summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/crypto/pbkdf2/pbkdf2.go
blob: 593f6530084f246495fc42f2ce6d59a2bccb4c17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

/*
Package pbkdf2 implements the key derivation function PBKDF2 as defined in RFC
2898 / PKCS #5 v2.0.

A key derivation function is useful when encrypting data based on a password
or any other not-fully-random data. It uses a pseudorandom function to derive
a secure encryption key based on the password.

While v2.0 of the standard defines only one pseudorandom function to use,
HMAC-SHA1, the drafted v2.1 specification allows use of all five FIPS Approved
Hash Functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for HMAC. To
choose, you can pass the `New` functions from the different SHA packages to
pbkdf2.Key.
*/
package pbkdf2 // import "golang.org/x/crypto/pbkdf2"

import (
	"crypto/hmac"
	"hash"
)

// Key derives a key from the password, salt and iteration count, returning a
// []byte of length keylen that can be used as cryptographic key. The key is
// derived based on the method described as PBKDF2 with the HMAC variant using
// the supplied hash function.
//
// For example, to use a HMAC-SHA-1 based PBKDF2 key derivation function, you
// can get a derived key for e.g. AES-256 (which needs a 32-byte key) by
// doing:
//
// 	dk := pbkdf2.Key([]byte("some password"), salt, 4096, 32, sha1.New)
//
// Remember to get a good random salt. At least 8 bytes is recommended by the
// RFC.
//
// Using a higher iteration count will increase the cost of an exhaustive
// search but will also make derivation proportionally slower.
func Key(password, salt []byte, iter, keyLen int, h func() hash.Hash) []byte {
	prf := hmac.New(h, password)
	hashLen := prf.Size()
	numBlocks := (keyLen + hashLen - 1) / hashLen

	var buf [4]byte
	dk := make([]byte, 0, numBlocks*hashLen)
	U := make([]byte, hashLen)
	for block := 1; block <= numBlocks; block++ {
		// N.B.: || means concatenation, ^ means XOR
		// for each block T_i = U_1 ^ U_2 ^ ... ^ U_iter
		// U_1 = PRF(password, salt || uint(i))
		prf.Reset()
		prf.Write(salt)
		buf[0] = byte(block >> 24)
		buf[1] = byte(block >> 16)
		buf[2] = byte(block >> 8)
		buf[3] = byte(block)
		prf.Write(buf[:4])
		dk = prf.Sum(dk)
		T := dk[len(dk)-hashLen:]
		copy(U, T)

		// U_n = PRF(password, U_(n-1))
		for n := 2; n <= iter; n++ {
			prf.Reset()
			prf.Write(U)
			U = U[:0]
			U = prf.Sum(U)
			for x := range U {
				T[x] ^= U[x]
			}
		}
	}
	return dk[:keyLen]
}