summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/miekg/dns/dnssec_keyscan.go
blob: e2d9d8f924f345b55754e37a3b295b75714f719f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
package dns

import (
	"bytes"
	"crypto"
	"crypto/dsa"
	"crypto/ecdsa"
	"crypto/rsa"
	"io"
	"math/big"
	"strconv"
	"strings"

	"golang.org/x/crypto/ed25519"
)

// NewPrivateKey returns a PrivateKey by parsing the string s.
// s should be in the same form of the BIND private key files.
func (k *DNSKEY) NewPrivateKey(s string) (crypto.PrivateKey, error) {
	if s == "" || s[len(s)-1] != '\n' { // We need a closing newline
		return k.ReadPrivateKey(strings.NewReader(s+"\n"), "")
	}
	return k.ReadPrivateKey(strings.NewReader(s), "")
}

// ReadPrivateKey reads a private key from the io.Reader q. The string file is
// only used in error reporting.
// The public key must be known, because some cryptographic algorithms embed
// the public inside the privatekey.
func (k *DNSKEY) ReadPrivateKey(q io.Reader, file string) (crypto.PrivateKey, error) {
	m, err := parseKey(q, file)
	if m == nil {
		return nil, err
	}
	if _, ok := m["private-key-format"]; !ok {
		return nil, ErrPrivKey
	}
	if m["private-key-format"] != "v1.2" && m["private-key-format"] != "v1.3" {
		return nil, ErrPrivKey
	}
	// TODO(mg): check if the pubkey matches the private key
	algo, err := strconv.ParseUint(strings.SplitN(m["algorithm"], " ", 2)[0], 10, 8)
	if err != nil {
		return nil, ErrPrivKey
	}
	switch uint8(algo) {
	case DSA:
		priv, err := readPrivateKeyDSA(m)
		if err != nil {
			return nil, err
		}
		pub := k.publicKeyDSA()
		if pub == nil {
			return nil, ErrKey
		}
		priv.PublicKey = *pub
		return priv, nil
	case RSAMD5:
		fallthrough
	case RSASHA1:
		fallthrough
	case RSASHA1NSEC3SHA1:
		fallthrough
	case RSASHA256:
		fallthrough
	case RSASHA512:
		priv, err := readPrivateKeyRSA(m)
		if err != nil {
			return nil, err
		}
		pub := k.publicKeyRSA()
		if pub == nil {
			return nil, ErrKey
		}
		priv.PublicKey = *pub
		return priv, nil
	case ECCGOST:
		return nil, ErrPrivKey
	case ECDSAP256SHA256:
		fallthrough
	case ECDSAP384SHA384:
		priv, err := readPrivateKeyECDSA(m)
		if err != nil {
			return nil, err
		}
		pub := k.publicKeyECDSA()
		if pub == nil {
			return nil, ErrKey
		}
		priv.PublicKey = *pub
		return priv, nil
	case ED25519:
		return readPrivateKeyED25519(m)
	default:
		return nil, ErrPrivKey
	}
}

// Read a private key (file) string and create a public key. Return the private key.
func readPrivateKeyRSA(m map[string]string) (*rsa.PrivateKey, error) {
	p := new(rsa.PrivateKey)
	p.Primes = []*big.Int{nil, nil}
	for k, v := range m {
		switch k {
		case "modulus", "publicexponent", "privateexponent", "prime1", "prime2":
			v1, err := fromBase64([]byte(v))
			if err != nil {
				return nil, err
			}
			switch k {
			case "modulus":
				p.PublicKey.N = big.NewInt(0)
				p.PublicKey.N.SetBytes(v1)
			case "publicexponent":
				i := big.NewInt(0)
				i.SetBytes(v1)
				p.PublicKey.E = int(i.Int64()) // int64 should be large enough
			case "privateexponent":
				p.D = big.NewInt(0)
				p.D.SetBytes(v1)
			case "prime1":
				p.Primes[0] = big.NewInt(0)
				p.Primes[0].SetBytes(v1)
			case "prime2":
				p.Primes[1] = big.NewInt(0)
				p.Primes[1].SetBytes(v1)
			}
		case "exponent1", "exponent2", "coefficient":
			// not used in Go (yet)
		case "created", "publish", "activate":
			// not used in Go (yet)
		}
	}
	return p, nil
}

func readPrivateKeyDSA(m map[string]string) (*dsa.PrivateKey, error) {
	p := new(dsa.PrivateKey)
	p.X = big.NewInt(0)
	for k, v := range m {
		switch k {
		case "private_value(x)":
			v1, err := fromBase64([]byte(v))
			if err != nil {
				return nil, err
			}
			p.X.SetBytes(v1)
		case "created", "publish", "activate":
			/* not used in Go (yet) */
		}
	}
	return p, nil
}

func readPrivateKeyECDSA(m map[string]string) (*ecdsa.PrivateKey, error) {
	p := new(ecdsa.PrivateKey)
	p.D = big.NewInt(0)
	// TODO: validate that the required flags are present
	for k, v := range m {
		switch k {
		case "privatekey":
			v1, err := fromBase64([]byte(v))
			if err != nil {
				return nil, err
			}
			p.D.SetBytes(v1)
		case "created", "publish", "activate":
			/* not used in Go (yet) */
		}
	}
	return p, nil
}

func readPrivateKeyED25519(m map[string]string) (ed25519.PrivateKey, error) {
	var p ed25519.PrivateKey
	// TODO: validate that the required flags are present
	for k, v := range m {
		switch k {
		case "privatekey":
			p1, err := fromBase64([]byte(v))
			if err != nil {
				return nil, err
			}
			if len(p1) != 32 {
				return nil, ErrPrivKey
			}
			// RFC 8080 and Golang's x/crypto/ed25519 differ as to how the
			// private keys are represented. RFC 8080 specifies that private
			// keys be stored solely as the seed value (p1 above) while the
			// ed25519 package represents them as the seed value concatenated
			// to the public key, which is derived from the seed value.
			//
			// ed25519.GenerateKey reads exactly 32 bytes from the passed in
			// io.Reader and uses them as the seed. It also derives the
			// public key and produces a compatible private key.
			_, p, err = ed25519.GenerateKey(bytes.NewReader(p1))
			if err != nil {
				return nil, err
			}
		case "created", "publish", "activate":
			/* not used in Go (yet) */
		}
	}
	return p, nil
}

// parseKey reads a private key from r. It returns a map[string]string,
// with the key-value pairs, or an error when the file is not correct.
func parseKey(r io.Reader, file string) (map[string]string, error) {
	s, cancel := scanInit(r)
	m := make(map[string]string)
	c := make(chan lex)
	k := ""
	defer func() {
		cancel()
		// zlexer can send up to two tokens, the next one and possibly 1 remainders.
		// Do a non-blocking read.
		_, ok := <-c
		_, ok = <-c
		if !ok {
			// too bad
		}
	}()
	// Start the lexer
	go klexer(s, c)
	for l := range c {
		// It should alternate
		switch l.value {
		case zKey:
			k = l.token
		case zValue:
			if k == "" {
				return nil, &ParseError{file, "no private key seen", l}
			}
			//println("Setting", strings.ToLower(k), "to", l.token, "b")
			m[strings.ToLower(k)] = l.token
			k = ""
		}
	}
	return m, nil
}

// klexer scans the sourcefile and returns tokens on the channel c.
func klexer(s *scan, c chan lex) {
	var l lex
	str := "" // Hold the current read text
	commt := false
	key := true
	x, err := s.tokenText()
	defer close(c)
	for err == nil {
		l.column = s.position.Column
		l.line = s.position.Line
		switch x {
		case ':':
			if commt {
				break
			}
			l.token = str
			if key {
				l.value = zKey
				c <- l
				// Next token is a space, eat it
				s.tokenText()
				key = false
				str = ""
			} else {
				l.value = zValue
			}
		case ';':
			commt = true
		case '\n':
			if commt {
				// Reset a comment
				commt = false
			}
			l.value = zValue
			l.token = str
			c <- l
			str = ""
			commt = false
			key = true
		default:
			if commt {
				break
			}
			str += string(x)
		}
		x, err = s.tokenText()
	}
	if len(str) > 0 {
		// Send remainder
		l.token = str
		l.value = zValue
		c <- l
	}
}