summaryrefslogtreecommitdiffstats
path: root/Godeps/_workspace/src/github.com/golang/freetype/raster/geom.go
blob: 1a2b8a77b590f8b4dd2cf33c7d86b8ad043f2b8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.

package raster

import (
	"fmt"
	"math"

	"github.com/mattermost/platform/Godeps/_workspace/src/golang.org/x/image/math/fixed"
)

// maxAbs returns the maximum of abs(a) and abs(b).
func maxAbs(a, b fixed.Int26_6) fixed.Int26_6 {
	if a < 0 {
		a = -a
	}
	if b < 0 {
		b = -b
	}
	if a < b {
		return b
	}
	return a
}

// pNeg returns the vector -p, or equivalently p rotated by 180 degrees.
func pNeg(p fixed.Point26_6) fixed.Point26_6 {
	return fixed.Point26_6{-p.X, -p.Y}
}

// pDot returns the dot product p·q.
func pDot(p fixed.Point26_6, q fixed.Point26_6) fixed.Int52_12 {
	px, py := int64(p.X), int64(p.Y)
	qx, qy := int64(q.X), int64(q.Y)
	return fixed.Int52_12(px*qx + py*qy)
}

// pLen returns the length of the vector p.
func pLen(p fixed.Point26_6) fixed.Int26_6 {
	// TODO(nigeltao): use fixed point math.
	x := float64(p.X)
	y := float64(p.Y)
	return fixed.Int26_6(math.Sqrt(x*x + y*y))
}

// pNorm returns the vector p normalized to the given length, or zero if p is
// degenerate.
func pNorm(p fixed.Point26_6, length fixed.Int26_6) fixed.Point26_6 {
	d := pLen(p)
	if d == 0 {
		return fixed.Point26_6{}
	}
	s, t := int64(length), int64(d)
	x := int64(p.X) * s / t
	y := int64(p.Y) * s / t
	return fixed.Point26_6{fixed.Int26_6(x), fixed.Int26_6(y)}
}

// pRot45CW returns the vector p rotated clockwise by 45 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CW is {1/√2, 1/√2}.
func pRot45CW(p fixed.Point26_6) fixed.Point26_6 {
	// 181/256 is approximately 1/√2, or sin(π/4).
	px, py := int64(p.X), int64(p.Y)
	qx := (+px - py) * 181 / 256
	qy := (+px + py) * 181 / 256
	return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}

// pRot90CW returns the vector p rotated clockwise by 90 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CW is {0, 1}.
func pRot90CW(p fixed.Point26_6) fixed.Point26_6 {
	return fixed.Point26_6{-p.Y, p.X}
}

// pRot135CW returns the vector p rotated clockwise by 135 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CW is {-1/√2, 1/√2}.
func pRot135CW(p fixed.Point26_6) fixed.Point26_6 {
	// 181/256 is approximately 1/√2, or sin(π/4).
	px, py := int64(p.X), int64(p.Y)
	qx := (-px - py) * 181 / 256
	qy := (+px - py) * 181 / 256
	return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}

// pRot45CCW returns the vector p rotated counter-clockwise by 45 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CCW is {1/√2, -1/√2}.
func pRot45CCW(p fixed.Point26_6) fixed.Point26_6 {
	// 181/256 is approximately 1/√2, or sin(π/4).
	px, py := int64(p.X), int64(p.Y)
	qx := (+px + py) * 181 / 256
	qy := (-px + py) * 181 / 256
	return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}

// pRot90CCW returns the vector p rotated counter-clockwise by 90 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CCW is {0, -1}.
func pRot90CCW(p fixed.Point26_6) fixed.Point26_6 {
	return fixed.Point26_6{p.Y, -p.X}
}

// pRot135CCW returns the vector p rotated counter-clockwise by 135 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CCW is {-1/√2, -1/√2}.
func pRot135CCW(p fixed.Point26_6) fixed.Point26_6 {
	// 181/256 is approximately 1/√2, or sin(π/4).
	px, py := int64(p.X), int64(p.Y)
	qx := (-px + py) * 181 / 256
	qy := (-px - py) * 181 / 256
	return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}

// An Adder accumulates points on a curve.
type Adder interface {
	// Start starts a new curve at the given point.
	Start(a fixed.Point26_6)
	// Add1 adds a linear segment to the current curve.
	Add1(b fixed.Point26_6)
	// Add2 adds a quadratic segment to the current curve.
	Add2(b, c fixed.Point26_6)
	// Add3 adds a cubic segment to the current curve.
	Add3(b, c, d fixed.Point26_6)
}

// A Path is a sequence of curves, and a curve is a start point followed by a
// sequence of linear, quadratic or cubic segments.
type Path []fixed.Int26_6

// String returns a human-readable representation of a Path.
func (p Path) String() string {
	s := ""
	for i := 0; i < len(p); {
		if i != 0 {
			s += " "
		}
		switch p[i] {
		case 0:
			s += "S0" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+3]))
			i += 4
		case 1:
			s += "A1" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+3]))
			i += 4
		case 2:
			s += "A2" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+5]))
			i += 6
		case 3:
			s += "A3" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+7]))
			i += 8
		default:
			panic("freetype/raster: bad path")
		}
	}
	return s
}

// Clear cancels any previous calls to p.Start or p.AddXxx.
func (p *Path) Clear() {
	*p = (*p)[:0]
}

// Start starts a new curve at the given point.
func (p *Path) Start(a fixed.Point26_6) {
	*p = append(*p, 0, a.X, a.Y, 0)
}

// Add1 adds a linear segment to the current curve.
func (p *Path) Add1(b fixed.Point26_6) {
	*p = append(*p, 1, b.X, b.Y, 1)
}

// Add2 adds a quadratic segment to the current curve.
func (p *Path) Add2(b, c fixed.Point26_6) {
	*p = append(*p, 2, b.X, b.Y, c.X, c.Y, 2)
}

// Add3 adds a cubic segment to the current curve.
func (p *Path) Add3(b, c, d fixed.Point26_6) {
	*p = append(*p, 3, b.X, b.Y, c.X, c.Y, d.X, d.Y, 3)
}

// AddPath adds the Path q to p.
func (p *Path) AddPath(q Path) {
	*p = append(*p, q...)
}

// AddStroke adds a stroked Path.
func (p *Path) AddStroke(q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
	Stroke(p, q, width, cr, jr)
}

// firstPoint returns the first point in a non-empty Path.
func (p Path) firstPoint() fixed.Point26_6 {
	return fixed.Point26_6{p[1], p[2]}
}

// lastPoint returns the last point in a non-empty Path.
func (p Path) lastPoint() fixed.Point26_6 {
	return fixed.Point26_6{p[len(p)-3], p[len(p)-2]}
}

// addPathReversed adds q reversed to p.
// For example, if q consists of a linear segment from A to B followed by a
// quadratic segment from B to C to D, then the values of q looks like:
// index: 01234567890123
// value: 0AA01BB12CCDD2
// So, when adding q backwards to p, we want to Add2(C, B) followed by Add1(A).
func addPathReversed(p Adder, q Path) {
	if len(q) == 0 {
		return
	}
	i := len(q) - 1
	for {
		switch q[i] {
		case 0:
			return
		case 1:
			i -= 4
			p.Add1(
				fixed.Point26_6{q[i-2], q[i-1]},
			)
		case 2:
			i -= 6
			p.Add2(
				fixed.Point26_6{q[i+2], q[i+3]},
				fixed.Point26_6{q[i-2], q[i-1]},
			)
		case 3:
			i -= 8
			p.Add3(
				fixed.Point26_6{q[i+4], q[i+5]},
				fixed.Point26_6{q[i+2], q[i+3]},
				fixed.Point26_6{q[i-2], q[i-1]},
			)
		default:
			panic("freetype/raster: bad path")
		}
	}
}