package dns import ( "encoding/binary" "encoding/hex" "errors" "fmt" "net" "strconv" ) // EDNS0 Option codes. const ( EDNS0LLQ = 0x1 // long lived queries: http://tools.ietf.org/html/draft-sekar-dns-llq-01 EDNS0UL = 0x2 // update lease draft: http://files.dns-sd.org/draft-sekar-dns-ul.txt EDNS0NSID = 0x3 // nsid (RFC5001) EDNS0DAU = 0x5 // DNSSEC Algorithm Understood EDNS0DHU = 0x6 // DS Hash Understood EDNS0N3U = 0x7 // NSEC3 Hash Understood EDNS0SUBNET = 0x8 // client-subnet (RFC6891) EDNS0EXPIRE = 0x9 // EDNS0 expire EDNS0COOKIE = 0xa // EDNS0 Cookie EDNS0TCPKEEPALIVE = 0xb // EDNS0 tcp keep alive (RFC7828) EDNS0PADDING = 0xc // EDNS0 padding (RFC7830) EDNS0SUBNETDRAFT = 0x50fa // Don't use! Use EDNS0SUBNET EDNS0LOCALSTART = 0xFDE9 // Beginning of range reserved for local/experimental use (RFC6891) EDNS0LOCALEND = 0xFFFE // End of range reserved for local/experimental use (RFC6891) _DO = 1 << 15 // dnssec ok ) // OPT is the EDNS0 RR appended to messages to convey extra (meta) information. // See RFC 6891. type OPT struct { Hdr RR_Header Option []EDNS0 `dns:"opt"` } func (rr *OPT) String() string { s := "\n;; OPT PSEUDOSECTION:\n; EDNS: version " + strconv.Itoa(int(rr.Version())) + "; " if rr.Do() { s += "flags: do; " } else { s += "flags: ; " } s += "udp: " + strconv.Itoa(int(rr.UDPSize())) for _, o := range rr.Option { switch o.(type) { case *EDNS0_NSID: s += "\n; NSID: " + o.String() h, e := o.pack() var r string if e == nil { for _, c := range h { r += "(" + string(c) + ")" } s += " " + r } case *EDNS0_SUBNET: s += "\n; SUBNET: " + o.String() if o.(*EDNS0_SUBNET).DraftOption { s += " (draft)" } case *EDNS0_COOKIE: s += "\n; COOKIE: " + o.String() case *EDNS0_UL: s += "\n; UPDATE LEASE: " + o.String() case *EDNS0_LLQ: s += "\n; LONG LIVED QUERIES: " + o.String() case *EDNS0_DAU: s += "\n; DNSSEC ALGORITHM UNDERSTOOD: " + o.String() case *EDNS0_DHU: s += "\n; DS HASH UNDERSTOOD: " + o.String() case *EDNS0_N3U: s += "\n; NSEC3 HASH UNDERSTOOD: " + o.String() case *EDNS0_LOCAL: s += "\n; LOCAL OPT: " + o.String() case *EDNS0_PADDING: s += "\n; PADDING: " + o.String() } } return s } func (rr *OPT) len() int { l := rr.Hdr.len() for i := 0; i < len(rr.Option); i++ { l += 4 // Account for 2-byte option code and 2-byte option length. lo, _ := rr.Option[i].pack() l += len(lo) } return l } // return the old value -> delete SetVersion? // Version returns the EDNS version used. Only zero is defined. func (rr *OPT) Version() uint8 { return uint8((rr.Hdr.Ttl & 0x00FF0000) >> 16) } // SetVersion sets the version of EDNS. This is usually zero. func (rr *OPT) SetVersion(v uint8) { rr.Hdr.Ttl = rr.Hdr.Ttl&0xFF00FFFF | (uint32(v) << 16) } // ExtendedRcode returns the EDNS extended RCODE field (the upper 8 bits of the TTL). func (rr *OPT) ExtendedRcode() int { return int((rr.Hdr.Ttl & 0xFF000000) >> 24) } // SetExtendedRcode sets the EDNS extended RCODE field. func (rr *OPT) SetExtendedRcode(v uint8) { rr.Hdr.Ttl = rr.Hdr.Ttl&0x00FFFFFF | (uint32(v) << 24) } // UDPSize returns the UDP buffer size. func (rr *OPT) UDPSize() uint16 { return rr.Hdr.Class } // SetUDPSize sets the UDP buffer size. func (rr *OPT) SetUDPSize(size uint16) { rr.Hdr.Class = size } // Do returns the value of the DO (DNSSEC OK) bit. func (rr *OPT) Do() bool { return rr.Hdr.Ttl&_DO == _DO } // SetDo sets the DO (DNSSEC OK) bit. // If we pass an argument, set the DO bit to that value. // It is possible to pass 2 or more arguments. Any arguments after the 1st is silently ignored. func (rr *OPT) SetDo(do ...bool) { if len(do) == 1 { if do[0] { rr.Hdr.Ttl |= _DO } else { rr.Hdr.Ttl &^= _DO } } else { rr.Hdr.Ttl |= _DO } } // EDNS0 defines an EDNS0 Option. An OPT RR can have multiple options appended to it. type EDNS0 interface { // Option returns the option code for the option. Option() uint16 // pack returns the bytes of the option data. pack() ([]byte, error) // unpack sets the data as found in the buffer. Is also sets // the length of the slice as the length of the option data. unpack([]byte) error // String returns the string representation of the option. String() string } // EDNS0_NSID option is used to retrieve a nameserver // identifier. When sending a request Nsid must be set to the empty string // The identifier is an opaque string encoded as hex. // Basic use pattern for creating an nsid option: // // o := new(dns.OPT) // o.Hdr.Name = "." // o.Hdr.Rrtype = dns.TypeOPT // e := new(dns.EDNS0_NSID) // e.Code = dns.EDNS0NSID // e.Nsid = "AA" // o.Option = append(o.Option, e) type EDNS0_NSID struct { Code uint16 // Always EDNS0NSID Nsid string // This string needs to be hex encoded } func (e *EDNS0_NSID) pack() ([]byte, error) { h, err := hex.DecodeString(e.Nsid) if err != nil { return nil, err } return h, nil } // Option implements the EDNS0 interface. func (e *EDNS0_NSID) Option() uint16 { return EDNS0NSID } // Option returns the option code. func (e *EDNS0_NSID) unpack(b []byte) error { e.Nsid = hex.EncodeToString(b); return nil } func (e *EDNS0_NSID) String() string { return string(e.Nsid) } // EDNS0_SUBNET is the subnet option that is used to give the remote nameserver // an idea of where the client lives. It can then give back a different // answer depending on the location or network topology. // Basic use pattern for creating an subnet option: // // o := new(dns.OPT) // o.Hdr.Name = "." // o.Hdr.Rrtype = dns.TypeOPT // e := new(dns.EDNS0_SUBNET) // e.Code = dns.EDNS0SUBNET // e.Family = 1 // 1 for IPv4 source address, 2 for IPv6 // e.SourceNetmask = 32 // 32 for IPV4, 128 for IPv6 // e.SourceScope = 0 // e.Address = net.ParseIP("127.0.0.1").To4() // for IPv4 // // e.Address = net.ParseIP("2001:7b8:32a::2") // for IPV6 // o.Option = append(o.Option, e) // // Note: the spec (draft-ietf-dnsop-edns-client-subnet-00) has some insane logic // for which netmask applies to the address. This code will parse all the // available bits when unpacking (up to optlen). When packing it will apply // SourceNetmask. If you need more advanced logic, patches welcome and good luck. type EDNS0_SUBNET struct { Code uint16 // Always EDNS0SUBNET Family uint16 // 1 for IP, 2 for IP6 SourceNetmask uint8 SourceScope uint8 Address net.IP DraftOption bool // Set to true if using the old (0x50fa) option code } // Option implements the EDNS0 interface. func (e *EDNS0_SUBNET) Option() uint16 { if e.DraftOption { return EDNS0SUBNETDRAFT } return EDNS0SUBNET } func (e *EDNS0_SUBNET) pack() ([]byte, error) { b := make([]byte, 4) binary.BigEndian.PutUint16(b[0:], e.Family) b[2] = e.SourceNetmask b[3] = e.SourceScope switch e.Family { case 0: // "dig" sets AddressFamily to 0 if SourceNetmask is also 0 // We might don't need to complain either if e.SourceNetmask != 0 { return nil, errors.New("dns: bad address family") } case 1: if e.SourceNetmask > net.IPv4len*8 { return nil, errors.New("dns: bad netmask") } if len(e.Address.To4()) != net.IPv4len { return nil, errors.New("dns: bad address") } ip := e.Address.To4().Mask(net.CIDRMask(int(e.SourceNetmask), net.IPv4len*8)) needLength := (e.SourceNetmask + 8 - 1) / 8 // division rounding up b = append(b, ip[:needLength]...) case 2: if e.SourceNetmask > net.IPv6len*8 { return nil, errors.New("dns: bad netmask") } if len(e.Address) != net.IPv6len { return nil, errors.New("dns: bad address") } ip := e.Address.Mask(net.CIDRMask(int(e.SourceNetmask), net.IPv6len*8)) needLength := (e.SourceNetmask + 8 - 1) / 8 // division rounding up b = append(b, ip[:needLength]...) default: return nil, errors.New("dns: bad address family") } return b, nil } func (e *EDNS0_SUBNET) unpack(b []byte) error { if len(b) < 4 { return ErrBuf } e.Family = binary.BigEndian.Uint16(b) e.SourceNetmask = b[2] e.SourceScope = b[3] switch e.Family { case 0: // "dig" sets AddressFamily to 0 if SourceNetmask is also 0 // It's okay to accept such a packet if e.SourceNetmask != 0 { return errors.New("dns: bad address family") } e.Address = net.IPv4(0, 0, 0, 0) case 1: if e.SourceNetmask > net.IPv4len*8 || e.SourceScope > net.IPv4len*8 { return errors.New("dns: bad netmask") } addr := make([]byte, net.IPv4len) for i := 0; i < net.IPv4len && 4+i < len(b); i++ { addr[i] = b[4+i] } e.Address = net.IPv4(addr[0], addr[1], addr[2], addr[3]) case 2: if e.SourceNetmask > net.IPv6len*8 || e.SourceScope > net.IPv6len*8 { return errors.New("dns: bad netmask") } addr := make([]byte, net.IPv6len) for i := 0; i < net.IPv6len && 4+i < len(b); i++ { addr[i] = b[4+i] } e.Address = net.IP{addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], addr[6], addr[7], addr[8], addr[9], addr[10], addr[11], addr[12], addr[13], addr[14], addr[15]} default: return errors.New("dns: bad address family") } return nil } func (e *EDNS0_SUBNET) String() (s string) { if e.Address == nil { s = "" } else if e.Address.To4() != nil { s = e.Address.String() } else { s = "[" + e.Address.String() + "]" } s += "/" + strconv.Itoa(int(e.SourceNetmask)) + "/" + strconv.Itoa(int(e.SourceScope)) return } // The EDNS0_COOKIE option is used to add a DNS Cookie to a message. // // o := new(dns.OPT) // o.Hdr.Name = "." // o.Hdr.Rrtype = dns.TypeOPT // e := new(dns.EDNS0_COOKIE) // e.Code = dns.EDNS0COOKIE // e.Cookie = "24a5ac.." // o.Option = append(o.Option, e) // // The Cookie field consists out of a client cookie (RFC 7873 Section 4), that is // always 8 bytes. It may then optionally be followed by the server cookie. The server // cookie is of variable length, 8 to a maximum of 32 bytes. In other words: // // cCookie := o.Cookie[:16] // sCookie := o.Cookie[16:] // // There is no guarantee that the Cookie string has a specific length. type EDNS0_COOKIE struct { Code uint16 // Always EDNS0COOKIE Cookie string // Hex-encoded cookie data } func (e *EDNS0_COOKIE) pack() ([]byte, error) { h, err := hex.DecodeString(e.Cookie) if err != nil { return nil, err } return h, nil } // Option implements the EDNS0 interface. func (e *EDNS0_COOKIE) Option() uint16 { return EDNS0COOKIE } func (e *EDNS0_COOKIE) unpack(b []byte) error { e.Cookie = hex.EncodeToString(b); return nil } func (e *EDNS0_COOKIE) String() string { return e.Cookie } // The EDNS0_UL (Update Lease) (draft RFC) option is used to tell the server to set // an expiration on an update RR. This is helpful for clients that cannot clean // up after themselves. This is a draft RFC and more information can be found at // http://files.dns-sd.org/draft-sekar-dns-ul.txt // // o := new(dns.OPT) // o.Hdr.Name = "." // o.Hdr.Rrtype = dns.TypeOPT // e := new(dns.EDNS0_UL) // e.Code = dns.EDNS0UL // e.Lease = 120 // in seconds // o.Option = append(o.Option, e) type EDNS0_UL struct { Code uint16 // Always EDNS0UL Lease uint32 } // Option implements the EDNS0 interface. func (e *EDNS0_UL) Option() uint16 { return EDNS0UL } func (e *EDNS0_UL) String() string { return strconv.FormatUint(uint64(e.Lease), 10) } // Copied: http://golang.org/src/pkg/net/dnsmsg.go func (e *EDNS0_UL) pack() ([]byte, error) { b := make([]byte, 4) binary.BigEndian.PutUint32(b, e.Lease) return b, nil } func (e *EDNS0_UL) unpack(b []byte) error { if len(b) < 4 { return ErrBuf } e.Lease = binary.BigEndian.Uint32(b) return nil } // EDNS0_LLQ stands for Long Lived Queries: http://tools.ietf.org/html/draft-sekar-dns-llq-01 // Implemented for completeness, as the EDNS0 type code is assigned. type EDNS0_LLQ struct { Code uint16 // Always EDNS0LLQ Version uint16 Opcode uint16 Error uint16 Id uint64 LeaseLife uint32 } // Option implements the EDNS0 interface. func (e *EDNS0_LLQ) Option() uint16 { return EDNS0LLQ } func (e *EDNS0_LLQ) pack() ([]byte, error) { b := make([]byte, 18) binary.BigEndian.PutUint16(b[0:], e.Version) binary.BigEndian.PutUint16(b[2:], e.Opcode) binary.BigEndian.PutUint16(b[4:], e.Error) binary.BigEndian.PutUint64(b[6:], e.Id) binary.BigEndian.PutUint32(b[14:], e.LeaseLife) return b, nil } func (e *EDNS0_LLQ) unpack(b []byte) error { if len(b) < 18 { return ErrBuf } e.Version = binary.BigEndian.Uint16(b[0:]) e.Opcode = binary.BigEndian.Uint16(b[2:]) e.Error = binary.BigEndian.Uint16(b[4:]) e.Id = binary.BigEndian.Uint64(b[6:]) e.LeaseLife = binary.BigEndian.Uint32(b[14:]) return nil } func (e *EDNS0_LLQ) String() string { s := strconv.FormatUint(uint64(e.Version), 10) + " " + strconv.FormatUint(uint64(e.Opcode), 10) + " " + strconv.FormatUint(uint64(e.Error), 10) + " " + strconv.FormatUint(uint64(e.Id), 10) + " " + strconv.FormatUint(uint64(e.LeaseLife), 10) return s } type EDNS0_DAU struct { Code uint16 // Always EDNS0DAU AlgCode []uint8 } // Option implements the EDNS0 interface. func (e *EDNS0_DAU) Option() uint16 { return EDNS0DAU } func (e *EDNS0_DAU) pack() ([]byte, error) { return e.AlgCode, nil } func (e *EDNS0_DAU) unpack(b []byte) error { e.AlgCode = b; return nil } func (e *EDNS0_DAU) String() string { s := "" for i := 0; i < len(e.AlgCode); i++ { if a, ok := AlgorithmToString[e.AlgCode[i]]; ok { s += " " + a } else { s += " " + strconv.Itoa(int(e.AlgCode[i])) } } return s } type EDNS0_DHU struct { Code uint16 // Always EDNS0DHU AlgCode []uint8 } // Option implements the EDNS0 interface. func (e *EDNS0_DHU) Option() uint16 { return EDNS0DHU } func (e *EDNS0_DHU) pack() ([]byte, error) { return e.AlgCode, nil } func (e *EDNS0_DHU) unpack(b []byte) error { e.AlgCode = b; return nil } func (e *EDNS0_DHU) String() string { s := "" for i := 0; i < len(e.AlgCode); i++ { if a, ok := HashToString[e.AlgCode[i]]; ok { s += " " + a } else { s += " " + strconv.Itoa(int(e.AlgCode[i])) } } return s } type EDNS0_N3U struct { Code uint16 // Always EDNS0N3U AlgCode []uint8 } // Option implements the EDNS0 interface. func (e *EDNS0_N3U) Option() uint16 { return EDNS0N3U } func (e *EDNS0_N3U) pack() ([]byte, error) { return e.AlgCode, nil } func (e *EDNS0_N3U) unpack(b []byte) error { e.AlgCode = b; return nil } func (e *EDNS0_N3U) String() string { // Re-use the hash map s := "" for i := 0; i < len(e.AlgCode); i++ { if a, ok := HashToString[e.AlgCode[i]]; ok { s += " " + a } else { s += " " + strconv.Itoa(int(e.AlgCode[i])) } } return s } type EDNS0_EXPIRE struct { Code uint16 // Always EDNS0EXPIRE Expire uint32 } // Option implements the EDNS0 interface. func (e *EDNS0_EXPIRE) Option() uint16 { return EDNS0EXPIRE } func (e *EDNS0_EXPIRE) String() string { return strconv.FormatUint(uint64(e.Expire), 10) } func (e *EDNS0_EXPIRE) pack() ([]byte, error) { b := make([]byte, 4) b[0] = byte(e.Expire >> 24) b[1] = byte(e.Expire >> 16) b[2] = byte(e.Expire >> 8) b[3] = byte(e.Expire) return b, nil } func (e *EDNS0_EXPIRE) unpack(b []byte) error { if len(b) < 4 { return ErrBuf } e.Expire = binary.BigEndian.Uint32(b) return nil } // The EDNS0_LOCAL option is used for local/experimental purposes. The option // code is recommended to be within the range [EDNS0LOCALSTART, EDNS0LOCALEND] // (RFC6891), although any unassigned code can actually be used. The content of // the option is made available in Data, unaltered. // Basic use pattern for creating a local option: // // o := new(dns.OPT) // o.Hdr.Name = "." // o.Hdr.Rrtype = dns.TypeOPT // e := new(dns.EDNS0_LOCAL) // e.Code = dns.EDNS0LOCALSTART // e.Data = []byte{72, 82, 74} // o.Option = append(o.Option, e) type EDNS0_LOCAL struct { Code uint16 Data []byte } // Option implements the EDNS0 interface. func (e *EDNS0_LOCAL) Option() uint16 { return e.Code } func (e *EDNS0_LOCAL) String() string { return strconv.FormatInt(int64(e.Code), 10) + ":0x" + hex.EncodeToString(e.Data) } func (e *EDNS0_LOCAL) pack() ([]byte, error) { b := make([]byte, len(e.Data)) copied := copy(b, e.Data) if copied != len(e.Data) { return nil, ErrBuf } return b, nil } func (e *EDNS0_LOCAL) unpack(b []byte) error { e.Data = make([]byte, len(b)) copied := copy(e.Data, b) if copied != len(b) { return ErrBuf } return nil } // EDNS0_TCP_KEEPALIVE is an EDNS0 option that instructs the server to keep // the TCP connection alive. See RFC 7828. type EDNS0_TCP_KEEPALIVE struct { Code uint16 // Always EDNSTCPKEEPALIVE Length uint16 // the value 0 if the TIMEOUT is omitted, the value 2 if it is present; Timeout uint16 // an idle timeout value for the TCP connection, specified in units of 100 milliseconds, encoded in network byte order. } // Option implements the EDNS0 interface. func (e *EDNS0_TCP_KEEPALIVE) Option() uint16 { return EDNS0TCPKEEPALIVE } func (e *EDNS0_TCP_KEEPALIVE) pack() ([]byte, error) { if e.Timeout != 0 && e.Length != 2 { return nil, errors.New("dns: timeout specified but length is not 2") } if e.Timeout == 0 && e.Length != 0 { return nil, errors.New("dns: timeout not specified but length is not 0") } b := make([]byte, 4+e.Length) binary.BigEndian.PutUint16(b[0:], e.Code) binary.BigEndian.PutUint16(b[2:], e.Length) if e.Length == 2 { binary.BigEndian.PutUint16(b[4:], e.Timeout) } return b, nil } func (e *EDNS0_TCP_KEEPALIVE) unpack(b []byte) error { if len(b) < 4 { return ErrBuf } e.Length = binary.BigEndian.Uint16(b[2:4]) if e.Length != 0 && e.Length != 2 { return errors.New("dns: length mismatch, want 0/2 but got " + strconv.FormatUint(uint64(e.Length), 10)) } if e.Length == 2 { if len(b) < 6 { return ErrBuf } e.Timeout = binary.BigEndian.Uint16(b[4:6]) } return nil } func (e *EDNS0_TCP_KEEPALIVE) String() (s string) { s = "use tcp keep-alive" if e.Length == 0 { s += ", timeout omitted" } else { s += fmt.Sprintf(", timeout %dms", e.Timeout*100) } return } // EDNS0_PADDING option is used to add padding to a request/response. The default // value of padding SHOULD be 0x0 but other values MAY be used, for instance if // compression is applied before encryption which may break signatures. type EDNS0_PADDING struct { Padding []byte } // Option implements the EDNS0 interface. func (e *EDNS0_PADDING) Option() uint16 { return EDNS0PADDING } func (e *EDNS0_PADDING) pack() ([]byte, error) { return e.Padding, nil } func (e *EDNS0_PADDING) unpack(b []byte) error { e.Padding = b; return nil } func (e *EDNS0_PADDING) String() string { return fmt.Sprintf("%0X", e.Padding) }