summaryrefslogtreecommitdiffstats
path: root/Godeps/_workspace/src/github.com/golang/freetype/raster
diff options
context:
space:
mode:
authorChristopher Speller <crspeller@gmail.com>2016-05-12 15:08:58 -0400
committerChristopher Speller <crspeller@gmail.com>2016-05-12 16:37:29 -0400
commit84d2482ddbff9564c9ad75b2d30af66e3ddfd44d (patch)
tree8bfa567d2b6381f4a996ada2deff8a16aa85a3ac /Godeps/_workspace/src/github.com/golang/freetype/raster
parentd1efb66ad7b017f0fbfe6f0c20843b30f396e504 (diff)
downloadchat-84d2482ddbff9564c9ad75b2d30af66e3ddfd44d.tar.gz
chat-84d2482ddbff9564c9ad75b2d30af66e3ddfd44d.tar.bz2
chat-84d2482ddbff9564c9ad75b2d30af66e3ddfd44d.zip
Updating go depencancies. Switching to go1.6 vendoring (#2949)
Diffstat (limited to 'Godeps/_workspace/src/github.com/golang/freetype/raster')
-rw-r--r--Godeps/_workspace/src/github.com/golang/freetype/raster/geom.go245
-rw-r--r--Godeps/_workspace/src/github.com/golang/freetype/raster/paint.go287
-rw-r--r--Godeps/_workspace/src/github.com/golang/freetype/raster/raster.go601
-rw-r--r--Godeps/_workspace/src/github.com/golang/freetype/raster/stroke.go483
4 files changed, 0 insertions, 1616 deletions
diff --git a/Godeps/_workspace/src/github.com/golang/freetype/raster/geom.go b/Godeps/_workspace/src/github.com/golang/freetype/raster/geom.go
deleted file mode 100644
index f3696ea98..000000000
--- a/Godeps/_workspace/src/github.com/golang/freetype/raster/geom.go
+++ /dev/null
@@ -1,245 +0,0 @@
-// Copyright 2010 The Freetype-Go Authors. All rights reserved.
-// Use of this source code is governed by your choice of either the
-// FreeType License or the GNU General Public License version 2 (or
-// any later version), both of which can be found in the LICENSE file.
-
-package raster
-
-import (
- "fmt"
- "math"
-
- "golang.org/x/image/math/fixed"
-)
-
-// maxAbs returns the maximum of abs(a) and abs(b).
-func maxAbs(a, b fixed.Int26_6) fixed.Int26_6 {
- if a < 0 {
- a = -a
- }
- if b < 0 {
- b = -b
- }
- if a < b {
- return b
- }
- return a
-}
-
-// pNeg returns the vector -p, or equivalently p rotated by 180 degrees.
-func pNeg(p fixed.Point26_6) fixed.Point26_6 {
- return fixed.Point26_6{-p.X, -p.Y}
-}
-
-// pDot returns the dot product p·q.
-func pDot(p fixed.Point26_6, q fixed.Point26_6) fixed.Int52_12 {
- px, py := int64(p.X), int64(p.Y)
- qx, qy := int64(q.X), int64(q.Y)
- return fixed.Int52_12(px*qx + py*qy)
-}
-
-// pLen returns the length of the vector p.
-func pLen(p fixed.Point26_6) fixed.Int26_6 {
- // TODO(nigeltao): use fixed point math.
- x := float64(p.X)
- y := float64(p.Y)
- return fixed.Int26_6(math.Sqrt(x*x + y*y))
-}
-
-// pNorm returns the vector p normalized to the given length, or zero if p is
-// degenerate.
-func pNorm(p fixed.Point26_6, length fixed.Int26_6) fixed.Point26_6 {
- d := pLen(p)
- if d == 0 {
- return fixed.Point26_6{}
- }
- s, t := int64(length), int64(d)
- x := int64(p.X) * s / t
- y := int64(p.Y) * s / t
- return fixed.Point26_6{fixed.Int26_6(x), fixed.Int26_6(y)}
-}
-
-// pRot45CW returns the vector p rotated clockwise by 45 degrees.
-//
-// Note that the Y-axis grows downwards, so {1, 0}.Rot45CW is {1/√2, 1/√2}.
-func pRot45CW(p fixed.Point26_6) fixed.Point26_6 {
- // 181/256 is approximately 1/√2, or sin(π/4).
- px, py := int64(p.X), int64(p.Y)
- qx := (+px - py) * 181 / 256
- qy := (+px + py) * 181 / 256
- return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
-}
-
-// pRot90CW returns the vector p rotated clockwise by 90 degrees.
-//
-// Note that the Y-axis grows downwards, so {1, 0}.Rot90CW is {0, 1}.
-func pRot90CW(p fixed.Point26_6) fixed.Point26_6 {
- return fixed.Point26_6{-p.Y, p.X}
-}
-
-// pRot135CW returns the vector p rotated clockwise by 135 degrees.
-//
-// Note that the Y-axis grows downwards, so {1, 0}.Rot135CW is {-1/√2, 1/√2}.
-func pRot135CW(p fixed.Point26_6) fixed.Point26_6 {
- // 181/256 is approximately 1/√2, or sin(π/4).
- px, py := int64(p.X), int64(p.Y)
- qx := (-px - py) * 181 / 256
- qy := (+px - py) * 181 / 256
- return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
-}
-
-// pRot45CCW returns the vector p rotated counter-clockwise by 45 degrees.
-//
-// Note that the Y-axis grows downwards, so {1, 0}.Rot45CCW is {1/√2, -1/√2}.
-func pRot45CCW(p fixed.Point26_6) fixed.Point26_6 {
- // 181/256 is approximately 1/√2, or sin(π/4).
- px, py := int64(p.X), int64(p.Y)
- qx := (+px + py) * 181 / 256
- qy := (-px + py) * 181 / 256
- return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
-}
-
-// pRot90CCW returns the vector p rotated counter-clockwise by 90 degrees.
-//
-// Note that the Y-axis grows downwards, so {1, 0}.Rot90CCW is {0, -1}.
-func pRot90CCW(p fixed.Point26_6) fixed.Point26_6 {
- return fixed.Point26_6{p.Y, -p.X}
-}
-
-// pRot135CCW returns the vector p rotated counter-clockwise by 135 degrees.
-//
-// Note that the Y-axis grows downwards, so {1, 0}.Rot135CCW is {-1/√2, -1/√2}.
-func pRot135CCW(p fixed.Point26_6) fixed.Point26_6 {
- // 181/256 is approximately 1/√2, or sin(π/4).
- px, py := int64(p.X), int64(p.Y)
- qx := (-px + py) * 181 / 256
- qy := (-px - py) * 181 / 256
- return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
-}
-
-// An Adder accumulates points on a curve.
-type Adder interface {
- // Start starts a new curve at the given point.
- Start(a fixed.Point26_6)
- // Add1 adds a linear segment to the current curve.
- Add1(b fixed.Point26_6)
- // Add2 adds a quadratic segment to the current curve.
- Add2(b, c fixed.Point26_6)
- // Add3 adds a cubic segment to the current curve.
- Add3(b, c, d fixed.Point26_6)
-}
-
-// A Path is a sequence of curves, and a curve is a start point followed by a
-// sequence of linear, quadratic or cubic segments.
-type Path []fixed.Int26_6
-
-// String returns a human-readable representation of a Path.
-func (p Path) String() string {
- s := ""
- for i := 0; i < len(p); {
- if i != 0 {
- s += " "
- }
- switch p[i] {
- case 0:
- s += "S0" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+3]))
- i += 4
- case 1:
- s += "A1" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+3]))
- i += 4
- case 2:
- s += "A2" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+5]))
- i += 6
- case 3:
- s += "A3" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+7]))
- i += 8
- default:
- panic("freetype/raster: bad path")
- }
- }
- return s
-}
-
-// Clear cancels any previous calls to p.Start or p.AddXxx.
-func (p *Path) Clear() {
- *p = (*p)[:0]
-}
-
-// Start starts a new curve at the given point.
-func (p *Path) Start(a fixed.Point26_6) {
- *p = append(*p, 0, a.X, a.Y, 0)
-}
-
-// Add1 adds a linear segment to the current curve.
-func (p *Path) Add1(b fixed.Point26_6) {
- *p = append(*p, 1, b.X, b.Y, 1)
-}
-
-// Add2 adds a quadratic segment to the current curve.
-func (p *Path) Add2(b, c fixed.Point26_6) {
- *p = append(*p, 2, b.X, b.Y, c.X, c.Y, 2)
-}
-
-// Add3 adds a cubic segment to the current curve.
-func (p *Path) Add3(b, c, d fixed.Point26_6) {
- *p = append(*p, 3, b.X, b.Y, c.X, c.Y, d.X, d.Y, 3)
-}
-
-// AddPath adds the Path q to p.
-func (p *Path) AddPath(q Path) {
- *p = append(*p, q...)
-}
-
-// AddStroke adds a stroked Path.
-func (p *Path) AddStroke(q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
- Stroke(p, q, width, cr, jr)
-}
-
-// firstPoint returns the first point in a non-empty Path.
-func (p Path) firstPoint() fixed.Point26_6 {
- return fixed.Point26_6{p[1], p[2]}
-}
-
-// lastPoint returns the last point in a non-empty Path.
-func (p Path) lastPoint() fixed.Point26_6 {
- return fixed.Point26_6{p[len(p)-3], p[len(p)-2]}
-}
-
-// addPathReversed adds q reversed to p.
-// For example, if q consists of a linear segment from A to B followed by a
-// quadratic segment from B to C to D, then the values of q looks like:
-// index: 01234567890123
-// value: 0AA01BB12CCDD2
-// So, when adding q backwards to p, we want to Add2(C, B) followed by Add1(A).
-func addPathReversed(p Adder, q Path) {
- if len(q) == 0 {
- return
- }
- i := len(q) - 1
- for {
- switch q[i] {
- case 0:
- return
- case 1:
- i -= 4
- p.Add1(
- fixed.Point26_6{q[i-2], q[i-1]},
- )
- case 2:
- i -= 6
- p.Add2(
- fixed.Point26_6{q[i+2], q[i+3]},
- fixed.Point26_6{q[i-2], q[i-1]},
- )
- case 3:
- i -= 8
- p.Add3(
- fixed.Point26_6{q[i+4], q[i+5]},
- fixed.Point26_6{q[i+2], q[i+3]},
- fixed.Point26_6{q[i-2], q[i-1]},
- )
- default:
- panic("freetype/raster: bad path")
- }
- }
-}
diff --git a/Godeps/_workspace/src/github.com/golang/freetype/raster/paint.go b/Godeps/_workspace/src/github.com/golang/freetype/raster/paint.go
deleted file mode 100644
index 185d36a8e..000000000
--- a/Godeps/_workspace/src/github.com/golang/freetype/raster/paint.go
+++ /dev/null
@@ -1,287 +0,0 @@
-// Copyright 2010 The Freetype-Go Authors. All rights reserved.
-// Use of this source code is governed by your choice of either the
-// FreeType License or the GNU General Public License version 2 (or
-// any later version), both of which can be found in the LICENSE file.
-
-package raster
-
-import (
- "image"
- "image/color"
- "image/draw"
- "math"
-)
-
-// A Span is a horizontal segment of pixels with constant alpha. X0 is an
-// inclusive bound and X1 is exclusive, the same as for slices. A fully opaque
-// Span has Alpha == 0xffff.
-type Span struct {
- Y, X0, X1 int
- Alpha uint32
-}
-
-// A Painter knows how to paint a batch of Spans. Rasterization may involve
-// Painting multiple batches, and done will be true for the final batch. The
-// Spans' Y values are monotonically increasing during a rasterization. Paint
-// may use all of ss as scratch space during the call.
-type Painter interface {
- Paint(ss []Span, done bool)
-}
-
-// The PainterFunc type adapts an ordinary function to the Painter interface.
-type PainterFunc func(ss []Span, done bool)
-
-// Paint just delegates the call to f.
-func (f PainterFunc) Paint(ss []Span, done bool) { f(ss, done) }
-
-// An AlphaOverPainter is a Painter that paints Spans onto a *image.Alpha using
-// the Over Porter-Duff composition operator.
-type AlphaOverPainter struct {
- Image *image.Alpha
-}
-
-// Paint satisfies the Painter interface.
-func (r AlphaOverPainter) Paint(ss []Span, done bool) {
- b := r.Image.Bounds()
- for _, s := range ss {
- if s.Y < b.Min.Y {
- continue
- }
- if s.Y >= b.Max.Y {
- return
- }
- if s.X0 < b.Min.X {
- s.X0 = b.Min.X
- }
- if s.X1 > b.Max.X {
- s.X1 = b.Max.X
- }
- if s.X0 >= s.X1 {
- continue
- }
- base := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride - r.Image.Rect.Min.X
- p := r.Image.Pix[base+s.X0 : base+s.X1]
- a := int(s.Alpha >> 8)
- for i, c := range p {
- v := int(c)
- p[i] = uint8((v*255 + (255-v)*a) / 255)
- }
- }
-}
-
-// NewAlphaOverPainter creates a new AlphaOverPainter for the given image.
-func NewAlphaOverPainter(m *image.Alpha) AlphaOverPainter {
- return AlphaOverPainter{m}
-}
-
-// An AlphaSrcPainter is a Painter that paints Spans onto a *image.Alpha using
-// the Src Porter-Duff composition operator.
-type AlphaSrcPainter struct {
- Image *image.Alpha
-}
-
-// Paint satisfies the Painter interface.
-func (r AlphaSrcPainter) Paint(ss []Span, done bool) {
- b := r.Image.Bounds()
- for _, s := range ss {
- if s.Y < b.Min.Y {
- continue
- }
- if s.Y >= b.Max.Y {
- return
- }
- if s.X0 < b.Min.X {
- s.X0 = b.Min.X
- }
- if s.X1 > b.Max.X {
- s.X1 = b.Max.X
- }
- if s.X0 >= s.X1 {
- continue
- }
- base := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride - r.Image.Rect.Min.X
- p := r.Image.Pix[base+s.X0 : base+s.X1]
- color := uint8(s.Alpha >> 8)
- for i := range p {
- p[i] = color
- }
- }
-}
-
-// NewAlphaSrcPainter creates a new AlphaSrcPainter for the given image.
-func NewAlphaSrcPainter(m *image.Alpha) AlphaSrcPainter {
- return AlphaSrcPainter{m}
-}
-
-// An RGBAPainter is a Painter that paints Spans onto a *image.RGBA.
-type RGBAPainter struct {
- // Image is the image to compose onto.
- Image *image.RGBA
- // Op is the Porter-Duff composition operator.
- Op draw.Op
- // cr, cg, cb and ca are the 16-bit color to paint the spans.
- cr, cg, cb, ca uint32
-}
-
-// Paint satisfies the Painter interface.
-func (r *RGBAPainter) Paint(ss []Span, done bool) {
- b := r.Image.Bounds()
- for _, s := range ss {
- if s.Y < b.Min.Y {
- continue
- }
- if s.Y >= b.Max.Y {
- return
- }
- if s.X0 < b.Min.X {
- s.X0 = b.Min.X
- }
- if s.X1 > b.Max.X {
- s.X1 = b.Max.X
- }
- if s.X0 >= s.X1 {
- continue
- }
- // This code mimics drawGlyphOver in $GOROOT/src/image/draw/draw.go.
- ma := s.Alpha
- const m = 1<<16 - 1
- i0 := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride + (s.X0-r.Image.Rect.Min.X)*4
- i1 := i0 + (s.X1-s.X0)*4
- if r.Op == draw.Over {
- for i := i0; i < i1; i += 4 {
- dr := uint32(r.Image.Pix[i+0])
- dg := uint32(r.Image.Pix[i+1])
- db := uint32(r.Image.Pix[i+2])
- da := uint32(r.Image.Pix[i+3])
- a := (m - (r.ca * ma / m)) * 0x101
- r.Image.Pix[i+0] = uint8((dr*a + r.cr*ma) / m >> 8)
- r.Image.Pix[i+1] = uint8((dg*a + r.cg*ma) / m >> 8)
- r.Image.Pix[i+2] = uint8((db*a + r.cb*ma) / m >> 8)
- r.Image.Pix[i+3] = uint8((da*a + r.ca*ma) / m >> 8)
- }
- } else {
- for i := i0; i < i1; i += 4 {
- r.Image.Pix[i+0] = uint8(r.cr * ma / m >> 8)
- r.Image.Pix[i+1] = uint8(r.cg * ma / m >> 8)
- r.Image.Pix[i+2] = uint8(r.cb * ma / m >> 8)
- r.Image.Pix[i+3] = uint8(r.ca * ma / m >> 8)
- }
- }
- }
-}
-
-// SetColor sets the color to paint the spans.
-func (r *RGBAPainter) SetColor(c color.Color) {
- r.cr, r.cg, r.cb, r.ca = c.RGBA()
-}
-
-// NewRGBAPainter creates a new RGBAPainter for the given image.
-func NewRGBAPainter(m *image.RGBA) *RGBAPainter {
- return &RGBAPainter{Image: m}
-}
-
-// A MonochromePainter wraps another Painter, quantizing each Span's alpha to
-// be either fully opaque or fully transparent.
-type MonochromePainter struct {
- Painter Painter
- y, x0, x1 int
-}
-
-// Paint delegates to the wrapped Painter after quantizing each Span's alpha
-// value and merging adjacent fully opaque Spans.
-func (m *MonochromePainter) Paint(ss []Span, done bool) {
- // We compact the ss slice, discarding any Spans whose alpha quantizes to zero.
- j := 0
- for _, s := range ss {
- if s.Alpha >= 0x8000 {
- if m.y == s.Y && m.x1 == s.X0 {
- m.x1 = s.X1
- } else {
- ss[j] = Span{m.y, m.x0, m.x1, 1<<32 - 1}
- j++
- m.y, m.x0, m.x1 = s.Y, s.X0, s.X1
- }
- }
- }
- if done {
- // Flush the accumulated Span.
- finalSpan := Span{m.y, m.x0, m.x1, 1<<32 - 1}
- if j < len(ss) {
- ss[j] = finalSpan
- j++
- m.Painter.Paint(ss[:j], true)
- } else if j == len(ss) {
- m.Painter.Paint(ss, false)
- if cap(ss) > 0 {
- ss = ss[:1]
- } else {
- ss = make([]Span, 1)
- }
- ss[0] = finalSpan
- m.Painter.Paint(ss, true)
- } else {
- panic("unreachable")
- }
- // Reset the accumulator, so that this Painter can be re-used.
- m.y, m.x0, m.x1 = 0, 0, 0
- } else {
- m.Painter.Paint(ss[:j], false)
- }
-}
-
-// NewMonochromePainter creates a new MonochromePainter that wraps the given
-// Painter.
-func NewMonochromePainter(p Painter) *MonochromePainter {
- return &MonochromePainter{Painter: p}
-}
-
-// A GammaCorrectionPainter wraps another Painter, performing gamma-correction
-// on each Span's alpha value.
-type GammaCorrectionPainter struct {
- // Painter is the wrapped Painter.
- Painter Painter
- // a is the precomputed alpha values for linear interpolation, with fully
- // opaque == 0xffff.
- a [256]uint16
- // gammaIsOne is whether gamma correction is a no-op.
- gammaIsOne bool
-}
-
-// Paint delegates to the wrapped Painter after performing gamma-correction on
-// each Span.
-func (g *GammaCorrectionPainter) Paint(ss []Span, done bool) {
- if !g.gammaIsOne {
- const n = 0x101
- for i, s := range ss {
- if s.Alpha == 0 || s.Alpha == 0xffff {
- continue
- }
- p, q := s.Alpha/n, s.Alpha%n
- // The resultant alpha is a linear interpolation of g.a[p] and g.a[p+1].
- a := uint32(g.a[p])*(n-q) + uint32(g.a[p+1])*q
- ss[i].Alpha = (a + n/2) / n
- }
- }
- g.Painter.Paint(ss, done)
-}
-
-// SetGamma sets the gamma value.
-func (g *GammaCorrectionPainter) SetGamma(gamma float64) {
- g.gammaIsOne = gamma == 1
- if g.gammaIsOne {
- return
- }
- for i := 0; i < 256; i++ {
- a := float64(i) / 0xff
- a = math.Pow(a, gamma)
- g.a[i] = uint16(0xffff * a)
- }
-}
-
-// NewGammaCorrectionPainter creates a new GammaCorrectionPainter that wraps
-// the given Painter.
-func NewGammaCorrectionPainter(p Painter, gamma float64) *GammaCorrectionPainter {
- g := &GammaCorrectionPainter{Painter: p}
- g.SetGamma(gamma)
- return g
-}
diff --git a/Godeps/_workspace/src/github.com/golang/freetype/raster/raster.go b/Godeps/_workspace/src/github.com/golang/freetype/raster/raster.go
deleted file mode 100644
index 995925e2a..000000000
--- a/Godeps/_workspace/src/github.com/golang/freetype/raster/raster.go
+++ /dev/null
@@ -1,601 +0,0 @@
-// Copyright 2010 The Freetype-Go Authors. All rights reserved.
-// Use of this source code is governed by your choice of either the
-// FreeType License or the GNU General Public License version 2 (or
-// any later version), both of which can be found in the LICENSE file.
-
-// Package raster provides an anti-aliasing 2-D rasterizer.
-//
-// It is part of the larger Freetype suite of font-related packages, but the
-// raster package is not specific to font rasterization, and can be used
-// standalone without any other Freetype package.
-//
-// Rasterization is done by the same area/coverage accumulation algorithm as
-// the Freetype "smooth" module, and the Anti-Grain Geometry library. A
-// description of the area/coverage algorithm is at
-// http://projects.tuxee.net/cl-vectors/section-the-cl-aa-algorithm
-package raster
-
-import (
- "strconv"
-
- "golang.org/x/image/math/fixed"
-)
-
-// A cell is part of a linked list (for a given yi co-ordinate) of accumulated
-// area/coverage for the pixel at (xi, yi).
-type cell struct {
- xi int
- area, cover int
- next int
-}
-
-type Rasterizer struct {
- // If false, the default behavior is to use the even-odd winding fill
- // rule during Rasterize.
- UseNonZeroWinding bool
- // An offset (in pixels) to the painted spans.
- Dx, Dy int
-
- // The width of the Rasterizer. The height is implicit in len(cellIndex).
- width int
- // splitScaleN is the scaling factor used to determine how many times
- // to decompose a quadratic or cubic segment into a linear approximation.
- splitScale2, splitScale3 int
-
- // The current pen position.
- a fixed.Point26_6
- // The current cell and its area/coverage being accumulated.
- xi, yi int
- area, cover int
-
- // Saved cells.
- cell []cell
- // Linked list of cells, one per row.
- cellIndex []int
- // Buffers.
- cellBuf [256]cell
- cellIndexBuf [64]int
- spanBuf [64]Span
-}
-
-// findCell returns the index in r.cell for the cell corresponding to
-// (r.xi, r.yi). The cell is created if necessary.
-func (r *Rasterizer) findCell() int {
- if r.yi < 0 || r.yi >= len(r.cellIndex) {
- return -1
- }
- xi := r.xi
- if xi < 0 {
- xi = -1
- } else if xi > r.width {
- xi = r.width
- }
- i, prev := r.cellIndex[r.yi], -1
- for i != -1 && r.cell[i].xi <= xi {
- if r.cell[i].xi == xi {
- return i
- }
- i, prev = r.cell[i].next, i
- }
- c := len(r.cell)
- if c == cap(r.cell) {
- buf := make([]cell, c, 4*c)
- copy(buf, r.cell)
- r.cell = buf[0 : c+1]
- } else {
- r.cell = r.cell[0 : c+1]
- }
- r.cell[c] = cell{xi, 0, 0, i}
- if prev == -1 {
- r.cellIndex[r.yi] = c
- } else {
- r.cell[prev].next = c
- }
- return c
-}
-
-// saveCell saves any accumulated r.area/r.cover for (r.xi, r.yi).
-func (r *Rasterizer) saveCell() {
- if r.area != 0 || r.cover != 0 {
- i := r.findCell()
- if i != -1 {
- r.cell[i].area += r.area
- r.cell[i].cover += r.cover
- }
- r.area = 0
- r.cover = 0
- }
-}
-
-// setCell sets the (xi, yi) cell that r is accumulating area/coverage for.
-func (r *Rasterizer) setCell(xi, yi int) {
- if r.xi != xi || r.yi != yi {
- r.saveCell()
- r.xi, r.yi = xi, yi
- }
-}
-
-// scan accumulates area/coverage for the yi'th scanline, going from
-// x0 to x1 in the horizontal direction (in 26.6 fixed point co-ordinates)
-// and from y0f to y1f fractional vertical units within that scanline.
-func (r *Rasterizer) scan(yi int, x0, y0f, x1, y1f fixed.Int26_6) {
- // Break the 26.6 fixed point X co-ordinates into integral and fractional parts.
- x0i := int(x0) / 64
- x0f := x0 - fixed.Int26_6(64*x0i)
- x1i := int(x1) / 64
- x1f := x1 - fixed.Int26_6(64*x1i)
-
- // A perfectly horizontal scan.
- if y0f == y1f {
- r.setCell(x1i, yi)
- return
- }
- dx, dy := x1-x0, y1f-y0f
- // A single cell scan.
- if x0i == x1i {
- r.area += int((x0f + x1f) * dy)
- r.cover += int(dy)
- return
- }
- // There are at least two cells. Apart from the first and last cells,
- // all intermediate cells go through the full width of the cell,
- // or 64 units in 26.6 fixed point format.
- var (
- p, q, edge0, edge1 fixed.Int26_6
- xiDelta int
- )
- if dx > 0 {
- p, q = (64-x0f)*dy, dx
- edge0, edge1, xiDelta = 0, 64, 1
- } else {
- p, q = x0f*dy, -dx
- edge0, edge1, xiDelta = 64, 0, -1
- }
- yDelta, yRem := p/q, p%q
- if yRem < 0 {
- yDelta -= 1
- yRem += q
- }
- // Do the first cell.
- xi, y := x0i, y0f
- r.area += int((x0f + edge1) * yDelta)
- r.cover += int(yDelta)
- xi, y = xi+xiDelta, y+yDelta
- r.setCell(xi, yi)
- if xi != x1i {
- // Do all the intermediate cells.
- p = 64 * (y1f - y + yDelta)
- fullDelta, fullRem := p/q, p%q
- if fullRem < 0 {
- fullDelta -= 1
- fullRem += q
- }
- yRem -= q
- for xi != x1i {
- yDelta = fullDelta
- yRem += fullRem
- if yRem >= 0 {
- yDelta += 1
- yRem -= q
- }
- r.area += int(64 * yDelta)
- r.cover += int(yDelta)
- xi, y = xi+xiDelta, y+yDelta
- r.setCell(xi, yi)
- }
- }
- // Do the last cell.
- yDelta = y1f - y
- r.area += int((edge0 + x1f) * yDelta)
- r.cover += int(yDelta)
-}
-
-// Start starts a new curve at the given point.
-func (r *Rasterizer) Start(a fixed.Point26_6) {
- r.setCell(int(a.X/64), int(a.Y/64))
- r.a = a
-}
-
-// Add1 adds a linear segment to the current curve.
-func (r *Rasterizer) Add1(b fixed.Point26_6) {
- x0, y0 := r.a.X, r.a.Y
- x1, y1 := b.X, b.Y
- dx, dy := x1-x0, y1-y0
- // Break the 26.6 fixed point Y co-ordinates into integral and fractional
- // parts.
- y0i := int(y0) / 64
- y0f := y0 - fixed.Int26_6(64*y0i)
- y1i := int(y1) / 64
- y1f := y1 - fixed.Int26_6(64*y1i)
-
- if y0i == y1i {
- // There is only one scanline.
- r.scan(y0i, x0, y0f, x1, y1f)
-
- } else if dx == 0 {
- // This is a vertical line segment. We avoid calling r.scan and instead
- // manipulate r.area and r.cover directly.
- var (
- edge0, edge1 fixed.Int26_6
- yiDelta int
- )
- if dy > 0 {
- edge0, edge1, yiDelta = 0, 64, 1
- } else {
- edge0, edge1, yiDelta = 64, 0, -1
- }
- x0i, yi := int(x0)/64, y0i
- x0fTimes2 := (int(x0) - (64 * x0i)) * 2
- // Do the first pixel.
- dcover := int(edge1 - y0f)
- darea := int(x0fTimes2 * dcover)
- r.area += darea
- r.cover += dcover
- yi += yiDelta
- r.setCell(x0i, yi)
- // Do all the intermediate pixels.
- dcover = int(edge1 - edge0)
- darea = int(x0fTimes2 * dcover)
- for yi != y1i {
- r.area += darea
- r.cover += dcover
- yi += yiDelta
- r.setCell(x0i, yi)
- }
- // Do the last pixel.
- dcover = int(y1f - edge0)
- darea = int(x0fTimes2 * dcover)
- r.area += darea
- r.cover += dcover
-
- } else {
- // There are at least two scanlines. Apart from the first and last
- // scanlines, all intermediate scanlines go through the full height of
- // the row, or 64 units in 26.6 fixed point format.
- var (
- p, q, edge0, edge1 fixed.Int26_6
- yiDelta int
- )
- if dy > 0 {
- p, q = (64-y0f)*dx, dy
- edge0, edge1, yiDelta = 0, 64, 1
- } else {
- p, q = y0f*dx, -dy
- edge0, edge1, yiDelta = 64, 0, -1
- }
- xDelta, xRem := p/q, p%q
- if xRem < 0 {
- xDelta -= 1
- xRem += q
- }
- // Do the first scanline.
- x, yi := x0, y0i
- r.scan(yi, x, y0f, x+xDelta, edge1)
- x, yi = x+xDelta, yi+yiDelta
- r.setCell(int(x)/64, yi)
- if yi != y1i {
- // Do all the intermediate scanlines.
- p = 64 * dx
- fullDelta, fullRem := p/q, p%q
- if fullRem < 0 {
- fullDelta -= 1
- fullRem += q
- }
- xRem -= q
- for yi != y1i {
- xDelta = fullDelta
- xRem += fullRem
- if xRem >= 0 {
- xDelta += 1
- xRem -= q
- }
- r.scan(yi, x, edge0, x+xDelta, edge1)
- x, yi = x+xDelta, yi+yiDelta
- r.setCell(int(x)/64, yi)
- }
- }
- // Do the last scanline.
- r.scan(yi, x, edge0, x1, y1f)
- }
- // The next lineTo starts from b.
- r.a = b
-}
-
-// Add2 adds a quadratic segment to the current curve.
-func (r *Rasterizer) Add2(b, c fixed.Point26_6) {
- // Calculate nSplit (the number of recursive decompositions) based on how
- // 'curvy' it is. Specifically, how much the middle point b deviates from
- // (a+c)/2.
- dev := maxAbs(r.a.X-2*b.X+c.X, r.a.Y-2*b.Y+c.Y) / fixed.Int26_6(r.splitScale2)
- nsplit := 0
- for dev > 0 {
- dev /= 4
- nsplit++
- }
- // dev is 32-bit, and nsplit++ every time we shift off 2 bits, so maxNsplit
- // is 16.
- const maxNsplit = 16
- if nsplit > maxNsplit {
- panic("freetype/raster: Add2 nsplit too large: " + strconv.Itoa(nsplit))
- }
- // Recursively decompose the curve nSplit levels deep.
- var (
- pStack [2*maxNsplit + 3]fixed.Point26_6
- sStack [maxNsplit + 1]int
- i int
- )
- sStack[0] = nsplit
- pStack[0] = c
- pStack[1] = b
- pStack[2] = r.a
- for i >= 0 {
- s := sStack[i]
- p := pStack[2*i:]
- if s > 0 {
- // Split the quadratic curve p[:3] into an equivalent set of two
- // shorter curves: p[:3] and p[2:5]. The new p[4] is the old p[2],
- // and p[0] is unchanged.
- mx := p[1].X
- p[4].X = p[2].X
- p[3].X = (p[4].X + mx) / 2
- p[1].X = (p[0].X + mx) / 2
- p[2].X = (p[1].X + p[3].X) / 2
- my := p[1].Y
- p[4].Y = p[2].Y
- p[3].Y = (p[4].Y + my) / 2
- p[1].Y = (p[0].Y + my) / 2
- p[2].Y = (p[1].Y + p[3].Y) / 2
- // The two shorter curves have one less split to do.
- sStack[i] = s - 1
- sStack[i+1] = s - 1
- i++
- } else {
- // Replace the level-0 quadratic with a two-linear-piece
- // approximation.
- midx := (p[0].X + 2*p[1].X + p[2].X) / 4
- midy := (p[0].Y + 2*p[1].Y + p[2].Y) / 4
- r.Add1(fixed.Point26_6{midx, midy})
- r.Add1(p[0])
- i--
- }
- }
-}
-
-// Add3 adds a cubic segment to the current curve.
-func (r *Rasterizer) Add3(b, c, d fixed.Point26_6) {
- // Calculate nSplit (the number of recursive decompositions) based on how
- // 'curvy' it is.
- dev2 := maxAbs(r.a.X-3*(b.X+c.X)+d.X, r.a.Y-3*(b.Y+c.Y)+d.Y) / fixed.Int26_6(r.splitScale2)
- dev3 := maxAbs(r.a.X-2*b.X+d.X, r.a.Y-2*b.Y+d.Y) / fixed.Int26_6(r.splitScale3)
- nsplit := 0
- for dev2 > 0 || dev3 > 0 {
- dev2 /= 8
- dev3 /= 4
- nsplit++
- }
- // devN is 32-bit, and nsplit++ every time we shift off 2 bits, so
- // maxNsplit is 16.
- const maxNsplit = 16
- if nsplit > maxNsplit {
- panic("freetype/raster: Add3 nsplit too large: " + strconv.Itoa(nsplit))
- }
- // Recursively decompose the curve nSplit levels deep.
- var (
- pStack [3*maxNsplit + 4]fixed.Point26_6
- sStack [maxNsplit + 1]int
- i int
- )
- sStack[0] = nsplit
- pStack[0] = d
- pStack[1] = c
- pStack[2] = b
- pStack[3] = r.a
- for i >= 0 {
- s := sStack[i]
- p := pStack[3*i:]
- if s > 0 {
- // Split the cubic curve p[:4] into an equivalent set of two
- // shorter curves: p[:4] and p[3:7]. The new p[6] is the old p[3],
- // and p[0] is unchanged.
- m01x := (p[0].X + p[1].X) / 2
- m12x := (p[1].X + p[2].X) / 2
- m23x := (p[2].X + p[3].X) / 2
- p[6].X = p[3].X
- p[5].X = m23x
- p[1].X = m01x
- p[2].X = (m01x + m12x) / 2
- p[4].X = (m12x + m23x) / 2
- p[3].X = (p[2].X + p[4].X) / 2
- m01y := (p[0].Y + p[1].Y) / 2
- m12y := (p[1].Y + p[2].Y) / 2
- m23y := (p[2].Y + p[3].Y) / 2
- p[6].Y = p[3].Y
- p[5].Y = m23y
- p[1].Y = m01y
- p[2].Y = (m01y + m12y) / 2
- p[4].Y = (m12y + m23y) / 2
- p[3].Y = (p[2].Y + p[4].Y) / 2
- // The two shorter curves have one less split to do.
- sStack[i] = s - 1
- sStack[i+1] = s - 1
- i++
- } else {
- // Replace the level-0 cubic with a two-linear-piece approximation.
- midx := (p[0].X + 3*(p[1].X+p[2].X) + p[3].X) / 8
- midy := (p[0].Y + 3*(p[1].Y+p[2].Y) + p[3].Y) / 8
- r.Add1(fixed.Point26_6{midx, midy})
- r.Add1(p[0])
- i--
- }
- }
-}
-
-// AddPath adds the given Path.
-func (r *Rasterizer) AddPath(p Path) {
- for i := 0; i < len(p); {
- switch p[i] {
- case 0:
- r.Start(
- fixed.Point26_6{p[i+1], p[i+2]},
- )
- i += 4
- case 1:
- r.Add1(
- fixed.Point26_6{p[i+1], p[i+2]},
- )
- i += 4
- case 2:
- r.Add2(
- fixed.Point26_6{p[i+1], p[i+2]},
- fixed.Point26_6{p[i+3], p[i+4]},
- )
- i += 6
- case 3:
- r.Add3(
- fixed.Point26_6{p[i+1], p[i+2]},
- fixed.Point26_6{p[i+3], p[i+4]},
- fixed.Point26_6{p[i+5], p[i+6]},
- )
- i += 8
- default:
- panic("freetype/raster: bad path")
- }
- }
-}
-
-// AddStroke adds a stroked Path.
-func (r *Rasterizer) AddStroke(q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
- Stroke(r, q, width, cr, jr)
-}
-
-// areaToAlpha converts an area value to a uint32 alpha value. A completely
-// filled pixel corresponds to an area of 64*64*2, and an alpha of 0xffff. The
-// conversion of area values greater than this depends on the winding rule:
-// even-odd or non-zero.
-func (r *Rasterizer) areaToAlpha(area int) uint32 {
- // The C Freetype implementation (version 2.3.12) does "alpha := area>>1"
- // without the +1. Round-to-nearest gives a more symmetric result than
- // round-down. The C implementation also returns 8-bit alpha, not 16-bit
- // alpha.
- a := (area + 1) >> 1
- if a < 0 {
- a = -a
- }
- alpha := uint32(a)
- if r.UseNonZeroWinding {
- if alpha > 0x0fff {
- alpha = 0x0fff
- }
- } else {
- alpha &= 0x1fff
- if alpha > 0x1000 {
- alpha = 0x2000 - alpha
- } else if alpha == 0x1000 {
- alpha = 0x0fff
- }
- }
- // alpha is now in the range [0x0000, 0x0fff]. Convert that 12-bit alpha to
- // 16-bit alpha.
- return alpha<<4 | alpha>>8
-}
-
-// Rasterize converts r's accumulated curves into Spans for p. The Spans passed
-// to p are non-overlapping, and sorted by Y and then X. They all have non-zero
-// width (and 0 <= X0 < X1 <= r.width) and non-zero A, except for the final
-// Span, which has Y, X0, X1 and A all equal to zero.
-func (r *Rasterizer) Rasterize(p Painter) {
- r.saveCell()
- s := 0
- for yi := 0; yi < len(r.cellIndex); yi++ {
- xi, cover := 0, 0
- for c := r.cellIndex[yi]; c != -1; c = r.cell[c].next {
- if cover != 0 && r.cell[c].xi > xi {
- alpha := r.areaToAlpha(cover * 64 * 2)
- if alpha != 0 {
- xi0, xi1 := xi, r.cell[c].xi
- if xi0 < 0 {
- xi0 = 0
- }
- if xi1 >= r.width {
- xi1 = r.width
- }
- if xi0 < xi1 {
- r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
- s++
- }
- }
- }
- cover += r.cell[c].cover
- alpha := r.areaToAlpha(cover*64*2 - r.cell[c].area)
- xi = r.cell[c].xi + 1
- if alpha != 0 {
- xi0, xi1 := r.cell[c].xi, xi
- if xi0 < 0 {
- xi0 = 0
- }
- if xi1 >= r.width {
- xi1 = r.width
- }
- if xi0 < xi1 {
- r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
- s++
- }
- }
- if s > len(r.spanBuf)-2 {
- p.Paint(r.spanBuf[:s], false)
- s = 0
- }
- }
- }
- p.Paint(r.spanBuf[:s], true)
-}
-
-// Clear cancels any previous calls to r.Start or r.AddXxx.
-func (r *Rasterizer) Clear() {
- r.a = fixed.Point26_6{}
- r.xi = 0
- r.yi = 0
- r.area = 0
- r.cover = 0
- r.cell = r.cell[:0]
- for i := 0; i < len(r.cellIndex); i++ {
- r.cellIndex[i] = -1
- }
-}
-
-// SetBounds sets the maximum width and height of the rasterized image and
-// calls Clear. The width and height are in pixels, not fixed.Int26_6 units.
-func (r *Rasterizer) SetBounds(width, height int) {
- if width < 0 {
- width = 0
- }
- if height < 0 {
- height = 0
- }
- // Use the same ssN heuristic as the C Freetype (version 2.4.0)
- // implementation.
- ss2, ss3 := 32, 16
- if width > 24 || height > 24 {
- ss2, ss3 = 2*ss2, 2*ss3
- if width > 120 || height > 120 {
- ss2, ss3 = 2*ss2, 2*ss3
- }
- }
- r.width = width
- r.splitScale2 = ss2
- r.splitScale3 = ss3
- r.cell = r.cellBuf[:0]
- if height > len(r.cellIndexBuf) {
- r.cellIndex = make([]int, height)
- } else {
- r.cellIndex = r.cellIndexBuf[:height]
- }
- r.Clear()
-}
-
-// NewRasterizer creates a new Rasterizer with the given bounds.
-func NewRasterizer(width, height int) *Rasterizer {
- r := new(Rasterizer)
- r.SetBounds(width, height)
- return r
-}
diff --git a/Godeps/_workspace/src/github.com/golang/freetype/raster/stroke.go b/Godeps/_workspace/src/github.com/golang/freetype/raster/stroke.go
deleted file mode 100644
index 8d4379757..000000000
--- a/Godeps/_workspace/src/github.com/golang/freetype/raster/stroke.go
+++ /dev/null
@@ -1,483 +0,0 @@
-// Copyright 2010 The Freetype-Go Authors. All rights reserved.
-// Use of this source code is governed by your choice of either the
-// FreeType License or the GNU General Public License version 2 (or
-// any later version), both of which can be found in the LICENSE file.
-
-package raster
-
-import (
- "golang.org/x/image/math/fixed"
-)
-
-// Two points are considered practically equal if the square of the distance
-// between them is less than one quarter (i.e. 1024 / 4096).
-const epsilon = fixed.Int52_12(1024)
-
-// A Capper signifies how to begin or end a stroked path.
-type Capper interface {
- // Cap adds a cap to p given a pivot point and the normal vector of a
- // terminal segment. The normal's length is half of the stroke width.
- Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6)
-}
-
-// The CapperFunc type adapts an ordinary function to be a Capper.
-type CapperFunc func(Adder, fixed.Int26_6, fixed.Point26_6, fixed.Point26_6)
-
-func (f CapperFunc) Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
- f(p, halfWidth, pivot, n1)
-}
-
-// A Joiner signifies how to join interior nodes of a stroked path.
-type Joiner interface {
- // Join adds a join to the two sides of a stroked path given a pivot
- // point and the normal vectors of the trailing and leading segments.
- // Both normals have length equal to half of the stroke width.
- Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
-}
-
-// The JoinerFunc type adapts an ordinary function to be a Joiner.
-type JoinerFunc func(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
-
-func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
- f(lhs, rhs, halfWidth, pivot, n0, n1)
-}
-
-// RoundCapper adds round caps to a stroked path.
-var RoundCapper Capper = CapperFunc(roundCapper)
-
-func roundCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
- // The cubic Bézier approximation to a circle involves the magic number
- // (√2 - 1) * 4/3, which is approximately 141/256.
- const k = 141
- e := pRot90CCW(n1)
- side := pivot.Add(e)
- start, end := pivot.Sub(n1), pivot.Add(n1)
- d, e := n1.Mul(k), e.Mul(k)
- p.Add3(start.Add(e), side.Sub(d), side)
- p.Add3(side.Add(d), end.Add(e), end)
-}
-
-// ButtCapper adds butt caps to a stroked path.
-var ButtCapper Capper = CapperFunc(buttCapper)
-
-func buttCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
- p.Add1(pivot.Add(n1))
-}
-
-// SquareCapper adds square caps to a stroked path.
-var SquareCapper Capper = CapperFunc(squareCapper)
-
-func squareCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
- e := pRot90CCW(n1)
- side := pivot.Add(e)
- p.Add1(side.Sub(n1))
- p.Add1(side.Add(n1))
- p.Add1(pivot.Add(n1))
-}
-
-// RoundJoiner adds round joins to a stroked path.
-var RoundJoiner Joiner = JoinerFunc(roundJoiner)
-
-func roundJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
- dot := pDot(pRot90CW(n0), n1)
- if dot >= 0 {
- addArc(lhs, pivot, n0, n1)
- rhs.Add1(pivot.Sub(n1))
- } else {
- lhs.Add1(pivot.Add(n1))
- addArc(rhs, pivot, pNeg(n0), pNeg(n1))
- }
-}
-
-// BevelJoiner adds bevel joins to a stroked path.
-var BevelJoiner Joiner = JoinerFunc(bevelJoiner)
-
-func bevelJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
- lhs.Add1(pivot.Add(n1))
- rhs.Add1(pivot.Sub(n1))
-}
-
-// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
-// the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The
-// two vectors n0 and n1 must be of equal length.
-func addArc(p Adder, pivot, n0, n1 fixed.Point26_6) {
- // r2 is the square of the length of n0.
- r2 := pDot(n0, n0)
- if r2 < epsilon {
- // The arc radius is so small that we collapse to a straight line.
- p.Add1(pivot.Add(n1))
- return
- }
- // We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
- // a final quadratic segment from s to n1. Each 45-degree segment has
- // control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled,
- // rotated and translated. tan(π/8) is approximately 106/256.
- const tpo8 = 106
- var s fixed.Point26_6
- // We determine which octant the angle between n0 and n1 is in via three
- // dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135
- // degrees.
- m0 := pRot45CW(n0)
- m1 := pRot90CW(n0)
- m2 := pRot90CW(m0)
- if pDot(m1, n1) >= 0 {
- if pDot(n0, n1) >= 0 {
- if pDot(m2, n1) <= 0 {
- // n1 is between 0 and 45 degrees clockwise of n0.
- s = n0
- } else {
- // n1 is between 45 and 90 degrees clockwise of n0.
- p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
- s = m0
- }
- } else {
- pm1, n0t := pivot.Add(m1), n0.Mul(tpo8)
- p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
- p.Add2(pm1.Add(n0t), pm1)
- if pDot(m0, n1) >= 0 {
- // n1 is between 90 and 135 degrees clockwise of n0.
- s = m1
- } else {
- // n1 is between 135 and 180 degrees clockwise of n0.
- p.Add2(pm1.Sub(n0t), pivot.Add(m2))
- s = m2
- }
- }
- } else {
- if pDot(n0, n1) >= 0 {
- if pDot(m0, n1) >= 0 {
- // n1 is between 0 and 45 degrees counter-clockwise of n0.
- s = n0
- } else {
- // n1 is between 45 and 90 degrees counter-clockwise of n0.
- p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
- s = pNeg(m2)
- }
- } else {
- pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8)
- p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
- p.Add2(pm1.Add(n0t), pm1)
- if pDot(m2, n1) <= 0 {
- // n1 is between 90 and 135 degrees counter-clockwise of n0.
- s = pNeg(m1)
- } else {
- // n1 is between 135 and 180 degrees counter-clockwise of n0.
- p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
- s = pNeg(m0)
- }
- }
- }
- // The final quadratic segment has two endpoints s and n1 and the middle
- // control point is a multiple of s.Add(n1), i.e. it is on the angle
- // bisector of those two points. The multiple ranges between 128/256 and
- // 150/256 as the angle between s and n1 ranges between 0 and 45 degrees.
- //
- // When the angle is 0 degrees (i.e. s and n1 are coincident) then
- // s.Add(n1) is twice s and so the middle control point of the degenerate
- // quadratic segment should be half s.Add(n1), and half = 128/256.
- //
- // When the angle is 45 degrees then 150/256 is the ratio of the lengths of
- // the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
- //
- // d is the normalized dot product between s and n1. Since the angle ranges
- // between 0 and 45 degrees then d ranges between 256/256 and 181/256.
- d := 256 * pDot(s, n1) / r2
- multiple := fixed.Int26_6(150-(150-128)*(d-181)/(256-181)) >> 2
- p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
-}
-
-// midpoint returns the midpoint of two Points.
-func midpoint(a, b fixed.Point26_6) fixed.Point26_6 {
- return fixed.Point26_6{(a.X + b.X) / 2, (a.Y + b.Y) / 2}
-}
-
-// angleGreaterThan45 returns whether the angle between two vectors is more
-// than 45 degrees.
-func angleGreaterThan45(v0, v1 fixed.Point26_6) bool {
- v := pRot45CCW(v0)
- return pDot(v, v1) < 0 || pDot(pRot90CW(v), v1) < 0
-}
-
-// interpolate returns the point (1-t)*a + t*b.
-func interpolate(a, b fixed.Point26_6, t fixed.Int52_12) fixed.Point26_6 {
- s := 1<<12 - t
- x := s*fixed.Int52_12(a.X) + t*fixed.Int52_12(b.X)
- y := s*fixed.Int52_12(a.Y) + t*fixed.Int52_12(b.Y)
- return fixed.Point26_6{fixed.Int26_6(x >> 12), fixed.Int26_6(y >> 12)}
-}
-
-// curviest2 returns the value of t for which the quadratic parametric curve
-// (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature.
-//
-// The curvature of the parametric curve f(t) = (x(t), y(t)) is
-// |x′y″-y′x″| / (x′²+y′²)^(3/2).
-//
-// Let d = b-a and e = c-2*b+a, so that f′(t) = 2*d+2*e*t and f″(t) = 2*e.
-// The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex),
-// which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t.
-//
-// Thus, curvature is extreme where the denominator is extreme, i.e. where
-// (x′²+y′²) is extreme. The first order condition is that
-// 2*x′*x″+2*y′*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0.
-// Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey).
-func curviest2(a, b, c fixed.Point26_6) fixed.Int52_12 {
- dx := int64(b.X - a.X)
- dy := int64(b.Y - a.Y)
- ex := int64(c.X - 2*b.X + a.X)
- ey := int64(c.Y - 2*b.Y + a.Y)
- if ex == 0 && ey == 0 {
- return 2048
- }
- return fixed.Int52_12(-4096 * (dx*ex + dy*ey) / (ex*ex + ey*ey))
-}
-
-// A stroker holds state for stroking a path.
-type stroker struct {
- // p is the destination that records the stroked path.
- p Adder
- // u is the half-width of the stroke.
- u fixed.Int26_6
- // cr and jr specify how to end and connect path segments.
- cr Capper
- jr Joiner
- // r is the reverse path. Stroking a path involves constructing two
- // parallel paths 2*u apart. The first path is added immediately to p,
- // the second path is accumulated in r and eventually added in reverse.
- r Path
- // a is the most recent segment point. anorm is the segment normal of
- // length u at that point.
- a, anorm fixed.Point26_6
-}
-
-// addNonCurvy2 adds a quadratic segment to the stroker, where the segment
-// defined by (k.a, b, c) achieves maximum curvature at either k.a or c.
-func (k *stroker) addNonCurvy2(b, c fixed.Point26_6) {
- // We repeatedly divide the segment at its middle until it is straight
- // enough to approximate the stroke by just translating the control points.
- // ds and ps are stacks of depths and points. t is the top of the stack.
- const maxDepth = 5
- var (
- ds [maxDepth + 1]int
- ps [2*maxDepth + 3]fixed.Point26_6
- t int
- )
- // Initially the ps stack has one quadratic segment of depth zero.
- ds[0] = 0
- ps[2] = k.a
- ps[1] = b
- ps[0] = c
- anorm := k.anorm
- var cnorm fixed.Point26_6
-
- for {
- depth := ds[t]
- a := ps[2*t+2]
- b := ps[2*t+1]
- c := ps[2*t+0]
- ab := b.Sub(a)
- bc := c.Sub(b)
- abIsSmall := pDot(ab, ab) < fixed.Int52_12(1<<12)
- bcIsSmall := pDot(bc, bc) < fixed.Int52_12(1<<12)
- if abIsSmall && bcIsSmall {
- // Approximate the segment by a circular arc.
- cnorm = pRot90CCW(pNorm(bc, k.u))
- mac := midpoint(a, c)
- addArc(k.p, mac, anorm, cnorm)
- addArc(&k.r, mac, pNeg(anorm), pNeg(cnorm))
- } else if depth < maxDepth && angleGreaterThan45(ab, bc) {
- // Divide the segment in two and push both halves on the stack.
- mab := midpoint(a, b)
- mbc := midpoint(b, c)
- t++
- ds[t+0] = depth + 1
- ds[t-1] = depth + 1
- ps[2*t+2] = a
- ps[2*t+1] = mab
- ps[2*t+0] = midpoint(mab, mbc)
- ps[2*t-1] = mbc
- continue
- } else {
- // Translate the control points.
- bnorm := pRot90CCW(pNorm(c.Sub(a), k.u))
- cnorm = pRot90CCW(pNorm(bc, k.u))
- k.p.Add2(b.Add(bnorm), c.Add(cnorm))
- k.r.Add2(b.Sub(bnorm), c.Sub(cnorm))
- }
- if t == 0 {
- k.a, k.anorm = c, cnorm
- return
- }
- t--
- anorm = cnorm
- }
- panic("unreachable")
-}
-
-// Add1 adds a linear segment to the stroker.
-func (k *stroker) Add1(b fixed.Point26_6) {
- bnorm := pRot90CCW(pNorm(b.Sub(k.a), k.u))
- if len(k.r) == 0 {
- k.p.Start(k.a.Add(bnorm))
- k.r.Start(k.a.Sub(bnorm))
- } else {
- k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm)
- }
- k.p.Add1(b.Add(bnorm))
- k.r.Add1(b.Sub(bnorm))
- k.a, k.anorm = b, bnorm
-}
-
-// Add2 adds a quadratic segment to the stroker.
-func (k *stroker) Add2(b, c fixed.Point26_6) {
- ab := b.Sub(k.a)
- bc := c.Sub(b)
- abnorm := pRot90CCW(pNorm(ab, k.u))
- if len(k.r) == 0 {
- k.p.Start(k.a.Add(abnorm))
- k.r.Start(k.a.Sub(abnorm))
- } else {
- k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm)
- }
-
- // Approximate nearly-degenerate quadratics by linear segments.
- abIsSmall := pDot(ab, ab) < epsilon
- bcIsSmall := pDot(bc, bc) < epsilon
- if abIsSmall || bcIsSmall {
- acnorm := pRot90CCW(pNorm(c.Sub(k.a), k.u))
- k.p.Add1(c.Add(acnorm))
- k.r.Add1(c.Sub(acnorm))
- k.a, k.anorm = c, acnorm
- return
- }
-
- // The quadratic segment (k.a, b, c) has a point of maximum curvature.
- // If this occurs at an end point, we process the segment as a whole.
- t := curviest2(k.a, b, c)
- if t <= 0 || 4096 <= t {
- k.addNonCurvy2(b, c)
- return
- }
-
- // Otherwise, we perform a de Casteljau decomposition at the point of
- // maximum curvature and process the two straighter parts.
- mab := interpolate(k.a, b, t)
- mbc := interpolate(b, c, t)
- mabc := interpolate(mab, mbc, t)
-
- // If the vectors ab and bc are close to being in opposite directions,
- // then the decomposition can become unstable, so we approximate the
- // quadratic segment by two linear segments joined by an arc.
- bcnorm := pRot90CCW(pNorm(bc, k.u))
- if pDot(abnorm, bcnorm) < -fixed.Int52_12(k.u)*fixed.Int52_12(k.u)*2047/2048 {
- pArc := pDot(abnorm, bc) < 0
-
- k.p.Add1(mabc.Add(abnorm))
- if pArc {
- z := pRot90CW(abnorm)
- addArc(k.p, mabc, abnorm, z)
- addArc(k.p, mabc, z, bcnorm)
- }
- k.p.Add1(mabc.Add(bcnorm))
- k.p.Add1(c.Add(bcnorm))
-
- k.r.Add1(mabc.Sub(abnorm))
- if !pArc {
- z := pRot90CW(abnorm)
- addArc(&k.r, mabc, pNeg(abnorm), z)
- addArc(&k.r, mabc, z, pNeg(bcnorm))
- }
- k.r.Add1(mabc.Sub(bcnorm))
- k.r.Add1(c.Sub(bcnorm))
-
- k.a, k.anorm = c, bcnorm
- return
- }
-
- // Process the decomposed parts.
- k.addNonCurvy2(mab, mabc)
- k.addNonCurvy2(mbc, c)
-}
-
-// Add3 adds a cubic segment to the stroker.
-func (k *stroker) Add3(b, c, d fixed.Point26_6) {
- panic("freetype/raster: stroke unimplemented for cubic segments")
-}
-
-// stroke adds the stroked Path q to p, where q consists of exactly one curve.
-func (k *stroker) stroke(q Path) {
- // Stroking is implemented by deriving two paths each k.u apart from q.
- // The left-hand-side path is added immediately to k.p; the right-hand-side
- // path is accumulated in k.r. Once we've finished adding the LHS to k.p,
- // we add the RHS in reverse order.
- k.r = make(Path, 0, len(q))
- k.a = fixed.Point26_6{q[1], q[2]}
- for i := 4; i < len(q); {
- switch q[i] {
- case 1:
- k.Add1(
- fixed.Point26_6{q[i+1], q[i+2]},
- )
- i += 4
- case 2:
- k.Add2(
- fixed.Point26_6{q[i+1], q[i+2]},
- fixed.Point26_6{q[i+3], q[i+4]},
- )
- i += 6
- case 3:
- k.Add3(
- fixed.Point26_6{q[i+1], q[i+2]},
- fixed.Point26_6{q[i+3], q[i+4]},
- fixed.Point26_6{q[i+5], q[i+6]},
- )
- i += 8
- default:
- panic("freetype/raster: bad path")
- }
- }
- if len(k.r) == 0 {
- return
- }
- // TODO(nigeltao): if q is a closed curve then we should join the first and
- // last segments instead of capping them.
- k.cr.Cap(k.p, k.u, q.lastPoint(), pNeg(k.anorm))
- addPathReversed(k.p, k.r)
- pivot := q.firstPoint()
- k.cr.Cap(k.p, k.u, pivot, pivot.Sub(fixed.Point26_6{k.r[1], k.r[2]}))
-}
-
-// Stroke adds q stroked with the given width to p. The result is typically
-// self-intersecting and should be rasterized with UseNonZeroWinding.
-// cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner.
-func Stroke(p Adder, q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
- if len(q) == 0 {
- return
- }
- if cr == nil {
- cr = RoundCapper
- }
- if jr == nil {
- jr = RoundJoiner
- }
- if q[0] != 0 {
- panic("freetype/raster: bad path")
- }
- s := stroker{p: p, u: width / 2, cr: cr, jr: jr}
- i := 0
- for j := 4; j < len(q); {
- switch q[j] {
- case 0:
- s.stroke(q[i:j])
- i, j = j, j+4
- case 1:
- j += 4
- case 2:
- j += 6
- case 3:
- j += 8
- default:
- panic("freetype/raster: bad path")
- }
- }
- s.stroke(q[i:])
-}