summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/image/vector/raster_floating.go
blob: d03936a1e8fa739d49e20ee856d7f6a018d68fb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package vector

// This file contains a floating point math implementation of the vector
// graphics rasterizer.

import (
	"math"

	"golang.org/x/image/math/f32"
)

func floatingMax(x, y float32) float32 {
	if x > y {
		return x
	}
	return y
}

func floatingMin(x, y float32) float32 {
	if x < y {
		return x
	}
	return y
}

func floatingFloor(x float32) int32 { return int32(math.Floor(float64(x))) }
func floatingCeil(x float32) int32  { return int32(math.Ceil(float64(x))) }

func (z *Rasterizer) floatingLineTo(b f32.Vec2) {
	a := z.pen
	z.pen = b
	dir := float32(1)
	if a[1] > b[1] {
		dir, a, b = -1, b, a
	}
	// Horizontal line segments yield no change in coverage. Almost horizontal
	// segments would yield some change, in ideal math, but the computation
	// further below, involving 1 / (b[1] - a[1]), is unstable in floating
	// point math, so we treat the segment as if it was perfectly horizontal.
	if b[1]-a[1] <= 0.000001 {
		return
	}
	dxdy := (b[0] - a[0]) / (b[1] - a[1])

	x := a[0]
	y := floatingFloor(a[1])
	yMax := floatingCeil(b[1])
	if yMax > int32(z.size.Y) {
		yMax = int32(z.size.Y)
	}
	width := int32(z.size.X)

	for ; y < yMax; y++ {
		dy := floatingMin(float32(y+1), b[1]) - floatingMax(float32(y), a[1])
		xNext := x + dy*dxdy
		if y < 0 {
			x = xNext
			continue
		}
		buf := z.area[y*width:]
		d := dy * dir
		x0, x1 := x, xNext
		if x > xNext {
			x0, x1 = x1, x0
		}
		x0i := floatingFloor(x0)
		x0Floor := float32(x0i)
		x1i := floatingCeil(x1)
		x1Ceil := float32(x1i)

		if x1i <= x0i+1 {
			xmf := 0.5*(x+xNext) - x0Floor
			if i := clamp(x0i+0, width); i < uint(len(buf)) {
				buf[i] += d - d*xmf
			}
			if i := clamp(x0i+1, width); i < uint(len(buf)) {
				buf[i] += d * xmf
			}
		} else {
			s := 1 / (x1 - x0)
			x0f := x0 - x0Floor
			oneMinusX0f := 1 - x0f
			a0 := 0.5 * s * oneMinusX0f * oneMinusX0f
			x1f := x1 - x1Ceil + 1
			am := 0.5 * s * x1f * x1f

			if i := clamp(x0i, width); i < uint(len(buf)) {
				buf[i] += d * a0
			}

			if x1i == x0i+2 {
				if i := clamp(x0i+1, width); i < uint(len(buf)) {
					buf[i] += d * (1 - a0 - am)
				}
			} else {
				a1 := s * (1.5 - x0f)
				if i := clamp(x0i+1, width); i < uint(len(buf)) {
					buf[i] += d * (a1 - a0)
				}
				dTimesS := d * s
				for xi := x0i + 2; xi < x1i-1; xi++ {
					if i := clamp(xi, width); i < uint(len(buf)) {
						buf[i] += dTimesS
					}
				}
				a2 := a1 + s*float32(x1i-x0i-3)
				if i := clamp(x1i-1, width); i < uint(len(buf)) {
					buf[i] += d * (1 - a2 - am)
				}
			}

			if i := clamp(x1i, width); i < uint(len(buf)) {
				buf[i] += d * am
			}
		}

		x = xNext
	}
}

func floatingAccumulate(dst []uint8, src []float32) {
	// almost256 scales a floating point value in the range [0, 1] to a uint8
	// value in the range [0x00, 0xff].
	//
	// 255 is too small. Floating point math accumulates rounding errors, so a
	// fully covered src value that would in ideal math be float32(1) might be
	// float32(1-ε), and uint8(255 * (1-ε)) would be 0xfe instead of 0xff. The
	// uint8 conversion rounds to zero, not to nearest.
	//
	// 256 is too big. If we multiplied by 256, below, then a fully covered src
	// value of float32(1) would translate to uint8(256 * 1), which can be 0x00
	// instead of the maximal value 0xff.
	//
	// math.Float32bits(almost256) is 0x437fffff.
	const almost256 = 255.99998

	acc := float32(0)
	for i, v := range src {
		acc += v
		a := acc
		if a < 0 {
			a = -a
		}
		if a > 1 {
			a = 1
		}
		dst[i] = uint8(almost256 * a)
	}
}