// Copyright 2011 The Graphics-Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package convolve import ( "errors" "fmt" "image" "image/draw" "math" ) // clamp clamps x to the range [x0, x1]. func clamp(x, x0, x1 float64) float64 { if x < x0 { return x0 } if x > x1 { return x1 } return x } // Kernel is a square matrix that defines a convolution. type Kernel interface { // Weights returns the square matrix of weights in row major order. Weights() []float64 } // SeparableKernel is a linearly separable, square convolution kernel. // X and Y are the per-axis weights. Each slice must be the same length, and // have an odd length. The middle element of each slice is the weight for the // central pixel. For example, the horizontal Sobel kernel is: // sobelX := &SeparableKernel{ // X: []float64{-1, 0, +1}, // Y: []float64{1, 2, 1}, // } type SeparableKernel struct { X, Y []float64 } func (k *SeparableKernel) Weights() []float64 { n := len(k.X) w := make([]float64, n*n) for y := 0; y < n; y++ { for x := 0; x < n; x++ { w[y*n+x] = k.X[x] * k.Y[y] } } return w } // fullKernel is a square convolution kernel. type fullKernel []float64 func (k fullKernel) Weights() []float64 { return k } func kernelSize(w []float64) (size int, err error) { size = int(math.Sqrt(float64(len(w)))) if size*size != len(w) { return 0, errors.New("graphics: kernel is not square") } if size%2 != 1 { return 0, errors.New("graphics: kernel size is not odd") } return size, nil } // NewKernel returns a square convolution kernel. func NewKernel(w []float64) (Kernel, error) { if _, err := kernelSize(w); err != nil { return nil, err } return fullKernel(w), nil } func convolveRGBASep(dst *image.RGBA, src image.Image, k *SeparableKernel) error { if len(k.X) != len(k.Y) { return fmt.Errorf("graphics: kernel not square (x %d, y %d)", len(k.X), len(k.Y)) } if len(k.X)%2 != 1 { return fmt.Errorf("graphics: kernel length (%d) not odd", len(k.X)) } radius := (len(k.X) - 1) / 2 // buf holds the result of vertically blurring src. bounds := dst.Bounds() width, height := bounds.Dx(), bounds.Dy() buf := make([]float64, width*height*4) for y := bounds.Min.Y; y < bounds.Max.Y; y++ { for x := bounds.Min.X; x < bounds.Max.X; x++ { var r, g, b, a float64 // k0 is the kernel weight for the center pixel. This may be greater // than kernel[0], near the boundary of the source image, to avoid // vignetting. k0 := k.X[radius] // Add the pixels from above. for i := 1; i <= radius; i++ { f := k.Y[radius-i] if y-i < bounds.Min.Y { k0 += f } else { or, og, ob, oa := src.At(x, y-i).RGBA() r += float64(or>>8) * f g += float64(og>>8) * f b += float64(ob>>8) * f a += float64(oa>>8) * f } } // Add the pixels from below. for i := 1; i <= radius; i++ { f := k.Y[radius+i] if y+i >= bounds.Max.Y { k0 += f } else { or, og, ob, oa := src.At(x, y+i).RGBA() r += float64(or>>8) * f g += float64(og>>8) * f b += float64(ob>>8) * f a += float64(oa>>8) * f } } // Add the central pixel. or, og, ob, oa := src.At(x, y).RGBA() r += float64(or>>8) * k0 g += float64(og>>8) * k0 b += float64(ob>>8) * k0 a += float64(oa>>8) * k0 // Write to buf. o := (y-bounds.Min.Y)*width*4 + (x-bounds.Min.X)*4 buf[o+0] = r buf[o+1] = g buf[o+2] = b buf[o+3] = a } } // dst holds the result of horizontally blurring buf. for y := 0; y < height; y++ { for x := 0; x < width; x++ { var r, g, b, a float64 k0, off := k.X[radius], y*width*4+x*4 // Add the pixels from the left. for i := 1; i <= radius; i++ { f := k.X[radius-i] if x-i < 0 { k0 += f } else { o := off - i*4 r += buf[o+0] * f g += buf[o+1] * f b += buf[o+2] * f a += buf[o+3] * f } } // Add the pixels from the right. for i := 1; i <= radius; i++ { f := k.X[radius+i] if x+i >= width { k0 += f } else { o := off + i*4 r += buf[o+0] * f g += buf[o+1] * f b += buf[o+2] * f a += buf[o+3] * f } } // Add the central pixel. r += buf[off+0] * k0 g += buf[off+1] * k0 b += buf[off+2] * k0 a += buf[off+3] * k0 // Write to dst, clamping to the range [0, 255]. dstOff := (y-dst.Rect.Min.Y)*dst.Stride + (x-dst.Rect.Min.X)*4 dst.Pix[dstOff+0] = uint8(clamp(r+0.5, 0, 255)) dst.Pix[dstOff+1] = uint8(clamp(g+0.5, 0, 255)) dst.Pix[dstOff+2] = uint8(clamp(b+0.5, 0, 255)) dst.Pix[dstOff+3] = uint8(clamp(a+0.5, 0, 255)) } } return nil } func convolveRGBA(dst *image.RGBA, src image.Image, k Kernel) error { b := dst.Bounds() bs := src.Bounds() w := k.Weights() size, err := kernelSize(w) if err != nil { return err } radius := (size - 1) / 2 for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { if !image.Pt(x, y).In(bs) { continue } var r, g, b, a, adj float64 for cy := y - radius; cy <= y+radius; cy++ { for cx := x - radius; cx <= x+radius; cx++ { factor := w[(cy-y+radius)*size+cx-x+radius] if !image.Pt(cx, cy).In(bs) { adj += factor } else { sr, sg, sb, sa := src.At(cx, cy).RGBA() r += float64(sr>>8) * factor g += float64(sg>>8) * factor b += float64(sb>>8) * factor a += float64(sa>>8) * factor } } } if adj != 0 { sr, sg, sb, sa := src.At(x, y).RGBA() r += float64(sr>>8) * adj g += float64(sg>>8) * adj b += float64(sb>>8) * adj a += float64(sa>>8) * adj } off := (y-dst.Rect.Min.Y)*dst.Stride + (x-dst.Rect.Min.X)*4 dst.Pix[off+0] = uint8(clamp(r+0.5, 0, 0xff)) dst.Pix[off+1] = uint8(clamp(g+0.5, 0, 0xff)) dst.Pix[off+2] = uint8(clamp(b+0.5, 0, 0xff)) dst.Pix[off+3] = uint8(clamp(a+0.5, 0, 0xff)) } } return nil } // Convolve produces dst by applying the convolution kernel k to src. func Convolve(dst draw.Image, src image.Image, k Kernel) (err error) { if dst == nil || src == nil || k == nil { return nil } b := dst.Bounds() dstRgba, ok := dst.(*image.RGBA) if !ok { dstRgba = image.NewRGBA(b) } switch k := k.(type) { case *SeparableKernel: err = convolveRGBASep(dstRgba, src, k) default: err = convolveRGBA(dstRgba, src, k) } if err != nil { return err } if !ok { draw.Draw(dst, b, dstRgba, b.Min, draw.Src) } return nil }