summaryrefslogtreecommitdiffstats
path: root/Godeps/_workspace/src/code.google.com/p/draw2d/draw2d/curves.go
blob: 4623cd4dc359513d4b12b969aa14958fca8d8815 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 21/11/2010 by Laurent Le Goff

package draw2d

import (
	"math"
)

var (
	CurveRecursionLimit        = 32
	CurveCollinearityEpsilon   = 1e-30
	CurveAngleToleranceEpsilon = 0.01
)

/*
	The function has the following parameters:
		approximationScale : 
			Eventually determines the approximation accuracy. In practice we need to transform points from the World coordinate system to the Screen one. 
			It always has some scaling coefficient. 
			The curves are usually processed in the World coordinates, while the approximation accuracy should be eventually in pixels. 
			Usually it looks as follows: 
			curved.approximationScale(transform.scale()); 
			where transform is the affine matrix that includes all the transformations, including viewport and zoom.
		angleTolerance :
			You set it in radians. 
			The less this value is the more accurate will be the approximation at sharp turns. 
			But 0 means that we don't consider angle conditions at all.
		cuspLimit :
			An angle in radians. 
			If 0, only the real cusps will have bevel cuts. 
			If more than 0, it will restrict the sharpness. 
			The more this value is the less sharp turns will be cut. 
			Typically it should not exceed 10-15 degrees.
*/
func cubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4, approximationScale, angleTolerance, cuspLimit float64) {
	cuspLimit = computeCuspLimit(cuspLimit)
	distanceToleranceSquare := 0.5 / approximationScale
	distanceToleranceSquare = distanceToleranceSquare * distanceToleranceSquare
	recursiveCubicBezier(v, x1, y1, x2, y2, x3, y3, x4, y4, 0, distanceToleranceSquare, angleTolerance, cuspLimit)
}

/*
 * see cubicBezier comments for approximationScale and angleTolerance definition
 */
func quadraticBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, approximationScale, angleTolerance float64) {
	distanceToleranceSquare := 0.5 / approximationScale
	distanceToleranceSquare = distanceToleranceSquare * distanceToleranceSquare

	recursiveQuadraticBezierBezier(v, x1, y1, x2, y2, x3, y3, 0, distanceToleranceSquare, angleTolerance)
}

func computeCuspLimit(v float64) (r float64) {
	if v == 0.0 {
		r = 0.0
	} else {
		r = math.Pi - v
	}
	return
}

/**
 * http://www.antigrain.com/research/adaptive_bezier/index.html
 */
func recursiveQuadraticBezierBezier(v VertexConverter, x1, y1, x2, y2, x3, y3 float64, level int, distanceToleranceSquare, angleTolerance float64) {
	if level > CurveRecursionLimit {
		return
	}

	// Calculate all the mid-points of the line segments
	//----------------------
	x12 := (x1 + x2) / 2
	y12 := (y1 + y2) / 2
	x23 := (x2 + x3) / 2
	y23 := (y2 + y3) / 2
	x123 := (x12 + x23) / 2
	y123 := (y12 + y23) / 2

	dx := x3 - x1
	dy := y3 - y1
	d := math.Abs(((x2-x3)*dy - (y2-y3)*dx))

	if d > CurveCollinearityEpsilon {
		// Regular case
		//-----------------
		if d*d <= distanceToleranceSquare*(dx*dx+dy*dy) {
			// If the curvature doesn't exceed the distanceTolerance value
			// we tend to finish subdivisions.
			//----------------------
			if angleTolerance < CurveAngleToleranceEpsilon {
				v.Vertex(x123, y123)
				return
			}

			// Angle & Cusp Condition
			//----------------------
			da := math.Abs(math.Atan2(y3-y2, x3-x2) - math.Atan2(y2-y1, x2-x1))
			if da >= math.Pi {
				da = 2*math.Pi - da
			}

			if da < angleTolerance {
				// Finally we can stop the recursion
				//----------------------
				v.Vertex(x123, y123)
				return
			}
		}
	} else {
		// Collinear case
		//------------------
		da := dx*dx + dy*dy
		if da == 0 {
			d = squareDistance(x1, y1, x2, y2)
		} else {
			d = ((x2-x1)*dx + (y2-y1)*dy) / da
			if d > 0 && d < 1 {
				// Simple collinear case, 1---2---3
				// We can leave just two endpoints
				return
			}
			if d <= 0 {
				d = squareDistance(x2, y2, x1, y1)
			} else if d >= 1 {
				d = squareDistance(x2, y2, x3, y3)
			} else {
				d = squareDistance(x2, y2, x1+d*dx, y1+d*dy)
			}
		}
		if d < distanceToleranceSquare {
			v.Vertex(x2, y2)
			return
		}
	}

	// Continue subdivision
	//----------------------
	recursiveQuadraticBezierBezier(v, x1, y1, x12, y12, x123, y123, level+1, distanceToleranceSquare, angleTolerance)
	recursiveQuadraticBezierBezier(v, x123, y123, x23, y23, x3, y3, level+1, distanceToleranceSquare, angleTolerance)
}

/**
 * http://www.antigrain.com/research/adaptive_bezier/index.html
 */
func recursiveCubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4 float64, level int, distanceToleranceSquare, angleTolerance, cuspLimit float64) {
	if level > CurveRecursionLimit {
		return
	}

	// Calculate all the mid-points of the line segments
	//----------------------
	x12 := (x1 + x2) / 2
	y12 := (y1 + y2) / 2
	x23 := (x2 + x3) / 2
	y23 := (y2 + y3) / 2
	x34 := (x3 + x4) / 2
	y34 := (y3 + y4) / 2
	x123 := (x12 + x23) / 2
	y123 := (y12 + y23) / 2
	x234 := (x23 + x34) / 2
	y234 := (y23 + y34) / 2
	x1234 := (x123 + x234) / 2
	y1234 := (y123 + y234) / 2

	// Try to approximate the full cubic curve by a single straight line
	//------------------
	dx := x4 - x1
	dy := y4 - y1

	d2 := math.Abs(((x2-x4)*dy - (y2-y4)*dx))
	d3 := math.Abs(((x3-x4)*dy - (y3-y4)*dx))

	switch {
	case d2 <= CurveCollinearityEpsilon && d3 <= CurveCollinearityEpsilon:
		// All collinear OR p1==p4
		//----------------------
		k := dx*dx + dy*dy
		if k == 0 {
			d2 = squareDistance(x1, y1, x2, y2)
			d3 = squareDistance(x4, y4, x3, y3)
		} else {
			k = 1 / k
			da1 := x2 - x1
			da2 := y2 - y1
			d2 = k * (da1*dx + da2*dy)
			da1 = x3 - x1
			da2 = y3 - y1
			d3 = k * (da1*dx + da2*dy)
			if d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1 {
				// Simple collinear case, 1---2---3---4
				// We can leave just two endpoints
				return
			}
			if d2 <= 0 {
				d2 = squareDistance(x2, y2, x1, y1)
			} else if d2 >= 1 {
				d2 = squareDistance(x2, y2, x4, y4)
			} else {
				d2 = squareDistance(x2, y2, x1+d2*dx, y1+d2*dy)
			}

			if d3 <= 0 {
				d3 = squareDistance(x3, y3, x1, y1)
			} else if d3 >= 1 {
				d3 = squareDistance(x3, y3, x4, y4)
			} else {
				d3 = squareDistance(x3, y3, x1+d3*dx, y1+d3*dy)
			}
		}
		if d2 > d3 {
			if d2 < distanceToleranceSquare {
				v.Vertex(x2, y2)
				return
			}
		} else {
			if d3 < distanceToleranceSquare {
				v.Vertex(x3, y3)
				return
			}
		}
		break

	case d2 <= CurveCollinearityEpsilon && d3 > CurveCollinearityEpsilon:
		// p1,p2,p4 are collinear, p3 is significant
		//----------------------
		if d3*d3 <= distanceToleranceSquare*(dx*dx+dy*dy) {
			if angleTolerance < CurveAngleToleranceEpsilon {
				v.Vertex(x23, y23)
				return
			}

			// Angle Condition
			//----------------------
			da1 := math.Abs(math.Atan2(y4-y3, x4-x3) - math.Atan2(y3-y2, x3-x2))
			if da1 >= math.Pi {
				da1 = 2*math.Pi - da1
			}

			if da1 < angleTolerance {
				v.Vertex(x2, y2)
				v.Vertex(x3, y3)
				return
			}

			if cuspLimit != 0.0 {
				if da1 > cuspLimit {
					v.Vertex(x3, y3)
					return
				}
			}
		}
		break

	case d2 > CurveCollinearityEpsilon && d3 <= CurveCollinearityEpsilon:
		// p1,p3,p4 are collinear, p2 is significant
		//----------------------
		if d2*d2 <= distanceToleranceSquare*(dx*dx+dy*dy) {
			if angleTolerance < CurveAngleToleranceEpsilon {
				v.Vertex(x23, y23)
				return
			}

			// Angle Condition
			//----------------------
			da1 := math.Abs(math.Atan2(y3-y2, x3-x2) - math.Atan2(y2-y1, x2-x1))
			if da1 >= math.Pi {
				da1 = 2*math.Pi - da1
			}

			if da1 < angleTolerance {
				v.Vertex(x2, y2)
				v.Vertex(x3, y3)
				return
			}

			if cuspLimit != 0.0 {
				if da1 > cuspLimit {
					v.Vertex(x2, y2)
					return
				}
			}
		}
		break

	case d2 > CurveCollinearityEpsilon && d3 > CurveCollinearityEpsilon:
		// Regular case
		//-----------------
		if (d2+d3)*(d2+d3) <= distanceToleranceSquare*(dx*dx+dy*dy) {
			// If the curvature doesn't exceed the distanceTolerance value
			// we tend to finish subdivisions.
			//----------------------
			if angleTolerance < CurveAngleToleranceEpsilon {
				v.Vertex(x23, y23)
				return
			}

			// Angle & Cusp Condition
			//----------------------
			k := math.Atan2(y3-y2, x3-x2)
			da1 := math.Abs(k - math.Atan2(y2-y1, x2-x1))
			da2 := math.Abs(math.Atan2(y4-y3, x4-x3) - k)
			if da1 >= math.Pi {
				da1 = 2*math.Pi - da1
			}
			if da2 >= math.Pi {
				da2 = 2*math.Pi - da2
			}

			if da1+da2 < angleTolerance {
				// Finally we can stop the recursion
				//----------------------
				v.Vertex(x23, y23)
				return
			}

			if cuspLimit != 0.0 {
				if da1 > cuspLimit {
					v.Vertex(x2, y2)
					return
				}

				if da2 > cuspLimit {
					v.Vertex(x3, y3)
					return
				}
			}
		}
		break
	}

	// Continue subdivision
	//----------------------
	recursiveCubicBezier(v, x1, y1, x12, y12, x123, y123, x1234, y1234, level+1, distanceToleranceSquare, angleTolerance, cuspLimit)
	recursiveCubicBezier(v, x1234, y1234, x234, y234, x34, y34, x4, y4, level+1, distanceToleranceSquare, angleTolerance, cuspLimit)

}