e.s[i], true + break + } + } + } + if !ok { + // debugf("\tCreating new enc fn for type: %v\n", rt) + fi := encFnInfo{ti: getTypeInfo(rtid, rt), e: e, ee: e.e} + fn.i = &fi + if rtid == rawExtTypId { + fn.f = (*encFnInfo).rawExt + } else if e.e.isBuiltinType(rtid) { + fn.f = (*encFnInfo).builtin + } else if xfTag, xfFn := e.h.getEncodeExt(rtid); xfFn != nil { + fi.xfTag, fi.xfFn = xfTag, xfFn + fn.f = (*encFnInfo).ext + } else if supportBinaryMarshal && fi.ti.m { + fn.f = (*encFnInfo).binaryMarshal + } else { + switch rk := rt.Kind(); rk { + case reflect.Bool: + fn.f = (*encFnInfo).kBool + case reflect.String: + fn.f = (*encFnInfo).kString + case reflect.Float64: + fn.f = (*encFnInfo).kFloat64 + case reflect.Float32: + fn.f = (*encFnInfo).kFloat32 + case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16: + fn.f = (*encFnInfo).kInt + case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16: + fn.f = (*encFnInfo).kUint + case reflect.Invalid: + fn.f = (*encFnInfo).kInvalid + case reflect.Slice: + fn.f = (*encFnInfo).kSlice + case reflect.Array: + fn.f = (*encFnInfo).kArray + case reflect.Struct: + fn.f = (*encFnInfo).kStruct + // case reflect.Ptr: + // fn.f = (*encFnInfo).kPtr + case reflect.Interface: + fn.f = (*encFnInfo).kInterface + case reflect.Map: + fn.f = (*encFnInfo).kMap + default: + fn.f = (*encFnInfo).kErr + } + } + if useMapForCodecCache { + if e.f == nil { + e.f = make(map[uintptr]encFn, 16) + } + e.f[rtid] = fn + } else { + e.s = append(e.s, fn) + e.x = append(e.x, rtid) + } + } + + fn.f(fn.i, rv) + +} + +func (e *Encoder) encRawExt(re RawExt) { + if re.Data == nil { + e.e.encodeNil() + return + } + if e.hh.writeExt() { + e.e.encodeExtPreamble(re.Tag, len(re.Data)) + e.w.writeb(re.Data) + } else { + e.e.encodeStringBytes(c_RAW, re.Data) + } +} + +// --------------------------------------------- +// short circuit functions for common maps and slices + +func (e *Encoder) encSliceIntf(v []interface{}) { + e.e.encodeArrayPreamble(len(v)) + for _, v2 := range v { + e.encode(v2) + } +} + +func (e *Encoder) encSliceStr(v []string) { + e.e.encodeArrayPreamble(len(v)) + for _, v2 := range v { + e.e.encodeString(c_UTF8, v2) + } +} + +func (e *Encoder) encSliceInt64(v []int64) { + e.e.encodeArrayPreamble(len(v)) + for _, v2 := range v { + e.e.encodeInt(v2) + } +} + +func (e *Encoder) encSliceUint64(v []uint64) { + e.e.encodeArrayPreamble(len(v)) + for _, v2 := range v { + e.e.encodeUint(v2) + } +} + +func (e *Encoder) encMapStrStr(v map[string]string) { + e.e.encodeMapPreamble(len(v)) + asSymbols := e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0 + for k2, v2 := range v { + if asSymbols { + e.e.encodeSymbol(k2) + } else { + e.e.encodeString(c_UTF8, k2) + } + e.e.encodeString(c_UTF8, v2) + } +} + +func (e *Encoder) encMapStrIntf(v map[string]interface{}) { + e.e.encodeMapPreamble(len(v)) + asSymbols := e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0 + for k2, v2 := range v { + if asSymbols { + e.e.encodeSymbol(k2) + } else { + e.e.encodeString(c_UTF8, k2) + } + e.encode(v2) + } +} + +func (e *Encoder) encMapInt64Intf(v map[int64]interface{}) { + e.e.encodeMapPreamble(len(v)) + for k2, v2 := range v { + e.e.encodeInt(k2) + e.encode(v2) + } +} + +func (e *Encoder) encMapUint64Intf(v map[uint64]interface{}) { + e.e.encodeMapPreamble(len(v)) + for k2, v2 := range v { + e.e.encodeUint(uint64(k2)) + e.encode(v2) + } +} + +func (e *Encoder) encMapIntfIntf(v map[interface{}]interface{}) { + e.e.encodeMapPreamble(len(v)) + for k2, v2 := range v { + e.encode(k2) + e.encode(v2) + } +} + +// ---------------------------------------- + +func encErr(format string, params ...interface{}) { + doPanic(msgTagEnc, format, params...) +} -- cgit v1.2.3-1-g7c22