summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/armon/go-metrics/inmem.go
blob: cd1773042136b9d07be9e28cc597f2a04d20a8db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
package metrics

import (
	"bytes"
	"fmt"
	"math"
	"net/url"
	"strings"
	"sync"
	"time"
)

// InmemSink provides a MetricSink that does in-memory aggregation
// without sending metrics over a network. It can be embedded within
// an application to provide profiling information.
type InmemSink struct {
	// How long is each aggregation interval
	interval time.Duration

	// Retain controls how many metrics interval we keep
	retain time.Duration

	// maxIntervals is the maximum length of intervals.
	// It is retain / interval.
	maxIntervals int

	// intervals is a slice of the retained intervals
	intervals    []*IntervalMetrics
	intervalLock sync.RWMutex

	rateDenom float64
}

// IntervalMetrics stores the aggregated metrics
// for a specific interval
type IntervalMetrics struct {
	sync.RWMutex

	// The start time of the interval
	Interval time.Time

	// Gauges maps the key to the last set value
	Gauges map[string]GaugeValue

	// Points maps the string to the list of emitted values
	// from EmitKey
	Points map[string][]float32

	// Counters maps the string key to a sum of the counter
	// values
	Counters map[string]SampledValue

	// Samples maps the key to an AggregateSample,
	// which has the rolled up view of a sample
	Samples map[string]SampledValue
}

// NewIntervalMetrics creates a new IntervalMetrics for a given interval
func NewIntervalMetrics(intv time.Time) *IntervalMetrics {
	return &IntervalMetrics{
		Interval: intv,
		Gauges:   make(map[string]GaugeValue),
		Points:   make(map[string][]float32),
		Counters: make(map[string]SampledValue),
		Samples:  make(map[string]SampledValue),
	}
}

// AggregateSample is used to hold aggregate metrics
// about a sample
type AggregateSample struct {
	Count       int       // The count of emitted pairs
	Rate        float64   `json:"-"` // The count of emitted pairs per time unit (usually 1 second)
	Sum         float64   // The sum of values
	SumSq       float64   `json:"-"` // The sum of squared values
	Min         float64   // Minimum value
	Max         float64   // Maximum value
	LastUpdated time.Time `json:"-"` // When value was last updated
}

// Computes a Stddev of the values
func (a *AggregateSample) Stddev() float64 {
	num := (float64(a.Count) * a.SumSq) - math.Pow(a.Sum, 2)
	div := float64(a.Count * (a.Count - 1))
	if div == 0 {
		return 0
	}
	return math.Sqrt(num / div)
}

// Computes a mean of the values
func (a *AggregateSample) Mean() float64 {
	if a.Count == 0 {
		return 0
	}
	return a.Sum / float64(a.Count)
}

// Ingest is used to update a sample
func (a *AggregateSample) Ingest(v float64, rateDenom float64) {
	a.Count++
	a.Sum += v
	a.SumSq += (v * v)
	if v < a.Min || a.Count == 1 {
		a.Min = v
	}
	if v > a.Max || a.Count == 1 {
		a.Max = v
	}
	a.Rate = float64(a.Count) / rateDenom
	a.LastUpdated = time.Now()
}

func (a *AggregateSample) String() string {
	if a.Count == 0 {
		return "Count: 0"
	} else if a.Stddev() == 0 {
		return fmt.Sprintf("Count: %d Sum: %0.3f LastUpdated: %s", a.Count, a.Sum, a.LastUpdated)
	} else {
		return fmt.Sprintf("Count: %d Min: %0.3f Mean: %0.3f Max: %0.3f Stddev: %0.3f Sum: %0.3f LastUpdated: %s",
			a.Count, a.Min, a.Mean(), a.Max, a.Stddev(), a.Sum, a.LastUpdated)
	}
}

// NewInmemSinkFromURL creates an InmemSink from a URL. It is used
// (and tested) from NewMetricSinkFromURL.
func NewInmemSinkFromURL(u *url.URL) (MetricSink, error) {
	params := u.Query()

	interval, err := time.ParseDuration(params.Get("interval"))
	if err != nil {
		return nil, fmt.Errorf("Bad 'interval' param: %s", err)
	}

	retain, err := time.ParseDuration(params.Get("retain"))
	if err != nil {
		return nil, fmt.Errorf("Bad 'retain' param: %s", err)
	}

	return NewInmemSink(interval, retain), nil
}

// NewInmemSink is used to construct a new in-memory sink.
// Uses an aggregation interval and maximum retention period.
func NewInmemSink(interval, retain time.Duration) *InmemSink {
	rateTimeUnit := time.Second
	i := &InmemSink{
		interval:     interval,
		retain:       retain,
		maxIntervals: int(retain / interval),
		rateDenom:    float64(interval.Nanoseconds()) / float64(rateTimeUnit.Nanoseconds()),
	}
	i.intervals = make([]*IntervalMetrics, 0, i.maxIntervals)
	return i
}

func (i *InmemSink) SetGauge(key []string, val float32) {
	i.SetGaugeWithLabels(key, val, nil)
}

func (i *InmemSink) SetGaugeWithLabels(key []string, val float32, labels []Label) {
	k, name := i.flattenKeyLabels(key, labels)
	intv := i.getInterval()

	intv.Lock()
	defer intv.Unlock()
	intv.Gauges[k] = GaugeValue{Name: name, Value: val, Labels: labels}
}

func (i *InmemSink) EmitKey(key []string, val float32) {
	k := i.flattenKey(key)
	intv := i.getInterval()

	intv.Lock()
	defer intv.Unlock()
	vals := intv.Points[k]
	intv.Points[k] = append(vals, val)
}

func (i *InmemSink) IncrCounter(key []string, val float32) {
	i.IncrCounterWithLabels(key, val, nil)
}

func (i *InmemSink) IncrCounterWithLabels(key []string, val float32, labels []Label) {
	k, name := i.flattenKeyLabels(key, labels)
	intv := i.getInterval()

	intv.Lock()
	defer intv.Unlock()

	agg, ok := intv.Counters[k]
	if !ok {
		agg = SampledValue{
			Name:            name,
			AggregateSample: &AggregateSample{},
			Labels:          labels,
		}
		intv.Counters[k] = agg
	}
	agg.Ingest(float64(val), i.rateDenom)
}

func (i *InmemSink) AddSample(key []string, val float32) {
	i.AddSampleWithLabels(key, val, nil)
}

func (i *InmemSink) AddSampleWithLabels(key []string, val float32, labels []Label) {
	k, name := i.flattenKeyLabels(key, labels)
	intv := i.getInterval()

	intv.Lock()
	defer intv.Unlock()

	agg, ok := intv.Samples[k]
	if !ok {
		agg = SampledValue{
			Name:            name,
			AggregateSample: &AggregateSample{},
			Labels:          labels,
		}
		intv.Samples[k] = agg
	}
	agg.Ingest(float64(val), i.rateDenom)
}

// Data is used to retrieve all the aggregated metrics
// Intervals may be in use, and a read lock should be acquired
func (i *InmemSink) Data() []*IntervalMetrics {
	// Get the current interval, forces creation
	i.getInterval()

	i.intervalLock.RLock()
	defer i.intervalLock.RUnlock()

	intervals := make([]*IntervalMetrics, len(i.intervals))
	copy(intervals, i.intervals)
	return intervals
}

func (i *InmemSink) getExistingInterval(intv time.Time) *IntervalMetrics {
	i.intervalLock.RLock()
	defer i.intervalLock.RUnlock()

	n := len(i.intervals)
	if n > 0 && i.intervals[n-1].Interval == intv {
		return i.intervals[n-1]
	}
	return nil
}

func (i *InmemSink) createInterval(intv time.Time) *IntervalMetrics {
	i.intervalLock.Lock()
	defer i.intervalLock.Unlock()

	// Check for an existing interval
	n := len(i.intervals)
	if n > 0 && i.intervals[n-1].Interval == intv {
		return i.intervals[n-1]
	}

	// Add the current interval
	current := NewIntervalMetrics(intv)
	i.intervals = append(i.intervals, current)
	n++

	// Truncate the intervals if they are too long
	if n >= i.maxIntervals {
		copy(i.intervals[0:], i.intervals[n-i.maxIntervals:])
		i.intervals = i.intervals[:i.maxIntervals]
	}
	return current
}

// getInterval returns the current interval to write to
func (i *InmemSink) getInterval() *IntervalMetrics {
	intv := time.Now().Truncate(i.interval)
	if m := i.getExistingInterval(intv); m != nil {
		return m
	}
	return i.createInterval(intv)
}

// Flattens the key for formatting, removes spaces
func (i *InmemSink) flattenKey(parts []string) string {
	buf := &bytes.Buffer{}
	replacer := strings.NewReplacer(" ", "_")

	if len(parts) > 0 {
		replacer.WriteString(buf, parts[0])
	}
	for _, part := range parts[1:] {
		replacer.WriteString(buf, ".")
		replacer.WriteString(buf, part)
	}

	return buf.String()
}

// Flattens the key for formatting along with its labels, removes spaces
func (i *InmemSink) flattenKeyLabels(parts []string, labels []Label) (string, string) {
	buf := &bytes.Buffer{}
	replacer := strings.NewReplacer(" ", "_")

	if len(parts) > 0 {
		replacer.WriteString(buf, parts[0])
	}
	for _, part := range parts[1:] {
		replacer.WriteString(buf, ".")
		replacer.WriteString(buf, part)
	}

	key := buf.String()

	for _, label := range labels {
		replacer.WriteString(buf, fmt.Sprintf(";%s=%s", label.Name, label.Value))
	}

	return buf.String(), key
}