summaryrefslogtreecommitdiffstats
path: root/pym/portage/util/digraph.py
blob: f3ae658c94613aba5dda95b8b2c698e687a26068 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# Copyright 2010-2011 Gentoo Foundation
# Distributed under the terms of the GNU General Public License v2

__all__ = ['digraph']

from collections import deque
import sys

from portage import _unicode_decode
from portage.util import writemsg

class digraph(object):
	"""
	A directed graph object.
	"""

	def __init__(self):
		"""Create an empty digraph"""
		
		# { node : ( { child : priority } , { parent : priority } ) }
		self.nodes = {}
		self.order = []

	def add(self, node, parent, priority=0):
		"""Adds the specified node with the specified parent.
		
		If the dep is a soft-dep and the node already has a hard
		relationship to the parent, the relationship is left as hard."""
		
		if node not in self.nodes:
			self.nodes[node] = ({}, {}, node)
			self.order.append(node)
		
		if not parent:
			return
		
		if parent not in self.nodes:
			self.nodes[parent] = ({}, {}, parent)
			self.order.append(parent)

		priorities = self.nodes[node][1].get(parent)
		if priorities is None:
			priorities = []
			self.nodes[node][1][parent] = priorities
			self.nodes[parent][0][node] = priorities
		priorities.append(priority)
		priorities.sort()

	def remove(self, node):
		"""Removes the specified node from the digraph, also removing
		and ties to other nodes in the digraph. Raises KeyError if the
		node doesn't exist."""
		
		if node not in self.nodes:
			raise KeyError(node)
		
		for parent in self.nodes[node][1]:
			del self.nodes[parent][0][node]
		for child in self.nodes[node][0]:
			del self.nodes[child][1][node]
		
		del self.nodes[node]
		self.order.remove(node)

	def difference_update(self, t):
		"""
		Remove all given nodes from node_set. This is more efficient
		than multiple calls to the remove() method.
		"""
		if isinstance(t, (list, tuple)) or \
			not hasattr(t, "__contains__"):
			t = frozenset(t)
		order = []
		for node in self.order:
			if node not in t:
				order.append(node)
				continue
			for parent in self.nodes[node][1]:
				del self.nodes[parent][0][node]
			for child in self.nodes[node][0]:
				del self.nodes[child][1][node]
			del self.nodes[node]
		self.order = order

	def remove_edge(self, child, parent):
		"""
		Remove edge in the direction from child to parent. Note that it is
		possible for a remaining edge to exist in the opposite direction.
		Any endpoint vertices that become isolated will remain in the graph.
		"""

		# Nothing should be modified when a KeyError is raised.
		for k in parent, child:
			if k not in self.nodes:
				raise KeyError(k)

		# Make sure the edge exists.
		if child not in self.nodes[parent][0]:
			raise KeyError(child)
		if parent not in self.nodes[child][1]:
			raise KeyError(parent)

		# Remove the edge.
		del self.nodes[child][1][parent]
		del self.nodes[parent][0][child]

	def __iter__(self):
		return iter(self.order)

	def contains(self, node):
		"""Checks if the digraph contains mynode"""
		return node in self.nodes

	def get(self, key, default=None):
		node_data = self.nodes.get(key, self)
		if node_data is self:
			return default
		return node_data[2]

	def all_nodes(self):
		"""Return a list of all nodes in the graph"""
		return self.order[:]

	def child_nodes(self, node, ignore_priority=None):
		"""Return all children of the specified node"""
		if ignore_priority is None:
			return list(self.nodes[node][0])
		children = []
		if hasattr(ignore_priority, '__call__'):
			for child, priorities in self.nodes[node][0].items():
				for priority in priorities:
					if not ignore_priority(priority):
						children.append(child)
						break
		else:
			for child, priorities in self.nodes[node][0].items():
				if ignore_priority < priorities[-1]:
					children.append(child)
		return children

	def parent_nodes(self, node, ignore_priority=None):
		"""Return all parents of the specified node"""
		if ignore_priority is None:
			return list(self.nodes[node][1])
		parents = []
		if hasattr(ignore_priority, '__call__'):
			for parent, priorities in self.nodes[node][1].items():
				for priority in priorities:
					if not ignore_priority(priority):
						parents.append(parent)
						break
		else:
			for parent, priorities in self.nodes[node][1].items():
				if ignore_priority < priorities[-1]:
					parents.append(parent)
		return parents

	def leaf_nodes(self, ignore_priority=None):
		"""Return all nodes that have no children
		
		If ignore_soft_deps is True, soft deps are not counted as
		children in calculations."""
		
		leaf_nodes = []
		if ignore_priority is None:
			for node in self.order:
				if not self.nodes[node][0]:
					leaf_nodes.append(node)
		elif hasattr(ignore_priority, '__call__'):
			for node in self.order:
				is_leaf_node = True
				for child, priorities in self.nodes[node][0].items():
					for priority in priorities:
						if not ignore_priority(priority):
							is_leaf_node = False
							break
					if not is_leaf_node:
						break
				if is_leaf_node:
					leaf_nodes.append(node)
		else:
			for node in self.order:
				is_leaf_node = True
				for child, priorities in self.nodes[node][0].items():
					if ignore_priority < priorities[-1]:
						is_leaf_node = False
						break
				if is_leaf_node:
					leaf_nodes.append(node)
		return leaf_nodes

	def root_nodes(self, ignore_priority=None):
		"""Return all nodes that have no parents.
		
		If ignore_soft_deps is True, soft deps are not counted as
		parents in calculations."""
		
		root_nodes = []
		if ignore_priority is None:
			for node in self.order:
				if not self.nodes[node][1]:
					root_nodes.append(node)
		elif hasattr(ignore_priority, '__call__'):
			for node in self.order:
				is_root_node = True
				for parent, priorities in self.nodes[node][1].items():
					for priority in priorities:
						if not ignore_priority(priority):
							is_root_node = False
							break
					if not is_root_node:
						break
				if is_root_node:
					root_nodes.append(node)
		else:
			for node in self.order:
				is_root_node = True
				for parent, priorities in self.nodes[node][1].items():
					if ignore_priority < priorities[-1]:
						is_root_node = False
						break
				if is_root_node:
					root_nodes.append(node)
		return root_nodes

	def __bool__(self):
		return bool(self.nodes)

	def is_empty(self):
		"""Checks if the digraph is empty"""
		return len(self.nodes) == 0

	def clone(self):
		clone = digraph()
		clone.nodes = {}
		memo = {}
		for children, parents, node in self.nodes.values():
			children_clone = {}
			for child, priorities in children.items():
				priorities_clone = memo.get(id(priorities))
				if priorities_clone is None:
					priorities_clone = priorities[:]
					memo[id(priorities)] = priorities_clone
				children_clone[child] = priorities_clone
			parents_clone = {}
			for parent, priorities in parents.items():
				priorities_clone = memo.get(id(priorities))
				if priorities_clone is None:
					priorities_clone = priorities[:]
					memo[id(priorities)] = priorities_clone
				parents_clone[parent] = priorities_clone
			clone.nodes[node] = (children_clone, parents_clone, node)
		clone.order = self.order[:]
		return clone

	def delnode(self, node):
		try:
			self.remove(node)
		except KeyError:
			pass

	def firstzero(self):
		leaf_nodes = self.leaf_nodes()
		if leaf_nodes:
			return leaf_nodes[0]
		return None

	def hasallzeros(self, ignore_priority=None):
		return len(self.leaf_nodes(ignore_priority=ignore_priority)) == \
			len(self.order)

	def debug_print(self):
		def output(s):
			writemsg(s, noiselevel=-1)
		# Use _unicode_decode() to force unicode format
		# strings for python-2.x safety, ensuring that
		# node.__unicode__() is used when necessary.
		for node in self.nodes:
			output(_unicode_decode("%s ") % (node,))
			if self.nodes[node][0]:
				output("depends on\n")
			else:
				output("(no children)\n")
			for child, priorities in self.nodes[node][0].items():
				output(_unicode_decode("  %s (%s)\n") % \
					(child, priorities[-1],))

	def bfs(self, start, ignore_priority=None):
		if start not in self:
			raise KeyError(start)

		queue, enqueued = deque([(None, start)]), set([start])
		while queue:
			parent, n = queue.popleft()
			yield parent, n
			new = set(self.child_nodes(n, ignore_priority)) - enqueued
			enqueued |= new
			queue.extend([(n, child) for child in new])

	def shortest_path(self, start, end, ignore_priority=None):
		if start not in self:
			raise KeyError(start)
		elif end not in self:
			raise KeyError(end)

		paths = {None: []}
		for parent, child in self.bfs(start, ignore_priority):
			paths[child] = paths[parent] + [child]
			if child == end:
				return paths[child]
		return None

	def get_cycles(self, ignore_priority=None, max_length=None):
		"""
		Returns all cycles that have at most length 'max_length'.
		If 'max_length' is 'None', all cycles are returned.
		"""
		all_cycles = []
		for node in self.nodes:
			# If we have multiple paths of the same length, we have to
			# return them all, so that we always get the same results
			# even with PYTHONHASHSEED="random" enabled.
			shortest_path = None
			candidates = []
			for child in self.child_nodes(node, ignore_priority):
				path = self.shortest_path(child, node, ignore_priority)
				if path is None:
					continue
				if not shortest_path or len(shortest_path) >= len(path):
					shortest_path = path
					candidates.append(path)
			if shortest_path and \
				(not max_length or len(shortest_path) <= max_length):
				for path in candidates:
					if len(path) == len(shortest_path):
						all_cycles.append(path)
		return all_cycles

	# Backward compatibility
	addnode = add
	allnodes = all_nodes
	allzeros = leaf_nodes
	hasnode = contains
	__contains__ = contains
	empty = is_empty
	copy = clone

	if sys.hexversion < 0x3000000:
		__nonzero__ = __bool__