summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/hashicorp/go-immutable-radix/node.go
blob: 7a065e7a09eea98e98e814f566a6b41ba4b84f21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
package iradix

import (
	"bytes"
	"sort"
)

// WalkFn is used when walking the tree. Takes a
// key and value, returning if iteration should
// be terminated.
type WalkFn func(k []byte, v interface{}) bool

// leafNode is used to represent a value
type leafNode struct {
	mutateCh chan struct{}
	key      []byte
	val      interface{}
}

// edge is used to represent an edge node
type edge struct {
	label byte
	node  *Node
}

// Node is an immutable node in the radix tree
type Node struct {
	// mutateCh is closed if this node is modified
	mutateCh chan struct{}

	// leaf is used to store possible leaf
	leaf *leafNode

	// prefix is the common prefix we ignore
	prefix []byte

	// Edges should be stored in-order for iteration.
	// We avoid a fully materialized slice to save memory,
	// since in most cases we expect to be sparse
	edges edges
}

func (n *Node) isLeaf() bool {
	return n.leaf != nil
}

func (n *Node) addEdge(e edge) {
	num := len(n.edges)
	idx := sort.Search(num, func(i int) bool {
		return n.edges[i].label >= e.label
	})
	n.edges = append(n.edges, e)
	if idx != num {
		copy(n.edges[idx+1:], n.edges[idx:num])
		n.edges[idx] = e
	}
}

func (n *Node) replaceEdge(e edge) {
	num := len(n.edges)
	idx := sort.Search(num, func(i int) bool {
		return n.edges[i].label >= e.label
	})
	if idx < num && n.edges[idx].label == e.label {
		n.edges[idx].node = e.node
		return
	}
	panic("replacing missing edge")
}

func (n *Node) getEdge(label byte) (int, *Node) {
	num := len(n.edges)
	idx := sort.Search(num, func(i int) bool {
		return n.edges[i].label >= label
	})
	if idx < num && n.edges[idx].label == label {
		return idx, n.edges[idx].node
	}
	return -1, nil
}

func (n *Node) delEdge(label byte) {
	num := len(n.edges)
	idx := sort.Search(num, func(i int) bool {
		return n.edges[i].label >= label
	})
	if idx < num && n.edges[idx].label == label {
		copy(n.edges[idx:], n.edges[idx+1:])
		n.edges[len(n.edges)-1] = edge{}
		n.edges = n.edges[:len(n.edges)-1]
	}
}

func (n *Node) GetWatch(k []byte) (<-chan struct{}, interface{}, bool) {
	search := k
	watch := n.mutateCh
	for {
		// Check for key exhaustion
		if len(search) == 0 {
			if n.isLeaf() {
				return n.leaf.mutateCh, n.leaf.val, true
			}
			break
		}

		// Look for an edge
		_, n = n.getEdge(search[0])
		if n == nil {
			break
		}

		// Update to the finest granularity as the search makes progress
		watch = n.mutateCh

		// Consume the search prefix
		if bytes.HasPrefix(search, n.prefix) {
			search = search[len(n.prefix):]
		} else {
			break
		}
	}
	return watch, nil, false
}

func (n *Node) Get(k []byte) (interface{}, bool) {
	_, val, ok := n.GetWatch(k)
	return val, ok
}

// LongestPrefix is like Get, but instead of an
// exact match, it will return the longest prefix match.
func (n *Node) LongestPrefix(k []byte) ([]byte, interface{}, bool) {
	var last *leafNode
	search := k
	for {
		// Look for a leaf node
		if n.isLeaf() {
			last = n.leaf
		}

		// Check for key exhaution
		if len(search) == 0 {
			break
		}

		// Look for an edge
		_, n = n.getEdge(search[0])
		if n == nil {
			break
		}

		// Consume the search prefix
		if bytes.HasPrefix(search, n.prefix) {
			search = search[len(n.prefix):]
		} else {
			break
		}
	}
	if last != nil {
		return last.key, last.val, true
	}
	return nil, nil, false
}

// Minimum is used to return the minimum value in the tree
func (n *Node) Minimum() ([]byte, interface{}, bool) {
	for {
		if n.isLeaf() {
			return n.leaf.key, n.leaf.val, true
		}
		if len(n.edges) > 0 {
			n = n.edges[0].node
		} else {
			break
		}
	}
	return nil, nil, false
}

// Maximum is used to return the maximum value in the tree
func (n *Node) Maximum() ([]byte, interface{}, bool) {
	for {
		if num := len(n.edges); num > 0 {
			n = n.edges[num-1].node
			continue
		}
		if n.isLeaf() {
			return n.leaf.key, n.leaf.val, true
		} else {
			break
		}
	}
	return nil, nil, false
}

// Iterator is used to return an iterator at
// the given node to walk the tree
func (n *Node) Iterator() *Iterator {
	return &Iterator{node: n}
}

// rawIterator is used to return a raw iterator at the given node to walk the
// tree.
func (n *Node) rawIterator() *rawIterator {
	iter := &rawIterator{node: n}
	iter.Next()
	return iter
}

// Walk is used to walk the tree
func (n *Node) Walk(fn WalkFn) {
	recursiveWalk(n, fn)
}

// WalkPrefix is used to walk the tree under a prefix
func (n *Node) WalkPrefix(prefix []byte, fn WalkFn) {
	search := prefix
	for {
		// Check for key exhaution
		if len(search) == 0 {
			recursiveWalk(n, fn)
			return
		}

		// Look for an edge
		_, n = n.getEdge(search[0])
		if n == nil {
			break
		}

		// Consume the search prefix
		if bytes.HasPrefix(search, n.prefix) {
			search = search[len(n.prefix):]

		} else if bytes.HasPrefix(n.prefix, search) {
			// Child may be under our search prefix
			recursiveWalk(n, fn)
			return
		} else {
			break
		}
	}
}

// WalkPath is used to walk the tree, but only visiting nodes
// from the root down to a given leaf. Where WalkPrefix walks
// all the entries *under* the given prefix, this walks the
// entries *above* the given prefix.
func (n *Node) WalkPath(path []byte, fn WalkFn) {
	search := path
	for {
		// Visit the leaf values if any
		if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
			return
		}

		// Check for key exhaution
		if len(search) == 0 {
			return
		}

		// Look for an edge
		_, n = n.getEdge(search[0])
		if n == nil {
			return
		}

		// Consume the search prefix
		if bytes.HasPrefix(search, n.prefix) {
			search = search[len(n.prefix):]
		} else {
			break
		}
	}
}

// recursiveWalk is used to do a pre-order walk of a node
// recursively. Returns true if the walk should be aborted
func recursiveWalk(n *Node, fn WalkFn) bool {
	// Visit the leaf values if any
	if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
		return true
	}

	// Recurse on the children
	for _, e := range n.edges {
		if recursiveWalk(e.node, fn) {
			return true
		}
	}
	return false
}