// Copyright 2012 The Graphics-Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package interp import ( "image" "image/color" "math" ) // Bilinear implements bilinear interpolation. var Bilinear Interp = bilinear{} type bilinear struct{} func (i bilinear) Interp(src image.Image, x, y float64) color.Color { if src, ok := src.(*image.RGBA); ok { return i.RGBA(src, x, y) } return bilinearGeneral(src, x, y) } func bilinearGeneral(src image.Image, x, y float64) color.Color { p := findLinearSrc(src.Bounds(), x, y) var fr, fg, fb, fa float64 var r, g, b, a uint32 r, g, b, a = src.At(p.low.X, p.low.Y).RGBA() fr += float64(r) * p.frac00 fg += float64(g) * p.frac00 fb += float64(b) * p.frac00 fa += float64(a) * p.frac00 r, g, b, a = src.At(p.high.X, p.low.Y).RGBA() fr += float64(r) * p.frac01 fg += float64(g) * p.frac01 fb += float64(b) * p.frac01 fa += float64(a) * p.frac01 r, g, b, a = src.At(p.low.X, p.high.Y).RGBA() fr += float64(r) * p.frac10 fg += float64(g) * p.frac10 fb += float64(b) * p.frac10 fa += float64(a) * p.frac10 r, g, b, a = src.At(p.high.X, p.high.Y).RGBA() fr += float64(r) * p.frac11 fg += float64(g) * p.frac11 fb += float64(b) * p.frac11 fa += float64(a) * p.frac11 var c color.RGBA64 c.R = uint16(fr + 0.5) c.G = uint16(fg + 0.5) c.B = uint16(fb + 0.5) c.A = uint16(fa + 0.5) return c } func (bilinear) RGBA(src *image.RGBA, x, y float64) color.RGBA { p := findLinearSrc(src.Bounds(), x, y) // Array offsets for the surrounding pixels. off00 := offRGBA(src, p.low.X, p.low.Y) off01 := offRGBA(src, p.high.X, p.low.Y) off10 := offRGBA(src, p.low.X, p.high.Y) off11 := offRGBA(src, p.high.X, p.high.Y) var fr, fg, fb, fa float64 fr += float64(src.Pix[off00+0]) * p.frac00 fg += float64(src.Pix[off00+1]) * p.frac00 fb += float64(src.Pix[off00+2]) * p.frac00 fa += float64(src.Pix[off00+3]) * p.frac00 fr += float64(src.Pix[off01+0]) * p.frac01 fg += float64(src.Pix[off01+1]) * p.frac01 fb += float64(src.Pix[off01+2]) * p.frac01 fa += float64(src.Pix[off01+3]) * p.frac01 fr += float64(src.Pix[off10+0]) * p.frac10 fg += float64(src.Pix[off10+1]) * p.frac10 fb += float64(src.Pix[off10+2]) * p.frac10 fa += float64(src.Pix[off10+3]) * p.frac10 fr += float64(src.Pix[off11+0]) * p.frac11 fg += float64(src.Pix[off11+1]) * p.frac11 fb += float64(src.Pix[off11+2]) * p.frac11 fa += float64(src.Pix[off11+3]) * p.frac11 var c color.RGBA c.R = uint8(fr + 0.5) c.G = uint8(fg + 0.5) c.B = uint8(fb + 0.5) c.A = uint8(fa + 0.5) return c } func (bilinear) Gray(src *image.Gray, x, y float64) color.Gray { p := findLinearSrc(src.Bounds(), x, y) // Array offsets for the surrounding pixels. off00 := offGray(src, p.low.X, p.low.Y) off01 := offGray(src, p.high.X, p.low.Y) off10 := offGray(src, p.low.X, p.high.Y) off11 := offGray(src, p.high.X, p.high.Y) var fc float64 fc += float64(src.Pix[off00]) * p.frac00 fc += float64(src.Pix[off01]) * p.frac01 fc += float64(src.Pix[off10]) * p.frac10 fc += float64(src.Pix[off11]) * p.frac11 var c color.Gray c.Y = uint8(fc + 0.5) return c } type bilinearSrc struct { // Top-left and bottom-right interpolation sources low, high image.Point // Fraction of each pixel to take. The 0 suffix indicates // top/left, and the 1 suffix indicates bottom/right. frac00, frac01, frac10, frac11 float64 } func findLinearSrc(b image.Rectangle, sx, sy float64) bilinearSrc { maxX := float64(b.Max.X) maxY := float64(b.Max.Y) minX := float64(b.Min.X) minY := float64(b.Min.Y) lowX := math.Floor(sx - 0.5) lowY := math.Floor(sy - 0.5) if lowX < minX { lowX = minX } if lowY < minY { lowY = minY } highX := math.Ceil(sx - 0.5) highY := math.Ceil(sy - 0.5) if highX >= maxX { highX = maxX - 1 } if highY >= maxY { highY = maxY - 1 } // In the variables below, the 0 suffix indicates top/left, and the // 1 suffix indicates bottom/right. // Center of each surrounding pixel. x00 := lowX + 0.5 y00 := lowY + 0.5 x01 := highX + 0.5 y01 := lowY + 0.5 x10 := lowX + 0.5 y10 := highY + 0.5 x11 := highX + 0.5 y11 := highY + 0.5 p := bilinearSrc{ low: image.Pt(int(lowX), int(lowY)), high: image.Pt(int(highX), int(highY)), } // Literally, edge cases. If we are close enough to the edge of // the image, curtail the interpolation sources. if lowX == highX && lowY == highY { p.frac00 = 1.0 } else if sy-minY <= 0.5 && sx-minX <= 0.5 { p.frac00 = 1.0 } else if maxY-sy <= 0.5 && maxX-sx <= 0.5 { p.frac11 = 1.0 } else if sy-minY <= 0.5 || lowY == highY { p.frac00 = x01 - sx p.frac01 = sx - x00 } else if sx-minX <= 0.5 || lowX == highX { p.frac00 = y10 - sy p.frac10 = sy - y00 } else if maxY-sy <= 0.5 { p.frac10 = x11 - sx p.frac11 = sx - x10 } else if maxX-sx <= 0.5 { p.frac01 = y11 - sy p.frac11 = sy - y01 } else { p.frac00 = (x01 - sx) * (y10 - sy) p.frac01 = (sx - x00) * (y11 - sy) p.frac10 = (x11 - sx) * (sy - y00) p.frac11 = (sx - x10) * (sy - y01) } return p } // TODO(crawshaw): When we have inlining, consider func (p *RGBA) Off(x, y) int func offRGBA(src *image.RGBA, x, y int) int { return (y-src.Rect.Min.Y)*src.Stride + (x-src.Rect.Min.X)*4 } func offGray(src *image.Gray, x, y int) int { return (y-src.Rect.Min.Y)*src.Stride + (x - src.Rect.Min.X) }