summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/golang/freetype/raster/raster.go
blob: 7e6cd4e2ba6b191398699db80d4e0a92b090a4c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.

// Package raster provides an anti-aliasing 2-D rasterizer.
//
// It is part of the larger Freetype suite of font-related packages, but the
// raster package is not specific to font rasterization, and can be used
// standalone without any other Freetype package.
//
// Rasterization is done by the same area/coverage accumulation algorithm as
// the Freetype "smooth" module, and the Anti-Grain Geometry library. A
// description of the area/coverage algorithm is at
// http://projects.tuxee.net/cl-vectors/section-the-cl-aa-algorithm
package raster // import "github.com/golang/freetype/raster"

import (
	"strconv"

	"golang.org/x/image/math/fixed"
)

// A cell is part of a linked list (for a given yi co-ordinate) of accumulated
// area/coverage for the pixel at (xi, yi).
type cell struct {
	xi          int
	area, cover int
	next        int
}

type Rasterizer struct {
	// If false, the default behavior is to use the even-odd winding fill
	// rule during Rasterize.
	UseNonZeroWinding bool
	// An offset (in pixels) to the painted spans.
	Dx, Dy int

	// The width of the Rasterizer. The height is implicit in len(cellIndex).
	width int
	// splitScaleN is the scaling factor used to determine how many times
	// to decompose a quadratic or cubic segment into a linear approximation.
	splitScale2, splitScale3 int

	// The current pen position.
	a fixed.Point26_6
	// The current cell and its area/coverage being accumulated.
	xi, yi      int
	area, cover int

	// Saved cells.
	cell []cell
	// Linked list of cells, one per row.
	cellIndex []int
	// Buffers.
	cellBuf      [256]cell
	cellIndexBuf [64]int
	spanBuf      [64]Span
}

// findCell returns the index in r.cell for the cell corresponding to
// (r.xi, r.yi). The cell is created if necessary.
func (r *Rasterizer) findCell() int {
	if r.yi < 0 || r.yi >= len(r.cellIndex) {
		return -1
	}
	xi := r.xi
	if xi < 0 {
		xi = -1
	} else if xi > r.width {
		xi = r.width
	}
	i, prev := r.cellIndex[r.yi], -1
	for i != -1 && r.cell[i].xi <= xi {
		if r.cell[i].xi == xi {
			return i
		}
		i, prev = r.cell[i].next, i
	}
	c := len(r.cell)
	if c == cap(r.cell) {
		buf := make([]cell, c, 4*c)
		copy(buf, r.cell)
		r.cell = buf[0 : c+1]
	} else {
		r.cell = r.cell[0 : c+1]
	}
	r.cell[c] = cell{xi, 0, 0, i}
	if prev == -1 {
		r.cellIndex[r.yi] = c
	} else {
		r.cell[prev].next = c
	}
	return c
}

// saveCell saves any accumulated r.area/r.cover for (r.xi, r.yi).
func (r *Rasterizer) saveCell() {
	if r.area != 0 || r.cover != 0 {
		i := r.findCell()
		if i != -1 {
			r.cell[i].area += r.area
			r.cell[i].cover += r.cover
		}
		r.area = 0
		r.cover = 0
	}
}

// setCell sets the (xi, yi) cell that r is accumulating area/coverage for.
func (r *Rasterizer) setCell(xi, yi int) {
	if r.xi != xi || r.yi != yi {
		r.saveCell()
		r.xi, r.yi = xi, yi
	}
}

// scan accumulates area/coverage for the yi'th scanline, going from
// x0 to x1 in the horizontal direction (in 26.6 fixed point co-ordinates)
// and from y0f to y1f fractional vertical units within that scanline.
func (r *Rasterizer) scan(yi int, x0, y0f, x1, y1f fixed.Int26_6) {
	// Break the 26.6 fixed point X co-ordinates into integral and fractional parts.
	x0i := int(x0) / 64
	x0f := x0 - fixed.Int26_6(64*x0i)
	x1i := int(x1) / 64
	x1f := x1 - fixed.Int26_6(64*x1i)

	// A perfectly horizontal scan.
	if y0f == y1f {
		r.setCell(x1i, yi)
		return
	}
	dx, dy := x1-x0, y1f-y0f
	// A single cell scan.
	if x0i == x1i {
		r.area += int((x0f + x1f) * dy)
		r.cover += int(dy)
		return
	}
	// There are at least two cells. Apart from the first and last cells,
	// all intermediate cells go through the full width of the cell,
	// or 64 units in 26.6 fixed point format.
	var (
		p, q, edge0, edge1 fixed.Int26_6
		xiDelta            int
	)
	if dx > 0 {
		p, q = (64-x0f)*dy, dx
		edge0, edge1, xiDelta = 0, 64, 1
	} else {
		p, q = x0f*dy, -dx
		edge0, edge1, xiDelta = 64, 0, -1
	}
	yDelta, yRem := p/q, p%q
	if yRem < 0 {
		yDelta -= 1
		yRem += q
	}
	// Do the first cell.
	xi, y := x0i, y0f
	r.area += int((x0f + edge1) * yDelta)
	r.cover += int(yDelta)
	xi, y = xi+xiDelta, y+yDelta
	r.setCell(xi, yi)
	if xi != x1i {
		// Do all the intermediate cells.
		p = 64 * (y1f - y + yDelta)
		fullDelta, fullRem := p/q, p%q
		if fullRem < 0 {
			fullDelta -= 1
			fullRem += q
		}
		yRem -= q
		for xi != x1i {
			yDelta = fullDelta
			yRem += fullRem
			if yRem >= 0 {
				yDelta += 1
				yRem -= q
			}
			r.area += int(64 * yDelta)
			r.cover += int(yDelta)
			xi, y = xi+xiDelta, y+yDelta
			r.setCell(xi, yi)
		}
	}
	// Do the last cell.
	yDelta = y1f - y
	r.area += int((edge0 + x1f) * yDelta)
	r.cover += int(yDelta)
}

// Start starts a new curve at the given point.
func (r *Rasterizer) Start(a fixed.Point26_6) {
	r.setCell(int(a.X/64), int(a.Y/64))
	r.a = a
}

// Add1 adds a linear segment to the current curve.
func (r *Rasterizer) Add1(b fixed.Point26_6) {
	x0, y0 := r.a.X, r.a.Y
	x1, y1 := b.X, b.Y
	dx, dy := x1-x0, y1-y0
	// Break the 26.6 fixed point Y co-ordinates into integral and fractional
	// parts.
	y0i := int(y0) / 64
	y0f := y0 - fixed.Int26_6(64*y0i)
	y1i := int(y1) / 64
	y1f := y1 - fixed.Int26_6(64*y1i)

	if y0i == y1i {
		// There is only one scanline.
		r.scan(y0i, x0, y0f, x1, y1f)

	} else if dx == 0 {
		// This is a vertical line segment. We avoid calling r.scan and instead
		// manipulate r.area and r.cover directly.
		var (
			edge0, edge1 fixed.Int26_6
			yiDelta      int
		)
		if dy > 0 {
			edge0, edge1, yiDelta = 0, 64, 1
		} else {
			edge0, edge1, yiDelta = 64, 0, -1
		}
		x0i, yi := int(x0)/64, y0i
		x0fTimes2 := (int(x0) - (64 * x0i)) * 2
		// Do the first pixel.
		dcover := int(edge1 - y0f)
		darea := int(x0fTimes2 * dcover)
		r.area += darea
		r.cover += dcover
		yi += yiDelta
		r.setCell(x0i, yi)
		// Do all the intermediate pixels.
		dcover = int(edge1 - edge0)
		darea = int(x0fTimes2 * dcover)
		for yi != y1i {
			r.area += darea
			r.cover += dcover
			yi += yiDelta
			r.setCell(x0i, yi)
		}
		// Do the last pixel.
		dcover = int(y1f - edge0)
		darea = int(x0fTimes2 * dcover)
		r.area += darea
		r.cover += dcover

	} else {
		// There are at least two scanlines. Apart from the first and last
		// scanlines, all intermediate scanlines go through the full height of
		// the row, or 64 units in 26.6 fixed point format.
		var (
			p, q, edge0, edge1 fixed.Int26_6
			yiDelta            int
		)
		if dy > 0 {
			p, q = (64-y0f)*dx, dy
			edge0, edge1, yiDelta = 0, 64, 1
		} else {
			p, q = y0f*dx, -dy
			edge0, edge1, yiDelta = 64, 0, -1
		}
		xDelta, xRem := p/q, p%q
		if xRem < 0 {
			xDelta -= 1
			xRem += q
		}
		// Do the first scanline.
		x, yi := x0, y0i
		r.scan(yi, x, y0f, x+xDelta, edge1)
		x, yi = x+xDelta, yi+yiDelta
		r.setCell(int(x)/64, yi)
		if yi != y1i {
			// Do all the intermediate scanlines.
			p = 64 * dx
			fullDelta, fullRem := p/q, p%q
			if fullRem < 0 {
				fullDelta -= 1
				fullRem += q
			}
			xRem -= q
			for yi != y1i {
				xDelta = fullDelta
				xRem += fullRem
				if xRem >= 0 {
					xDelta += 1
					xRem -= q
				}
				r.scan(yi, x, edge0, x+xDelta, edge1)
				x, yi = x+xDelta, yi+yiDelta
				r.setCell(int(x)/64, yi)
			}
		}
		// Do the last scanline.
		r.scan(yi, x, edge0, x1, y1f)
	}
	// The next lineTo starts from b.
	r.a = b
}

// Add2 adds a quadratic segment to the current curve.
func (r *Rasterizer) Add2(b, c fixed.Point26_6) {
	// Calculate nSplit (the number of recursive decompositions) based on how
	// 'curvy' it is. Specifically, how much the middle point b deviates from
	// (a+c)/2.
	dev := maxAbs(r.a.X-2*b.X+c.X, r.a.Y-2*b.Y+c.Y) / fixed.Int26_6(r.splitScale2)
	nsplit := 0
	for dev > 0 {
		dev /= 4
		nsplit++
	}
	// dev is 32-bit, and nsplit++ every time we shift off 2 bits, so maxNsplit
	// is 16.
	const maxNsplit = 16
	if nsplit > maxNsplit {
		panic("freetype/raster: Add2 nsplit too large: " + strconv.Itoa(nsplit))
	}
	// Recursively decompose the curve nSplit levels deep.
	var (
		pStack [2*maxNsplit + 3]fixed.Point26_6
		sStack [maxNsplit + 1]int
		i      int
	)
	sStack[0] = nsplit
	pStack[0] = c
	pStack[1] = b
	pStack[2] = r.a
	for i >= 0 {
		s := sStack[i]
		p := pStack[2*i:]
		if s > 0 {
			// Split the quadratic curve p[:3] into an equivalent set of two
			// shorter curves: p[:3] and p[2:5]. The new p[4] is the old p[2],
			// and p[0] is unchanged.
			mx := p[1].X
			p[4].X = p[2].X
			p[3].X = (p[4].X + mx) / 2
			p[1].X = (p[0].X + mx) / 2
			p[2].X = (p[1].X + p[3].X) / 2
			my := p[1].Y
			p[4].Y = p[2].Y
			p[3].Y = (p[4].Y + my) / 2
			p[1].Y = (p[0].Y + my) / 2
			p[2].Y = (p[1].Y + p[3].Y) / 2
			// The two shorter curves have one less split to do.
			sStack[i] = s - 1
			sStack[i+1] = s - 1
			i++
		} else {
			// Replace the level-0 quadratic with a two-linear-piece
			// approximation.
			midx := (p[0].X + 2*p[1].X + p[2].X) / 4
			midy := (p[0].Y + 2*p[1].Y + p[2].Y) / 4
			r.Add1(fixed.Point26_6{midx, midy})
			r.Add1(p[0])
			i--
		}
	}
}

// Add3 adds a cubic segment to the current curve.
func (r *Rasterizer) Add3(b, c, d fixed.Point26_6) {
	// Calculate nSplit (the number of recursive decompositions) based on how
	// 'curvy' it is.
	dev2 := maxAbs(r.a.X-3*(b.X+c.X)+d.X, r.a.Y-3*(b.Y+c.Y)+d.Y) / fixed.Int26_6(r.splitScale2)
	dev3 := maxAbs(r.a.X-2*b.X+d.X, r.a.Y-2*b.Y+d.Y) / fixed.Int26_6(r.splitScale3)
	nsplit := 0
	for dev2 > 0 || dev3 > 0 {
		dev2 /= 8
		dev3 /= 4
		nsplit++
	}
	// devN is 32-bit, and nsplit++ every time we shift off 2 bits, so
	// maxNsplit is 16.
	const maxNsplit = 16
	if nsplit > maxNsplit {
		panic("freetype/raster: Add3 nsplit too large: " + strconv.Itoa(nsplit))
	}
	// Recursively decompose the curve nSplit levels deep.
	var (
		pStack [3*maxNsplit + 4]fixed.Point26_6
		sStack [maxNsplit + 1]int
		i      int
	)
	sStack[0] = nsplit
	pStack[0] = d
	pStack[1] = c
	pStack[2] = b
	pStack[3] = r.a
	for i >= 0 {
		s := sStack[i]
		p := pStack[3*i:]
		if s > 0 {
			// Split the cubic curve p[:4] into an equivalent set of two
			// shorter curves: p[:4] and p[3:7]. The new p[6] is the old p[3],
			// and p[0] is unchanged.
			m01x := (p[0].X + p[1].X) / 2
			m12x := (p[1].X + p[2].X) / 2
			m23x := (p[2].X + p[3].X) / 2
			p[6].X = p[3].X
			p[5].X = m23x
			p[1].X = m01x
			p[2].X = (m01x + m12x) / 2
			p[4].X = (m12x + m23x) / 2
			p[3].X = (p[2].X + p[4].X) / 2
			m01y := (p[0].Y + p[1].Y) / 2
			m12y := (p[1].Y + p[2].Y) / 2
			m23y := (p[2].Y + p[3].Y) / 2
			p[6].Y = p[3].Y
			p[5].Y = m23y
			p[1].Y = m01y
			p[2].Y = (m01y + m12y) / 2
			p[4].Y = (m12y + m23y) / 2
			p[3].Y = (p[2].Y + p[4].Y) / 2
			// The two shorter curves have one less split to do.
			sStack[i] = s - 1
			sStack[i+1] = s - 1
			i++
		} else {
			// Replace the level-0 cubic with a two-linear-piece approximation.
			midx := (p[0].X + 3*(p[1].X+p[2].X) + p[3].X) / 8
			midy := (p[0].Y + 3*(p[1].Y+p[2].Y) + p[3].Y) / 8
			r.Add1(fixed.Point26_6{midx, midy})
			r.Add1(p[0])
			i--
		}
	}
}

// AddPath adds the given Path.
func (r *Rasterizer) AddPath(p Path) {
	for i := 0; i < len(p); {
		switch p[i] {
		case 0:
			r.Start(
				fixed.Point26_6{p[i+1], p[i+2]},
			)
			i += 4
		case 1:
			r.Add1(
				fixed.Point26_6{p[i+1], p[i+2]},
			)
			i += 4
		case 2:
			r.Add2(
				fixed.Point26_6{p[i+1], p[i+2]},
				fixed.Point26_6{p[i+3], p[i+4]},
			)
			i += 6
		case 3:
			r.Add3(
				fixed.Point26_6{p[i+1], p[i+2]},
				fixed.Point26_6{p[i+3], p[i+4]},
				fixed.Point26_6{p[i+5], p[i+6]},
			)
			i += 8
		default:
			panic("freetype/raster: bad path")
		}
	}
}

// AddStroke adds a stroked Path.
func (r *Rasterizer) AddStroke(q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
	Stroke(r, q, width, cr, jr)
}

// areaToAlpha converts an area value to a uint32 alpha value. A completely
// filled pixel corresponds to an area of 64*64*2, and an alpha of 0xffff. The
// conversion of area values greater than this depends on the winding rule:
// even-odd or non-zero.
func (r *Rasterizer) areaToAlpha(area int) uint32 {
	// The C Freetype implementation (version 2.3.12) does "alpha := area>>1"
	// without the +1. Round-to-nearest gives a more symmetric result than
	// round-down. The C implementation also returns 8-bit alpha, not 16-bit
	// alpha.
	a := (area + 1) >> 1
	if a < 0 {
		a = -a
	}
	alpha := uint32(a)
	if r.UseNonZeroWinding {
		if alpha > 0x0fff {
			alpha = 0x0fff
		}
	} else {
		alpha &= 0x1fff
		if alpha > 0x1000 {
			alpha = 0x2000 - alpha
		} else if alpha == 0x1000 {
			alpha = 0x0fff
		}
	}
	// alpha is now in the range [0x0000, 0x0fff]. Convert that 12-bit alpha to
	// 16-bit alpha.
	return alpha<<4 | alpha>>8
}

// Rasterize converts r's accumulated curves into Spans for p. The Spans passed
// to p are non-overlapping, and sorted by Y and then X. They all have non-zero
// width (and 0 <= X0 < X1 <= r.width) and non-zero A, except for the final
// Span, which has Y, X0, X1 and A all equal to zero.
func (r *Rasterizer) Rasterize(p Painter) {
	r.saveCell()
	s := 0
	for yi := 0; yi < len(r.cellIndex); yi++ {
		xi, cover := 0, 0
		for c := r.cellIndex[yi]; c != -1; c = r.cell[c].next {
			if cover != 0 && r.cell[c].xi > xi {
				alpha := r.areaToAlpha(cover * 64 * 2)
				if alpha != 0 {
					xi0, xi1 := xi, r.cell[c].xi
					if xi0 < 0 {
						xi0 = 0
					}
					if xi1 >= r.width {
						xi1 = r.width
					}
					if xi0 < xi1 {
						r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
						s++
					}
				}
			}
			cover += r.cell[c].cover
			alpha := r.areaToAlpha(cover*64*2 - r.cell[c].area)
			xi = r.cell[c].xi + 1
			if alpha != 0 {
				xi0, xi1 := r.cell[c].xi, xi
				if xi0 < 0 {
					xi0 = 0
				}
				if xi1 >= r.width {
					xi1 = r.width
				}
				if xi0 < xi1 {
					r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
					s++
				}
			}
			if s > len(r.spanBuf)-2 {
				p.Paint(r.spanBuf[:s], false)
				s = 0
			}
		}
	}
	p.Paint(r.spanBuf[:s], true)
}

// Clear cancels any previous calls to r.Start or r.AddXxx.
func (r *Rasterizer) Clear() {
	r.a = fixed.Point26_6{}
	r.xi = 0
	r.yi = 0
	r.area = 0
	r.cover = 0
	r.cell = r.cell[:0]
	for i := 0; i < len(r.cellIndex); i++ {
		r.cellIndex[i] = -1
	}
}

// SetBounds sets the maximum width and height of the rasterized image and
// calls Clear. The width and height are in pixels, not fixed.Int26_6 units.
func (r *Rasterizer) SetBounds(width, height int) {
	if width < 0 {
		width = 0
	}
	if height < 0 {
		height = 0
	}
	// Use the same ssN heuristic as the C Freetype (version 2.4.0)
	// implementation.
	ss2, ss3 := 32, 16
	if width > 24 || height > 24 {
		ss2, ss3 = 2*ss2, 2*ss3
		if width > 120 || height > 120 {
			ss2, ss3 = 2*ss2, 2*ss3
		}
	}
	r.width = width
	r.splitScale2 = ss2
	r.splitScale3 = ss3
	r.cell = r.cellBuf[:0]
	if height > len(r.cellIndexBuf) {
		r.cellIndex = make([]int, height)
	} else {
		r.cellIndex = r.cellIndexBuf[:height]
	}
	r.Clear()
}

// NewRasterizer creates a new Rasterizer with the given bounds.
func NewRasterizer(width, height int) *Rasterizer {
	r := new(Rasterizer)
	r.SetBounds(width, height)
	return r
}