summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/davecgh/go-spew/spew/common.go
blob: 14f02dc15b7dd70886b25b055fe9db99bc0941ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/*
 * Copyright (c) 2013 Dave Collins <dave@davec.name>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

package spew

import (
	"bytes"
	"fmt"
	"io"
	"reflect"
	"sort"
	"strconv"
)

// Some constants in the form of bytes to avoid string overhead.  This mirrors
// the technique used in the fmt package.
var (
	panicBytes            = []byte("(PANIC=")
	plusBytes             = []byte("+")
	iBytes                = []byte("i")
	trueBytes             = []byte("true")
	falseBytes            = []byte("false")
	interfaceBytes        = []byte("(interface {})")
	commaNewlineBytes     = []byte(",\n")
	newlineBytes          = []byte("\n")
	openBraceBytes        = []byte("{")
	openBraceNewlineBytes = []byte("{\n")
	closeBraceBytes       = []byte("}")
	asteriskBytes         = []byte("*")
	colonBytes            = []byte(":")
	colonSpaceBytes       = []byte(": ")
	openParenBytes        = []byte("(")
	closeParenBytes       = []byte(")")
	spaceBytes            = []byte(" ")
	pointerChainBytes     = []byte("->")
	nilAngleBytes         = []byte("<nil>")
	maxNewlineBytes       = []byte("<max depth reached>\n")
	maxShortBytes         = []byte("<max>")
	circularBytes         = []byte("<already shown>")
	circularShortBytes    = []byte("<shown>")
	invalidAngleBytes     = []byte("<invalid>")
	openBracketBytes      = []byte("[")
	closeBracketBytes     = []byte("]")
	percentBytes          = []byte("%")
	precisionBytes        = []byte(".")
	openAngleBytes        = []byte("<")
	closeAngleBytes       = []byte(">")
	openMapBytes          = []byte("map[")
	closeMapBytes         = []byte("]")
	lenEqualsBytes        = []byte("len=")
	capEqualsBytes        = []byte("cap=")
)

// hexDigits is used to map a decimal value to a hex digit.
var hexDigits = "0123456789abcdef"

// catchPanic handles any panics that might occur during the handleMethods
// calls.
func catchPanic(w io.Writer, v reflect.Value) {
	if err := recover(); err != nil {
		w.Write(panicBytes)
		fmt.Fprintf(w, "%v", err)
		w.Write(closeParenBytes)
	}
}

// handleMethods attempts to call the Error and String methods on the underlying
// type the passed reflect.Value represents and outputes the result to Writer w.
//
// It handles panics in any called methods by catching and displaying the error
// as the formatted value.
func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) {
	// We need an interface to check if the type implements the error or
	// Stringer interface.  However, the reflect package won't give us an
	// interface on certain things like unexported struct fields in order
	// to enforce visibility rules.  We use unsafe, when it's available,
	// to bypass these restrictions since this package does not mutate the
	// values.
	if !v.CanInterface() {
		if UnsafeDisabled {
			return false
		}

		v = unsafeReflectValue(v)
	}

	// Choose whether or not to do error and Stringer interface lookups against
	// the base type or a pointer to the base type depending on settings.
	// Technically calling one of these methods with a pointer receiver can
	// mutate the value, however, types which choose to satisify an error or
	// Stringer interface with a pointer receiver should not be mutating their
	// state inside these interface methods.
	if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() {
		v = unsafeReflectValue(v)
	}
	if v.CanAddr() {
		v = v.Addr()
	}

	// Is it an error or Stringer?
	switch iface := v.Interface().(type) {
	case error:
		defer catchPanic(w, v)
		if cs.ContinueOnMethod {
			w.Write(openParenBytes)
			w.Write([]byte(iface.Error()))
			w.Write(closeParenBytes)
			w.Write(spaceBytes)
			return false
		}

		w.Write([]byte(iface.Error()))
		return true

	case fmt.Stringer:
		defer catchPanic(w, v)
		if cs.ContinueOnMethod {
			w.Write(openParenBytes)
			w.Write([]byte(iface.String()))
			w.Write(closeParenBytes)
			w.Write(spaceBytes)
			return false
		}
		w.Write([]byte(iface.String()))
		return true
	}
	return false
}

// printBool outputs a boolean value as true or false to Writer w.
func printBool(w io.Writer, val bool) {
	if val {
		w.Write(trueBytes)
	} else {
		w.Write(falseBytes)
	}
}

// printInt outputs a signed integer value to Writer w.
func printInt(w io.Writer, val int64, base int) {
	w.Write([]byte(strconv.FormatInt(val, base)))
}

// printUint outputs an unsigned integer value to Writer w.
func printUint(w io.Writer, val uint64, base int) {
	w.Write([]byte(strconv.FormatUint(val, base)))
}

// printFloat outputs a floating point value using the specified precision,
// which is expected to be 32 or 64bit, to Writer w.
func printFloat(w io.Writer, val float64, precision int) {
	w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision)))
}

// printComplex outputs a complex value using the specified float precision
// for the real and imaginary parts to Writer w.
func printComplex(w io.Writer, c complex128, floatPrecision int) {
	r := real(c)
	w.Write(openParenBytes)
	w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision)))
	i := imag(c)
	if i >= 0 {
		w.Write(plusBytes)
	}
	w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision)))
	w.Write(iBytes)
	w.Write(closeParenBytes)
}

// printHexPtr outputs a uintptr formatted as hexidecimal with a leading '0x'
// prefix to Writer w.
func printHexPtr(w io.Writer, p uintptr) {
	// Null pointer.
	num := uint64(p)
	if num == 0 {
		w.Write(nilAngleBytes)
		return
	}

	// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix
	buf := make([]byte, 18)

	// It's simpler to construct the hex string right to left.
	base := uint64(16)
	i := len(buf) - 1
	for num >= base {
		buf[i] = hexDigits[num%base]
		num /= base
		i--
	}
	buf[i] = hexDigits[num]

	// Add '0x' prefix.
	i--
	buf[i] = 'x'
	i--
	buf[i] = '0'

	// Strip unused leading bytes.
	buf = buf[i:]
	w.Write(buf)
}

// valuesSorter implements sort.Interface to allow a slice of reflect.Value
// elements to be sorted.
type valuesSorter struct {
	values  []reflect.Value
	strings []string // either nil or same len and values
	cs      *ConfigState
}

// newValuesSorter initializes a valuesSorter instance, which holds a set of
// surrogate keys on which the data should be sorted.  It uses flags in
// ConfigState to decide if and how to populate those surrogate keys.
func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface {
	vs := &valuesSorter{values: values, cs: cs}
	if canSortSimply(vs.values[0].Kind()) {
		return vs
	}
	if !cs.DisableMethods {
		vs.strings = make([]string, len(values))
		for i := range vs.values {
			b := bytes.Buffer{}
			if !handleMethods(cs, &b, vs.values[i]) {
				vs.strings = nil
				break
			}
			vs.strings[i] = b.String()
		}
	}
	if vs.strings == nil && cs.SpewKeys {
		vs.strings = make([]string, len(values))
		for i := range vs.values {
			vs.strings[i] = Sprintf("%#v", vs.values[i].Interface())
		}
	}
	return vs
}

// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted
// directly, or whether it should be considered for sorting by surrogate keys
// (if the ConfigState allows it).
func canSortSimply(kind reflect.Kind) bool {
	// This switch parallels valueSortLess, except for the default case.
	switch kind {
	case reflect.Bool:
		return true
	case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
		return true
	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
		return true
	case reflect.Float32, reflect.Float64:
		return true
	case reflect.String:
		return true
	case reflect.Uintptr:
		return true
	case reflect.Array:
		return true
	}
	return false
}

// Len returns the number of values in the slice.  It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Len() int {
	return len(s.values)
}

// Swap swaps the values at the passed indices.  It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Swap(i, j int) {
	s.values[i], s.values[j] = s.values[j], s.values[i]
	if s.strings != nil {
		s.strings[i], s.strings[j] = s.strings[j], s.strings[i]
	}
}

// valueSortLess returns whether the first value should sort before the second
// value.  It is used by valueSorter.Less as part of the sort.Interface
// implementation.
func valueSortLess(a, b reflect.Value) bool {
	switch a.Kind() {
	case reflect.Bool:
		return !a.Bool() && b.Bool()
	case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
		return a.Int() < b.Int()
	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
		return a.Uint() < b.Uint()
	case reflect.Float32, reflect.Float64:
		return a.Float() < b.Float()
	case reflect.String:
		return a.String() < b.String()
	case reflect.Uintptr:
		return a.Uint() < b.Uint()
	case reflect.Array:
		// Compare the contents of both arrays.
		l := a.Len()
		for i := 0; i < l; i++ {
			av := a.Index(i)
			bv := b.Index(i)
			if av.Interface() == bv.Interface() {
				continue
			}
			return valueSortLess(av, bv)
		}
	}
	return a.String() < b.String()
}

// Less returns whether the value at index i should sort before the
// value at index j.  It is part of the sort.Interface implementation.
func (s *valuesSorter) Less(i, j int) bool {
	if s.strings == nil {
		return valueSortLess(s.values[i], s.values[j])
	}
	return s.strings[i] < s.strings[j]
}

// sortValues is a sort function that handles both native types and any type that
// can be converted to error or Stringer.  Other inputs are sorted according to
// their Value.String() value to ensure display stability.
func sortValues(values []reflect.Value, cs *ConfigState) {
	if len(values) == 0 {
		return
	}
	sort.Sort(newValuesSorter(values, cs))
}