// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package bpf import ( "io/ioutil" "reflect" "strconv" "strings" "testing" ) // This is a direct translation of the program in // testdata/all_instructions.txt. var allInstructions = []Instruction{ LoadConstant{Dst: RegA, Val: 42}, LoadConstant{Dst: RegX, Val: 42}, LoadScratch{Dst: RegA, N: 3}, LoadScratch{Dst: RegX, N: 3}, LoadAbsolute{Off: 42, Size: 1}, LoadAbsolute{Off: 42, Size: 2}, LoadAbsolute{Off: 42, Size: 4}, LoadIndirect{Off: 42, Size: 1}, LoadIndirect{Off: 42, Size: 2}, LoadIndirect{Off: 42, Size: 4}, LoadMemShift{Off: 42}, LoadExtension{Num: ExtLen}, LoadExtension{Num: ExtProto}, LoadExtension{Num: ExtType}, LoadExtension{Num: ExtRand}, StoreScratch{Src: RegA, N: 3}, StoreScratch{Src: RegX, N: 3}, ALUOpConstant{Op: ALUOpAdd, Val: 42}, ALUOpConstant{Op: ALUOpSub, Val: 42}, ALUOpConstant{Op: ALUOpMul, Val: 42}, ALUOpConstant{Op: ALUOpDiv, Val: 42}, ALUOpConstant{Op: ALUOpOr, Val: 42}, ALUOpConstant{Op: ALUOpAnd, Val: 42}, ALUOpConstant{Op: ALUOpShiftLeft, Val: 42}, ALUOpConstant{Op: ALUOpShiftRight, Val: 42}, ALUOpConstant{Op: ALUOpMod, Val: 42}, ALUOpConstant{Op: ALUOpXor, Val: 42}, ALUOpX{Op: ALUOpAdd}, ALUOpX{Op: ALUOpSub}, ALUOpX{Op: ALUOpMul}, ALUOpX{Op: ALUOpDiv}, ALUOpX{Op: ALUOpOr}, ALUOpX{Op: ALUOpAnd}, ALUOpX{Op: ALUOpShiftLeft}, ALUOpX{Op: ALUOpShiftRight}, ALUOpX{Op: ALUOpMod}, ALUOpX{Op: ALUOpXor}, NegateA{}, Jump{Skip: 10}, JumpIf{Cond: JumpEqual, Val: 42, SkipTrue: 8, SkipFalse: 9}, JumpIf{Cond: JumpNotEqual, Val: 42, SkipTrue: 8}, JumpIf{Cond: JumpLessThan, Val: 42, SkipTrue: 7}, JumpIf{Cond: JumpLessOrEqual, Val: 42, SkipTrue: 6}, JumpIf{Cond: JumpGreaterThan, Val: 42, SkipTrue: 4, SkipFalse: 5}, JumpIf{Cond: JumpGreaterOrEqual, Val: 42, SkipTrue: 3, SkipFalse: 4}, JumpIf{Cond: JumpBitsSet, Val: 42, SkipTrue: 2, SkipFalse: 3}, TAX{}, TXA{}, RetA{}, RetConstant{Val: 42}, } var allInstructionsExpected = "testdata/all_instructions.bpf" // Check that we produce the same output as the canonical bpf_asm // linux kernel tool. func TestInterop(t *testing.T) { out, err := Assemble(allInstructions) if err != nil { t.Fatalf("assembly of allInstructions program failed: %s", err) } t.Logf("Assembled program is %d instructions long", len(out)) bs, err := ioutil.ReadFile(allInstructionsExpected) if err != nil { t.Fatalf("reading %s: %s", allInstructionsExpected, err) } // First statement is the number of statements, last statement is // empty. We just ignore both and rely on slice length. stmts := strings.Split(string(bs), ",") if len(stmts)-2 != len(out) { t.Fatalf("test program lengths don't match: %s has %d, Go implementation has %d", allInstructionsExpected, len(stmts)-2, len(allInstructions)) } for i, stmt := range stmts[1 : len(stmts)-2] { nums := strings.Split(stmt, " ") if len(nums) != 4 { t.Fatalf("malformed instruction %d in %s: %s", i+1, allInstructionsExpected, stmt) } actual := out[i] op, err := strconv.ParseUint(nums[0], 10, 16) if err != nil { t.Fatalf("malformed opcode %s in instruction %d of %s", nums[0], i+1, allInstructionsExpected) } if actual.Op != uint16(op) { t.Errorf("opcode mismatch on instruction %d (%#v): got 0x%02x, want 0x%02x", i+1, allInstructions[i], actual.Op, op) } jt, err := strconv.ParseUint(nums[1], 10, 8) if err != nil { t.Fatalf("malformed jt offset %s in instruction %d of %s", nums[1], i+1, allInstructionsExpected) } if actual.Jt != uint8(jt) { t.Errorf("jt mismatch on instruction %d (%#v): got %d, want %d", i+1, allInstructions[i], actual.Jt, jt) } jf, err := strconv.ParseUint(nums[2], 10, 8) if err != nil { t.Fatalf("malformed jf offset %s in instruction %d of %s", nums[2], i+1, allInstructionsExpected) } if actual.Jf != uint8(jf) { t.Errorf("jf mismatch on instruction %d (%#v): got %d, want %d", i+1, allInstructions[i], actual.Jf, jf) } k, err := strconv.ParseUint(nums[3], 10, 32) if err != nil { t.Fatalf("malformed constant %s in instruction %d of %s", nums[3], i+1, allInstructionsExpected) } if actual.K != uint32(k) { t.Errorf("constant mismatch on instruction %d (%#v): got %d, want %d", i+1, allInstructions[i], actual.K, k) } } } // Check that assembly and disassembly match each other. // // Because we offer "fake" jump conditions that don't appear in the // machine code, disassembly won't be a 1:1 match with the original // source, although the behavior will be identical. However, // reassembling the disassembly should produce an identical program. func TestAsmDisasm(t *testing.T) { prog1, err := Assemble(allInstructions) if err != nil { t.Fatalf("assembly of allInstructions program failed: %s", err) } t.Logf("Assembled program is %d instructions long", len(prog1)) src, allDecoded := Disassemble(prog1) if !allDecoded { t.Errorf("Disassemble(Assemble(allInstructions)) produced unrecognized instructions:") for i, inst := range src { if r, ok := inst.(RawInstruction); ok { t.Logf(" insn %d, %#v --> %#v", i+1, allInstructions[i], r) } } } prog2, err := Assemble(src) if err != nil { t.Fatalf("assembly of Disassemble(Assemble(allInstructions)) failed: %s", err) } if len(prog2) != len(prog1) { t.Fatalf("disassembly changed program size: %d insns before, %d insns after", len(prog1), len(prog2)) } if !reflect.DeepEqual(prog1, prog2) { t.Errorf("program mutated by disassembly:") for i := range prog2 { if !reflect.DeepEqual(prog1[i], prog2[i]) { t.Logf(" insn %d, s: %#v, p1: %#v, p2: %#v", i+1, allInstructions[i], prog1[i], prog2[i]) } } } }