From 6e2cb00008cbf09e556b00f87603797fcaa47e09 Mon Sep 17 00:00:00 2001 From: Christopher Speller Date: Mon, 16 Apr 2018 05:37:14 -0700 Subject: Depenancy upgrades and movign to dep. (#8630) --- vendor/golang.org/x/crypto/pkcs12/pbkdf.go | 170 ----------------------------- 1 file changed, 170 deletions(-) delete mode 100644 vendor/golang.org/x/crypto/pkcs12/pbkdf.go (limited to 'vendor/golang.org/x/crypto/pkcs12/pbkdf.go') diff --git a/vendor/golang.org/x/crypto/pkcs12/pbkdf.go b/vendor/golang.org/x/crypto/pkcs12/pbkdf.go deleted file mode 100644 index 5c419d41e..000000000 --- a/vendor/golang.org/x/crypto/pkcs12/pbkdf.go +++ /dev/null @@ -1,170 +0,0 @@ -// Copyright 2015 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package pkcs12 - -import ( - "bytes" - "crypto/sha1" - "math/big" -) - -var ( - one = big.NewInt(1) -) - -// sha1Sum returns the SHA-1 hash of in. -func sha1Sum(in []byte) []byte { - sum := sha1.Sum(in) - return sum[:] -} - -// fillWithRepeats returns v*ceiling(len(pattern) / v) bytes consisting of -// repeats of pattern. -func fillWithRepeats(pattern []byte, v int) []byte { - if len(pattern) == 0 { - return nil - } - outputLen := v * ((len(pattern) + v - 1) / v) - return bytes.Repeat(pattern, (outputLen+len(pattern)-1)/len(pattern))[:outputLen] -} - -func pbkdf(hash func([]byte) []byte, u, v int, salt, password []byte, r int, ID byte, size int) (key []byte) { - // implementation of https://tools.ietf.org/html/rfc7292#appendix-B.2 , RFC text verbatim in comments - - // Let H be a hash function built around a compression function f: - - // Z_2^u x Z_2^v -> Z_2^u - - // (that is, H has a chaining variable and output of length u bits, and - // the message input to the compression function of H is v bits). The - // values for u and v are as follows: - - // HASH FUNCTION VALUE u VALUE v - // MD2, MD5 128 512 - // SHA-1 160 512 - // SHA-224 224 512 - // SHA-256 256 512 - // SHA-384 384 1024 - // SHA-512 512 1024 - // SHA-512/224 224 1024 - // SHA-512/256 256 1024 - - // Furthermore, let r be the iteration count. - - // We assume here that u and v are both multiples of 8, as are the - // lengths of the password and salt strings (which we denote by p and s, - // respectively) and the number n of pseudorandom bits required. In - // addition, u and v are of course non-zero. - - // For information on security considerations for MD5 [19], see [25] and - // [1], and on those for MD2, see [18]. - - // The following procedure can be used to produce pseudorandom bits for - // a particular "purpose" that is identified by a byte called "ID". - // This standard specifies 3 different values for the ID byte: - - // 1. If ID=1, then the pseudorandom bits being produced are to be used - // as key material for performing encryption or decryption. - - // 2. If ID=2, then the pseudorandom bits being produced are to be used - // as an IV (Initial Value) for encryption or decryption. - - // 3. If ID=3, then the pseudorandom bits being produced are to be used - // as an integrity key for MACing. - - // 1. Construct a string, D (the "diversifier"), by concatenating v/8 - // copies of ID. - var D []byte - for i := 0; i < v; i++ { - D = append(D, ID) - } - - // 2. Concatenate copies of the salt together to create a string S of - // length v(ceiling(s/v)) bits (the final copy of the salt may be - // truncated to create S). Note that if the salt is the empty - // string, then so is S. - - S := fillWithRepeats(salt, v) - - // 3. Concatenate copies of the password together to create a string P - // of length v(ceiling(p/v)) bits (the final copy of the password - // may be truncated to create P). Note that if the password is the - // empty string, then so is P. - - P := fillWithRepeats(password, v) - - // 4. Set I=S||P to be the concatenation of S and P. - I := append(S, P...) - - // 5. Set c=ceiling(n/u). - c := (size + u - 1) / u - - // 6. For i=1, 2, ..., c, do the following: - A := make([]byte, c*20) - var IjBuf []byte - for i := 0; i < c; i++ { - // A. Set A2=H^r(D||I). (i.e., the r-th hash of D||1, - // H(H(H(... H(D||I)))) - Ai := hash(append(D, I...)) - for j := 1; j < r; j++ { - Ai = hash(Ai) - } - copy(A[i*20:], Ai[:]) - - if i < c-1 { // skip on last iteration - // B. Concatenate copies of Ai to create a string B of length v - // bits (the final copy of Ai may be truncated to create B). - var B []byte - for len(B) < v { - B = append(B, Ai[:]...) - } - B = B[:v] - - // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit - // blocks, where k=ceiling(s/v)+ceiling(p/v), modify I by - // setting I_j=(I_j+B+1) mod 2^v for each j. - { - Bbi := new(big.Int).SetBytes(B) - Ij := new(big.Int) - - for j := 0; j < len(I)/v; j++ { - Ij.SetBytes(I[j*v : (j+1)*v]) - Ij.Add(Ij, Bbi) - Ij.Add(Ij, one) - Ijb := Ij.Bytes() - // We expect Ijb to be exactly v bytes, - // if it is longer or shorter we must - // adjust it accordingly. - if len(Ijb) > v { - Ijb = Ijb[len(Ijb)-v:] - } - if len(Ijb) < v { - if IjBuf == nil { - IjBuf = make([]byte, v) - } - bytesShort := v - len(Ijb) - for i := 0; i < bytesShort; i++ { - IjBuf[i] = 0 - } - copy(IjBuf[bytesShort:], Ijb) - Ijb = IjBuf - } - copy(I[j*v:(j+1)*v], Ijb) - } - } - } - } - // 7. Concatenate A_1, A_2, ..., A_c together to form a pseudorandom - // bit string, A. - - // 8. Use the first n bits of A as the output of this entire process. - return A[:size] - - // If the above process is being used to generate a DES key, the process - // should be used to create 64 random bits, and the key's parity bits - // should be set after the 64 bits have been produced. Similar concerns - // hold for 2-key and 3-key triple-DES keys, for CDMF keys, and for any - // similar keys with parity bits "built into them". -} -- cgit v1.2.3-1-g7c22