summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/golang
diff options
context:
space:
mode:
authorChristopher Speller <crspeller@gmail.com>2016-05-12 15:08:58 -0400
committerChristopher Speller <crspeller@gmail.com>2016-05-12 16:37:29 -0400
commit84d2482ddbff9564c9ad75b2d30af66e3ddfd44d (patch)
tree8bfa567d2b6381f4a996ada2deff8a16aa85a3ac /vendor/github.com/golang
parentd1efb66ad7b017f0fbfe6f0c20843b30f396e504 (diff)
downloadchat-84d2482ddbff9564c9ad75b2d30af66e3ddfd44d.tar.gz
chat-84d2482ddbff9564c9ad75b2d30af66e3ddfd44d.tar.bz2
chat-84d2482ddbff9564c9ad75b2d30af66e3ddfd44d.zip
Updating go depencancies. Switching to go1.6 vendoring (#2949)
Diffstat (limited to 'vendor/github.com/golang')
-rw-r--r--vendor/github.com/golang/freetype/AUTHORS20
-rw-r--r--vendor/github.com/golang/freetype/CONTRIBUTORS38
-rw-r--r--vendor/github.com/golang/freetype/LICENSE12
-rw-r--r--vendor/github.com/golang/freetype/README21
-rw-r--r--vendor/github.com/golang/freetype/freetype.go341
-rw-r--r--vendor/github.com/golang/freetype/raster/geom.go245
-rw-r--r--vendor/github.com/golang/freetype/raster/paint.go287
-rw-r--r--vendor/github.com/golang/freetype/raster/raster.go601
-rw-r--r--vendor/github.com/golang/freetype/raster/stroke.go483
-rw-r--r--vendor/github.com/golang/freetype/truetype/face.go507
-rw-r--r--vendor/github.com/golang/freetype/truetype/glyph.go517
-rw-r--r--vendor/github.com/golang/freetype/truetype/hint.go1763
-rw-r--r--vendor/github.com/golang/freetype/truetype/opcodes.go289
-rw-r--r--vendor/github.com/golang/freetype/truetype/truetype.go643
-rw-r--r--vendor/github.com/golang/groupcache/LICENSE191
-rw-r--r--vendor/github.com/golang/groupcache/lru/lru.go121
16 files changed, 6079 insertions, 0 deletions
diff --git a/vendor/github.com/golang/freetype/AUTHORS b/vendor/github.com/golang/freetype/AUTHORS
new file mode 100644
index 000000000..5773ac7ed
--- /dev/null
+++ b/vendor/github.com/golang/freetype/AUTHORS
@@ -0,0 +1,20 @@
+# This is the official list of Freetype-Go authors for copyright purposes.
+# This file is distinct from the CONTRIBUTORS files.
+# See the latter for an explanation.
+#
+# Freetype-Go is derived from Freetype, which is written in C. The latter
+# is copyright 1996-2010 David Turner, Robert Wilhelm, and Werner Lemberg.
+
+# Names should be added to this file as
+# Name or Organization <email address>
+# The email address is not required for organizations.
+
+# Please keep the list sorted.
+
+Google Inc.
+Jeff R. Allen <jra@nella.org>
+Maksim Kochkin <maxxarts@gmail.com>
+Michael Fogleman <fogleman@gmail.com>
+Rémy Oudompheng <oudomphe@phare.normalesup.org>
+Roger Peppe <rogpeppe@gmail.com>
+Steven Edwards <steven@stephenwithav.com>
diff --git a/vendor/github.com/golang/freetype/CONTRIBUTORS b/vendor/github.com/golang/freetype/CONTRIBUTORS
new file mode 100644
index 000000000..7a1b0a278
--- /dev/null
+++ b/vendor/github.com/golang/freetype/CONTRIBUTORS
@@ -0,0 +1,38 @@
+# This is the official list of people who can contribute
+# (and typically have contributed) code to the Freetype-Go repository.
+# The AUTHORS file lists the copyright holders; this file
+# lists people. For example, Google employees are listed here
+# but not in AUTHORS, because Google holds the copyright.
+#
+# The submission process automatically checks to make sure
+# that people submitting code are listed in this file (by email address).
+#
+# Names should be added to this file only after verifying that
+# the individual or the individual's organization has agreed to
+# the appropriate Contributor License Agreement, found here:
+#
+# http://code.google.com/legal/individual-cla-v1.0.html
+# http://code.google.com/legal/corporate-cla-v1.0.html
+#
+# The agreement for individuals can be filled out on the web.
+#
+# When adding J Random Contributor's name to this file,
+# either J's name or J's organization's name should be
+# added to the AUTHORS file, depending on whether the
+# individual or corporate CLA was used.
+
+# Names should be added to this file like so:
+# Name <email address>
+
+# Please keep the list sorted.
+
+Andrew Gerrand <adg@golang.org>
+Jeff R. Allen <jra@nella.org> <jeff.allen@gmail.com>
+Maksim Kochkin <maxxarts@gmail.com>
+Michael Fogleman <fogleman@gmail.com>
+Nigel Tao <nigeltao@golang.org>
+Rémy Oudompheng <oudomphe@phare.normalesup.org> <remyoudompheng@gmail.com>
+Rob Pike <r@golang.org>
+Roger Peppe <rogpeppe@gmail.com>
+Russ Cox <rsc@golang.org>
+Steven Edwards <steven@stephenwithav.com>
diff --git a/vendor/github.com/golang/freetype/LICENSE b/vendor/github.com/golang/freetype/LICENSE
new file mode 100644
index 000000000..e854ba5db
--- /dev/null
+++ b/vendor/github.com/golang/freetype/LICENSE
@@ -0,0 +1,12 @@
+Use of the Freetype-Go software is subject to your choice of exactly one of
+the following two licenses:
+ * The FreeType License, which is similar to the original BSD license with
+ an advertising clause, or
+ * The GNU General Public License (GPL), version 2 or later.
+
+The text of these licenses are available in the licenses/ftl.txt and the
+licenses/gpl.txt files respectively. They are also available at
+http://freetype.sourceforge.net/license.html
+
+The Luxi fonts in the testdata directory are licensed separately. See the
+testdata/COPYING file for details.
diff --git a/vendor/github.com/golang/freetype/README b/vendor/github.com/golang/freetype/README
new file mode 100644
index 000000000..39b3d8250
--- /dev/null
+++ b/vendor/github.com/golang/freetype/README
@@ -0,0 +1,21 @@
+The Freetype font rasterizer in the Go programming language.
+
+To download and install from source:
+$ go get github.com/golang/freetype
+
+It is an incomplete port:
+ * It only supports TrueType fonts, and not Type 1 fonts nor bitmap fonts.
+ * It only supports the Unicode encoding.
+
+There are also some implementation differences:
+ * It uses a 26.6 fixed point co-ordinate system everywhere internally,
+ as opposed to the original Freetype's mix of 26.6 (or 10.6 for 16-bit
+ systems) in some places, and 24.8 in the "smooth" rasterizer.
+
+Freetype-Go is derived from Freetype, which is written in C. Freetype is
+copyright 1996-2010 David Turner, Robert Wilhelm, and Werner Lemberg.
+Freetype-Go is copyright The Freetype-Go Authors, who are listed in the
+AUTHORS file.
+
+Unless otherwise noted, the Freetype-Go source files are distributed
+under the BSD-style license found in the LICENSE file.
diff --git a/vendor/github.com/golang/freetype/freetype.go b/vendor/github.com/golang/freetype/freetype.go
new file mode 100644
index 000000000..bec01f6b7
--- /dev/null
+++ b/vendor/github.com/golang/freetype/freetype.go
@@ -0,0 +1,341 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+// The freetype package provides a convenient API to draw text onto an image.
+// Use the freetype/raster and freetype/truetype packages for lower level
+// control over rasterization and TrueType parsing.
+package freetype
+
+import (
+ "errors"
+ "image"
+ "image/draw"
+
+ "github.com/golang/freetype/raster"
+ "github.com/golang/freetype/truetype"
+ "golang.org/x/image/font"
+ "golang.org/x/image/math/fixed"
+)
+
+// These constants determine the size of the glyph cache. The cache is keyed
+// primarily by the glyph index modulo nGlyphs, and secondarily by sub-pixel
+// position for the mask image. Sub-pixel positions are quantized to
+// nXFractions possible values in both the x and y directions.
+const (
+ nGlyphs = 256
+ nXFractions = 4
+ nYFractions = 1
+)
+
+// An entry in the glyph cache is keyed explicitly by the glyph index and
+// implicitly by the quantized x and y fractional offset. It maps to a mask
+// image and an offset.
+type cacheEntry struct {
+ valid bool
+ glyph truetype.Index
+ advanceWidth fixed.Int26_6
+ mask *image.Alpha
+ offset image.Point
+}
+
+// ParseFont just calls the Parse function from the freetype/truetype package.
+// It is provided here so that code that imports this package doesn't need
+// to also include the freetype/truetype package.
+func ParseFont(b []byte) (*truetype.Font, error) {
+ return truetype.Parse(b)
+}
+
+// Pt converts from a co-ordinate pair measured in pixels to a fixed.Point26_6
+// co-ordinate pair measured in fixed.Int26_6 units.
+func Pt(x, y int) fixed.Point26_6 {
+ return fixed.Point26_6{
+ X: fixed.Int26_6(x << 6),
+ Y: fixed.Int26_6(y << 6),
+ }
+}
+
+// A Context holds the state for drawing text in a given font and size.
+type Context struct {
+ r *raster.Rasterizer
+ f *truetype.Font
+ glyphBuf truetype.GlyphBuf
+ // clip is the clip rectangle for drawing.
+ clip image.Rectangle
+ // dst and src are the destination and source images for drawing.
+ dst draw.Image
+ src image.Image
+ // fontSize and dpi are used to calculate scale. scale is the number of
+ // 26.6 fixed point units in 1 em. hinting is the hinting policy.
+ fontSize, dpi float64
+ scale fixed.Int26_6
+ hinting font.Hinting
+ // cache is the glyph cache.
+ cache [nGlyphs * nXFractions * nYFractions]cacheEntry
+}
+
+// PointToFixed converts the given number of points (as in "a 12 point font")
+// into a 26.6 fixed point number of pixels.
+func (c *Context) PointToFixed(x float64) fixed.Int26_6 {
+ return fixed.Int26_6(x * float64(c.dpi) * (64.0 / 72.0))
+}
+
+// drawContour draws the given closed contour with the given offset.
+func (c *Context) drawContour(ps []truetype.Point, dx, dy fixed.Int26_6) {
+ if len(ps) == 0 {
+ return
+ }
+
+ // The low bit of each point's Flags value is whether the point is on the
+ // curve. Truetype fonts only have quadratic Bézier curves, not cubics.
+ // Thus, two consecutive off-curve points imply an on-curve point in the
+ // middle of those two.
+ //
+ // See http://chanae.walon.org/pub/ttf/ttf_glyphs.htm for more details.
+
+ // ps[0] is a truetype.Point measured in FUnits and positive Y going
+ // upwards. start is the same thing measured in fixed point units and
+ // positive Y going downwards, and offset by (dx, dy).
+ start := fixed.Point26_6{
+ X: dx + ps[0].X,
+ Y: dy - ps[0].Y,
+ }
+ others := []truetype.Point(nil)
+ if ps[0].Flags&0x01 != 0 {
+ others = ps[1:]
+ } else {
+ last := fixed.Point26_6{
+ X: dx + ps[len(ps)-1].X,
+ Y: dy - ps[len(ps)-1].Y,
+ }
+ if ps[len(ps)-1].Flags&0x01 != 0 {
+ start = last
+ others = ps[:len(ps)-1]
+ } else {
+ start = fixed.Point26_6{
+ X: (start.X + last.X) / 2,
+ Y: (start.Y + last.Y) / 2,
+ }
+ others = ps
+ }
+ }
+ c.r.Start(start)
+ q0, on0 := start, true
+ for _, p := range others {
+ q := fixed.Point26_6{
+ X: dx + p.X,
+ Y: dy - p.Y,
+ }
+ on := p.Flags&0x01 != 0
+ if on {
+ if on0 {
+ c.r.Add1(q)
+ } else {
+ c.r.Add2(q0, q)
+ }
+ } else {
+ if on0 {
+ // No-op.
+ } else {
+ mid := fixed.Point26_6{
+ X: (q0.X + q.X) / 2,
+ Y: (q0.Y + q.Y) / 2,
+ }
+ c.r.Add2(q0, mid)
+ }
+ }
+ q0, on0 = q, on
+ }
+ // Close the curve.
+ if on0 {
+ c.r.Add1(start)
+ } else {
+ c.r.Add2(q0, start)
+ }
+}
+
+// rasterize returns the advance width, glyph mask and integer-pixel offset
+// to render the given glyph at the given sub-pixel offsets.
+// The 26.6 fixed point arguments fx and fy must be in the range [0, 1).
+func (c *Context) rasterize(glyph truetype.Index, fx, fy fixed.Int26_6) (
+ fixed.Int26_6, *image.Alpha, image.Point, error) {
+
+ if err := c.glyphBuf.Load(c.f, c.scale, glyph, c.hinting); err != nil {
+ return 0, nil, image.Point{}, err
+ }
+ // Calculate the integer-pixel bounds for the glyph.
+ xmin := int(fx+c.glyphBuf.Bounds.Min.X) >> 6
+ ymin := int(fy-c.glyphBuf.Bounds.Max.Y) >> 6
+ xmax := int(fx+c.glyphBuf.Bounds.Max.X+0x3f) >> 6
+ ymax := int(fy-c.glyphBuf.Bounds.Min.Y+0x3f) >> 6
+ if xmin > xmax || ymin > ymax {
+ return 0, nil, image.Point{}, errors.New("freetype: negative sized glyph")
+ }
+ // A TrueType's glyph's nodes can have negative co-ordinates, but the
+ // rasterizer clips anything left of x=0 or above y=0. xmin and ymin are
+ // the pixel offsets, based on the font's FUnit metrics, that let a
+ // negative co-ordinate in TrueType space be non-negative in rasterizer
+ // space. xmin and ymin are typically <= 0.
+ fx -= fixed.Int26_6(xmin << 6)
+ fy -= fixed.Int26_6(ymin << 6)
+ // Rasterize the glyph's vectors.
+ c.r.Clear()
+ e0 := 0
+ for _, e1 := range c.glyphBuf.Ends {
+ c.drawContour(c.glyphBuf.Points[e0:e1], fx, fy)
+ e0 = e1
+ }
+ a := image.NewAlpha(image.Rect(0, 0, xmax-xmin, ymax-ymin))
+ c.r.Rasterize(raster.NewAlphaSrcPainter(a))
+ return c.glyphBuf.AdvanceWidth, a, image.Point{xmin, ymin}, nil
+}
+
+// glyph returns the advance width, glyph mask and integer-pixel offset to
+// render the given glyph at the given sub-pixel point. It is a cache for the
+// rasterize method. Unlike rasterize, p's co-ordinates do not have to be in
+// the range [0, 1).
+func (c *Context) glyph(glyph truetype.Index, p fixed.Point26_6) (
+ fixed.Int26_6, *image.Alpha, image.Point, error) {
+
+ // Split p.X and p.Y into their integer and fractional parts.
+ ix, fx := int(p.X>>6), p.X&0x3f
+ iy, fy := int(p.Y>>6), p.Y&0x3f
+ // Calculate the index t into the cache array.
+ tg := int(glyph) % nGlyphs
+ tx := int(fx) / (64 / nXFractions)
+ ty := int(fy) / (64 / nYFractions)
+ t := ((tg*nXFractions)+tx)*nYFractions + ty
+ // Check for a cache hit.
+ if e := c.cache[t]; e.valid && e.glyph == glyph {
+ return e.advanceWidth, e.mask, e.offset.Add(image.Point{ix, iy}), nil
+ }
+ // Rasterize the glyph and put the result into the cache.
+ advanceWidth, mask, offset, err := c.rasterize(glyph, fx, fy)
+ if err != nil {
+ return 0, nil, image.Point{}, err
+ }
+ c.cache[t] = cacheEntry{true, glyph, advanceWidth, mask, offset}
+ return advanceWidth, mask, offset.Add(image.Point{ix, iy}), nil
+}
+
+// DrawString draws s at p and returns p advanced by the text extent. The text
+// is placed so that the left edge of the em square of the first character of s
+// and the baseline intersect at p. The majority of the affected pixels will be
+// above and to the right of the point, but some may be below or to the left.
+// For example, drawing a string that starts with a 'J' in an italic font may
+// affect pixels below and left of the point.
+//
+// p is a fixed.Point26_6 and can therefore represent sub-pixel positions.
+func (c *Context) DrawString(s string, p fixed.Point26_6) (fixed.Point26_6, error) {
+ if c.f == nil {
+ return fixed.Point26_6{}, errors.New("freetype: DrawText called with a nil font")
+ }
+ prev, hasPrev := truetype.Index(0), false
+ for _, rune := range s {
+ index := c.f.Index(rune)
+ if hasPrev {
+ kern := c.f.Kern(c.scale, prev, index)
+ if c.hinting != font.HintingNone {
+ kern = (kern + 32) &^ 63
+ }
+ p.X += kern
+ }
+ advanceWidth, mask, offset, err := c.glyph(index, p)
+ if err != nil {
+ return fixed.Point26_6{}, err
+ }
+ p.X += advanceWidth
+ glyphRect := mask.Bounds().Add(offset)
+ dr := c.clip.Intersect(glyphRect)
+ if !dr.Empty() {
+ mp := image.Point{0, dr.Min.Y - glyphRect.Min.Y}
+ draw.DrawMask(c.dst, dr, c.src, image.ZP, mask, mp, draw.Over)
+ }
+ prev, hasPrev = index, true
+ }
+ return p, nil
+}
+
+// recalc recalculates scale and bounds values from the font size, screen
+// resolution and font metrics, and invalidates the glyph cache.
+func (c *Context) recalc() {
+ c.scale = fixed.Int26_6(c.fontSize * c.dpi * (64.0 / 72.0))
+ if c.f == nil {
+ c.r.SetBounds(0, 0)
+ } else {
+ // Set the rasterizer's bounds to be big enough to handle the largest glyph.
+ b := c.f.Bounds(c.scale)
+ xmin := +int(b.Min.X) >> 6
+ ymin := -int(b.Max.Y) >> 6
+ xmax := +int(b.Max.X+63) >> 6
+ ymax := -int(b.Min.Y-63) >> 6
+ c.r.SetBounds(xmax-xmin, ymax-ymin)
+ }
+ for i := range c.cache {
+ c.cache[i] = cacheEntry{}
+ }
+}
+
+// SetDPI sets the screen resolution in dots per inch.
+func (c *Context) SetDPI(dpi float64) {
+ if c.dpi == dpi {
+ return
+ }
+ c.dpi = dpi
+ c.recalc()
+}
+
+// SetFont sets the font used to draw text.
+func (c *Context) SetFont(f *truetype.Font) {
+ if c.f == f {
+ return
+ }
+ c.f = f
+ c.recalc()
+}
+
+// SetFontSize sets the font size in points (as in "a 12 point font").
+func (c *Context) SetFontSize(fontSize float64) {
+ if c.fontSize == fontSize {
+ return
+ }
+ c.fontSize = fontSize
+ c.recalc()
+}
+
+// SetHinting sets the hinting policy.
+func (c *Context) SetHinting(hinting font.Hinting) {
+ c.hinting = hinting
+ for i := range c.cache {
+ c.cache[i] = cacheEntry{}
+ }
+}
+
+// SetDst sets the destination image for draw operations.
+func (c *Context) SetDst(dst draw.Image) {
+ c.dst = dst
+}
+
+// SetSrc sets the source image for draw operations. This is typically an
+// image.Uniform.
+func (c *Context) SetSrc(src image.Image) {
+ c.src = src
+}
+
+// SetClip sets the clip rectangle for drawing.
+func (c *Context) SetClip(clip image.Rectangle) {
+ c.clip = clip
+}
+
+// TODO(nigeltao): implement Context.SetGamma.
+
+// NewContext creates a new Context.
+func NewContext() *Context {
+ return &Context{
+ r: raster.NewRasterizer(0, 0),
+ fontSize: 12,
+ dpi: 72,
+ scale: 12 << 6,
+ }
+}
diff --git a/vendor/github.com/golang/freetype/raster/geom.go b/vendor/github.com/golang/freetype/raster/geom.go
new file mode 100644
index 000000000..f3696ea98
--- /dev/null
+++ b/vendor/github.com/golang/freetype/raster/geom.go
@@ -0,0 +1,245 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+package raster
+
+import (
+ "fmt"
+ "math"
+
+ "golang.org/x/image/math/fixed"
+)
+
+// maxAbs returns the maximum of abs(a) and abs(b).
+func maxAbs(a, b fixed.Int26_6) fixed.Int26_6 {
+ if a < 0 {
+ a = -a
+ }
+ if b < 0 {
+ b = -b
+ }
+ if a < b {
+ return b
+ }
+ return a
+}
+
+// pNeg returns the vector -p, or equivalently p rotated by 180 degrees.
+func pNeg(p fixed.Point26_6) fixed.Point26_6 {
+ return fixed.Point26_6{-p.X, -p.Y}
+}
+
+// pDot returns the dot product p·q.
+func pDot(p fixed.Point26_6, q fixed.Point26_6) fixed.Int52_12 {
+ px, py := int64(p.X), int64(p.Y)
+ qx, qy := int64(q.X), int64(q.Y)
+ return fixed.Int52_12(px*qx + py*qy)
+}
+
+// pLen returns the length of the vector p.
+func pLen(p fixed.Point26_6) fixed.Int26_6 {
+ // TODO(nigeltao): use fixed point math.
+ x := float64(p.X)
+ y := float64(p.Y)
+ return fixed.Int26_6(math.Sqrt(x*x + y*y))
+}
+
+// pNorm returns the vector p normalized to the given length, or zero if p is
+// degenerate.
+func pNorm(p fixed.Point26_6, length fixed.Int26_6) fixed.Point26_6 {
+ d := pLen(p)
+ if d == 0 {
+ return fixed.Point26_6{}
+ }
+ s, t := int64(length), int64(d)
+ x := int64(p.X) * s / t
+ y := int64(p.Y) * s / t
+ return fixed.Point26_6{fixed.Int26_6(x), fixed.Int26_6(y)}
+}
+
+// pRot45CW returns the vector p rotated clockwise by 45 degrees.
+//
+// Note that the Y-axis grows downwards, so {1, 0}.Rot45CW is {1/√2, 1/√2}.
+func pRot45CW(p fixed.Point26_6) fixed.Point26_6 {
+ // 181/256 is approximately 1/√2, or sin(π/4).
+ px, py := int64(p.X), int64(p.Y)
+ qx := (+px - py) * 181 / 256
+ qy := (+px + py) * 181 / 256
+ return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
+}
+
+// pRot90CW returns the vector p rotated clockwise by 90 degrees.
+//
+// Note that the Y-axis grows downwards, so {1, 0}.Rot90CW is {0, 1}.
+func pRot90CW(p fixed.Point26_6) fixed.Point26_6 {
+ return fixed.Point26_6{-p.Y, p.X}
+}
+
+// pRot135CW returns the vector p rotated clockwise by 135 degrees.
+//
+// Note that the Y-axis grows downwards, so {1, 0}.Rot135CW is {-1/√2, 1/√2}.
+func pRot135CW(p fixed.Point26_6) fixed.Point26_6 {
+ // 181/256 is approximately 1/√2, or sin(π/4).
+ px, py := int64(p.X), int64(p.Y)
+ qx := (-px - py) * 181 / 256
+ qy := (+px - py) * 181 / 256
+ return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
+}
+
+// pRot45CCW returns the vector p rotated counter-clockwise by 45 degrees.
+//
+// Note that the Y-axis grows downwards, so {1, 0}.Rot45CCW is {1/√2, -1/√2}.
+func pRot45CCW(p fixed.Point26_6) fixed.Point26_6 {
+ // 181/256 is approximately 1/√2, or sin(π/4).
+ px, py := int64(p.X), int64(p.Y)
+ qx := (+px + py) * 181 / 256
+ qy := (-px + py) * 181 / 256
+ return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
+}
+
+// pRot90CCW returns the vector p rotated counter-clockwise by 90 degrees.
+//
+// Note that the Y-axis grows downwards, so {1, 0}.Rot90CCW is {0, -1}.
+func pRot90CCW(p fixed.Point26_6) fixed.Point26_6 {
+ return fixed.Point26_6{p.Y, -p.X}
+}
+
+// pRot135CCW returns the vector p rotated counter-clockwise by 135 degrees.
+//
+// Note that the Y-axis grows downwards, so {1, 0}.Rot135CCW is {-1/√2, -1/√2}.
+func pRot135CCW(p fixed.Point26_6) fixed.Point26_6 {
+ // 181/256 is approximately 1/√2, or sin(π/4).
+ px, py := int64(p.X), int64(p.Y)
+ qx := (-px + py) * 181 / 256
+ qy := (-px - py) * 181 / 256
+ return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
+}
+
+// An Adder accumulates points on a curve.
+type Adder interface {
+ // Start starts a new curve at the given point.
+ Start(a fixed.Point26_6)
+ // Add1 adds a linear segment to the current curve.
+ Add1(b fixed.Point26_6)
+ // Add2 adds a quadratic segment to the current curve.
+ Add2(b, c fixed.Point26_6)
+ // Add3 adds a cubic segment to the current curve.
+ Add3(b, c, d fixed.Point26_6)
+}
+
+// A Path is a sequence of curves, and a curve is a start point followed by a
+// sequence of linear, quadratic or cubic segments.
+type Path []fixed.Int26_6
+
+// String returns a human-readable representation of a Path.
+func (p Path) String() string {
+ s := ""
+ for i := 0; i < len(p); {
+ if i != 0 {
+ s += " "
+ }
+ switch p[i] {
+ case 0:
+ s += "S0" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+3]))
+ i += 4
+ case 1:
+ s += "A1" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+3]))
+ i += 4
+ case 2:
+ s += "A2" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+5]))
+ i += 6
+ case 3:
+ s += "A3" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+7]))
+ i += 8
+ default:
+ panic("freetype/raster: bad path")
+ }
+ }
+ return s
+}
+
+// Clear cancels any previous calls to p.Start or p.AddXxx.
+func (p *Path) Clear() {
+ *p = (*p)[:0]
+}
+
+// Start starts a new curve at the given point.
+func (p *Path) Start(a fixed.Point26_6) {
+ *p = append(*p, 0, a.X, a.Y, 0)
+}
+
+// Add1 adds a linear segment to the current curve.
+func (p *Path) Add1(b fixed.Point26_6) {
+ *p = append(*p, 1, b.X, b.Y, 1)
+}
+
+// Add2 adds a quadratic segment to the current curve.
+func (p *Path) Add2(b, c fixed.Point26_6) {
+ *p = append(*p, 2, b.X, b.Y, c.X, c.Y, 2)
+}
+
+// Add3 adds a cubic segment to the current curve.
+func (p *Path) Add3(b, c, d fixed.Point26_6) {
+ *p = append(*p, 3, b.X, b.Y, c.X, c.Y, d.X, d.Y, 3)
+}
+
+// AddPath adds the Path q to p.
+func (p *Path) AddPath(q Path) {
+ *p = append(*p, q...)
+}
+
+// AddStroke adds a stroked Path.
+func (p *Path) AddStroke(q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
+ Stroke(p, q, width, cr, jr)
+}
+
+// firstPoint returns the first point in a non-empty Path.
+func (p Path) firstPoint() fixed.Point26_6 {
+ return fixed.Point26_6{p[1], p[2]}
+}
+
+// lastPoint returns the last point in a non-empty Path.
+func (p Path) lastPoint() fixed.Point26_6 {
+ return fixed.Point26_6{p[len(p)-3], p[len(p)-2]}
+}
+
+// addPathReversed adds q reversed to p.
+// For example, if q consists of a linear segment from A to B followed by a
+// quadratic segment from B to C to D, then the values of q looks like:
+// index: 01234567890123
+// value: 0AA01BB12CCDD2
+// So, when adding q backwards to p, we want to Add2(C, B) followed by Add1(A).
+func addPathReversed(p Adder, q Path) {
+ if len(q) == 0 {
+ return
+ }
+ i := len(q) - 1
+ for {
+ switch q[i] {
+ case 0:
+ return
+ case 1:
+ i -= 4
+ p.Add1(
+ fixed.Point26_6{q[i-2], q[i-1]},
+ )
+ case 2:
+ i -= 6
+ p.Add2(
+ fixed.Point26_6{q[i+2], q[i+3]},
+ fixed.Point26_6{q[i-2], q[i-1]},
+ )
+ case 3:
+ i -= 8
+ p.Add3(
+ fixed.Point26_6{q[i+4], q[i+5]},
+ fixed.Point26_6{q[i+2], q[i+3]},
+ fixed.Point26_6{q[i-2], q[i-1]},
+ )
+ default:
+ panic("freetype/raster: bad path")
+ }
+ }
+}
diff --git a/vendor/github.com/golang/freetype/raster/paint.go b/vendor/github.com/golang/freetype/raster/paint.go
new file mode 100644
index 000000000..652256cca
--- /dev/null
+++ b/vendor/github.com/golang/freetype/raster/paint.go
@@ -0,0 +1,287 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+package raster
+
+import (
+ "image"
+ "image/color"
+ "image/draw"
+ "math"
+)
+
+// A Span is a horizontal segment of pixels with constant alpha. X0 is an
+// inclusive bound and X1 is exclusive, the same as for slices. A fully opaque
+// Span has Alpha == 0xffff.
+type Span struct {
+ Y, X0, X1 int
+ Alpha uint32
+}
+
+// A Painter knows how to paint a batch of Spans. Rasterization may involve
+// Painting multiple batches, and done will be true for the final batch. The
+// Spans' Y values are monotonically increasing during a rasterization. Paint
+// may use all of ss as scratch space during the call.
+type Painter interface {
+ Paint(ss []Span, done bool)
+}
+
+// The PainterFunc type adapts an ordinary function to the Painter interface.
+type PainterFunc func(ss []Span, done bool)
+
+// Paint just delegates the call to f.
+func (f PainterFunc) Paint(ss []Span, done bool) { f(ss, done) }
+
+// An AlphaOverPainter is a Painter that paints Spans onto a *image.Alpha using
+// the Over Porter-Duff composition operator.
+type AlphaOverPainter struct {
+ Image *image.Alpha
+}
+
+// Paint satisfies the Painter interface.
+func (r AlphaOverPainter) Paint(ss []Span, done bool) {
+ b := r.Image.Bounds()
+ for _, s := range ss {
+ if s.Y < b.Min.Y {
+ continue
+ }
+ if s.Y >= b.Max.Y {
+ return
+ }
+ if s.X0 < b.Min.X {
+ s.X0 = b.Min.X
+ }
+ if s.X1 > b.Max.X {
+ s.X1 = b.Max.X
+ }
+ if s.X0 >= s.X1 {
+ continue
+ }
+ base := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride - r.Image.Rect.Min.X
+ p := r.Image.Pix[base+s.X0 : base+s.X1]
+ a := int(s.Alpha >> 8)
+ for i, c := range p {
+ v := int(c)
+ p[i] = uint8((v*255 + (255-v)*a) / 255)
+ }
+ }
+}
+
+// NewAlphaOverPainter creates a new AlphaOverPainter for the given image.
+func NewAlphaOverPainter(m *image.Alpha) AlphaOverPainter {
+ return AlphaOverPainter{m}
+}
+
+// An AlphaSrcPainter is a Painter that paints Spans onto a *image.Alpha using
+// the Src Porter-Duff composition operator.
+type AlphaSrcPainter struct {
+ Image *image.Alpha
+}
+
+// Paint satisfies the Painter interface.
+func (r AlphaSrcPainter) Paint(ss []Span, done bool) {
+ b := r.Image.Bounds()
+ for _, s := range ss {
+ if s.Y < b.Min.Y {
+ continue
+ }
+ if s.Y >= b.Max.Y {
+ return
+ }
+ if s.X0 < b.Min.X {
+ s.X0 = b.Min.X
+ }
+ if s.X1 > b.Max.X {
+ s.X1 = b.Max.X
+ }
+ if s.X0 >= s.X1 {
+ continue
+ }
+ base := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride - r.Image.Rect.Min.X
+ p := r.Image.Pix[base+s.X0 : base+s.X1]
+ color := uint8(s.Alpha >> 8)
+ for i := range p {
+ p[i] = color
+ }
+ }
+}
+
+// NewAlphaSrcPainter creates a new AlphaSrcPainter for the given image.
+func NewAlphaSrcPainter(m *image.Alpha) AlphaSrcPainter {
+ return AlphaSrcPainter{m}
+}
+
+// An RGBAPainter is a Painter that paints Spans onto a *image.RGBA.
+type RGBAPainter struct {
+ // Image is the image to compose onto.
+ Image *image.RGBA
+ // Op is the Porter-Duff composition operator.
+ Op draw.Op
+ // cr, cg, cb and ca are the 16-bit color to paint the spans.
+ cr, cg, cb, ca uint32
+}
+
+// Paint satisfies the Painter interface.
+func (r *RGBAPainter) Paint(ss []Span, done bool) {
+ b := r.Image.Bounds()
+ for _, s := range ss {
+ if s.Y < b.Min.Y {
+ continue
+ }
+ if s.Y >= b.Max.Y {
+ return
+ }
+ if s.X0 < b.Min.X {
+ s.X0 = b.Min.X
+ }
+ if s.X1 > b.Max.X {
+ s.X1 = b.Max.X
+ }
+ if s.X0 >= s.X1 {
+ continue
+ }
+ // This code mimics drawGlyphOver in $GOROOT/src/image/draw/draw.go.
+ ma := s.Alpha
+ const m = 1<<16 - 1
+ i0 := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride + (s.X0-r.Image.Rect.Min.X)*4
+ i1 := i0 + (s.X1-s.X0)*4
+ if r.Op == draw.Over {
+ for i := i0; i < i1; i += 4 {
+ dr := uint32(r.Image.Pix[i+0])
+ dg := uint32(r.Image.Pix[i+1])
+ db := uint32(r.Image.Pix[i+2])
+ da := uint32(r.Image.Pix[i+3])
+ a := (m - (r.ca * ma / m)) * 0x101
+ r.Image.Pix[i+0] = uint8((dr*a + r.cr*ma) / m >> 8)
+ r.Image.Pix[i+1] = uint8((dg*a + r.cg*ma) / m >> 8)
+ r.Image.Pix[i+2] = uint8((db*a + r.cb*ma) / m >> 8)
+ r.Image.Pix[i+3] = uint8((da*a + r.ca*ma) / m >> 8)
+ }
+ } else {
+ for i := i0; i < i1; i += 4 {
+ r.Image.Pix[i+0] = uint8(r.cr * ma / m >> 8)
+ r.Image.Pix[i+1] = uint8(r.cg * ma / m >> 8)
+ r.Image.Pix[i+2] = uint8(r.cb * ma / m >> 8)
+ r.Image.Pix[i+3] = uint8(r.ca * ma / m >> 8)
+ }
+ }
+ }
+}
+
+// SetColor sets the color to paint the spans.
+func (r *RGBAPainter) SetColor(c color.Color) {
+ r.cr, r.cg, r.cb, r.ca = c.RGBA()
+}
+
+// NewRGBAPainter creates a new RGBAPainter for the given image.
+func NewRGBAPainter(m *image.RGBA) *RGBAPainter {
+ return &RGBAPainter{Image: m}
+}
+
+// A MonochromePainter wraps another Painter, quantizing each Span's alpha to
+// be either fully opaque or fully transparent.
+type MonochromePainter struct {
+ Painter Painter
+ y, x0, x1 int
+}
+
+// Paint delegates to the wrapped Painter after quantizing each Span's alpha
+// value and merging adjacent fully opaque Spans.
+func (m *MonochromePainter) Paint(ss []Span, done bool) {
+ // We compact the ss slice, discarding any Spans whose alpha quantizes to zero.
+ j := 0
+ for _, s := range ss {
+ if s.Alpha >= 0x8000 {
+ if m.y == s.Y && m.x1 == s.X0 {
+ m.x1 = s.X1
+ } else {
+ ss[j] = Span{m.y, m.x0, m.x1, 1<<16 - 1}
+ j++
+ m.y, m.x0, m.x1 = s.Y, s.X0, s.X1
+ }
+ }
+ }
+ if done {
+ // Flush the accumulated Span.
+ finalSpan := Span{m.y, m.x0, m.x1, 1<<16 - 1}
+ if j < len(ss) {
+ ss[j] = finalSpan
+ j++
+ m.Painter.Paint(ss[:j], true)
+ } else if j == len(ss) {
+ m.Painter.Paint(ss, false)
+ if cap(ss) > 0 {
+ ss = ss[:1]
+ } else {
+ ss = make([]Span, 1)
+ }
+ ss[0] = finalSpan
+ m.Painter.Paint(ss, true)
+ } else {
+ panic("unreachable")
+ }
+ // Reset the accumulator, so that this Painter can be re-used.
+ m.y, m.x0, m.x1 = 0, 0, 0
+ } else {
+ m.Painter.Paint(ss[:j], false)
+ }
+}
+
+// NewMonochromePainter creates a new MonochromePainter that wraps the given
+// Painter.
+func NewMonochromePainter(p Painter) *MonochromePainter {
+ return &MonochromePainter{Painter: p}
+}
+
+// A GammaCorrectionPainter wraps another Painter, performing gamma-correction
+// on each Span's alpha value.
+type GammaCorrectionPainter struct {
+ // Painter is the wrapped Painter.
+ Painter Painter
+ // a is the precomputed alpha values for linear interpolation, with fully
+ // opaque == 0xffff.
+ a [256]uint16
+ // gammaIsOne is whether gamma correction is a no-op.
+ gammaIsOne bool
+}
+
+// Paint delegates to the wrapped Painter after performing gamma-correction on
+// each Span.
+func (g *GammaCorrectionPainter) Paint(ss []Span, done bool) {
+ if !g.gammaIsOne {
+ const n = 0x101
+ for i, s := range ss {
+ if s.Alpha == 0 || s.Alpha == 0xffff {
+ continue
+ }
+ p, q := s.Alpha/n, s.Alpha%n
+ // The resultant alpha is a linear interpolation of g.a[p] and g.a[p+1].
+ a := uint32(g.a[p])*(n-q) + uint32(g.a[p+1])*q
+ ss[i].Alpha = (a + n/2) / n
+ }
+ }
+ g.Painter.Paint(ss, done)
+}
+
+// SetGamma sets the gamma value.
+func (g *GammaCorrectionPainter) SetGamma(gamma float64) {
+ g.gammaIsOne = gamma == 1
+ if g.gammaIsOne {
+ return
+ }
+ for i := 0; i < 256; i++ {
+ a := float64(i) / 0xff
+ a = math.Pow(a, gamma)
+ g.a[i] = uint16(0xffff * a)
+ }
+}
+
+// NewGammaCorrectionPainter creates a new GammaCorrectionPainter that wraps
+// the given Painter.
+func NewGammaCorrectionPainter(p Painter, gamma float64) *GammaCorrectionPainter {
+ g := &GammaCorrectionPainter{Painter: p}
+ g.SetGamma(gamma)
+ return g
+}
diff --git a/vendor/github.com/golang/freetype/raster/raster.go b/vendor/github.com/golang/freetype/raster/raster.go
new file mode 100644
index 000000000..995925e2a
--- /dev/null
+++ b/vendor/github.com/golang/freetype/raster/raster.go
@@ -0,0 +1,601 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+// Package raster provides an anti-aliasing 2-D rasterizer.
+//
+// It is part of the larger Freetype suite of font-related packages, but the
+// raster package is not specific to font rasterization, and can be used
+// standalone without any other Freetype package.
+//
+// Rasterization is done by the same area/coverage accumulation algorithm as
+// the Freetype "smooth" module, and the Anti-Grain Geometry library. A
+// description of the area/coverage algorithm is at
+// http://projects.tuxee.net/cl-vectors/section-the-cl-aa-algorithm
+package raster
+
+import (
+ "strconv"
+
+ "golang.org/x/image/math/fixed"
+)
+
+// A cell is part of a linked list (for a given yi co-ordinate) of accumulated
+// area/coverage for the pixel at (xi, yi).
+type cell struct {
+ xi int
+ area, cover int
+ next int
+}
+
+type Rasterizer struct {
+ // If false, the default behavior is to use the even-odd winding fill
+ // rule during Rasterize.
+ UseNonZeroWinding bool
+ // An offset (in pixels) to the painted spans.
+ Dx, Dy int
+
+ // The width of the Rasterizer. The height is implicit in len(cellIndex).
+ width int
+ // splitScaleN is the scaling factor used to determine how many times
+ // to decompose a quadratic or cubic segment into a linear approximation.
+ splitScale2, splitScale3 int
+
+ // The current pen position.
+ a fixed.Point26_6
+ // The current cell and its area/coverage being accumulated.
+ xi, yi int
+ area, cover int
+
+ // Saved cells.
+ cell []cell
+ // Linked list of cells, one per row.
+ cellIndex []int
+ // Buffers.
+ cellBuf [256]cell
+ cellIndexBuf [64]int
+ spanBuf [64]Span
+}
+
+// findCell returns the index in r.cell for the cell corresponding to
+// (r.xi, r.yi). The cell is created if necessary.
+func (r *Rasterizer) findCell() int {
+ if r.yi < 0 || r.yi >= len(r.cellIndex) {
+ return -1
+ }
+ xi := r.xi
+ if xi < 0 {
+ xi = -1
+ } else if xi > r.width {
+ xi = r.width
+ }
+ i, prev := r.cellIndex[r.yi], -1
+ for i != -1 && r.cell[i].xi <= xi {
+ if r.cell[i].xi == xi {
+ return i
+ }
+ i, prev = r.cell[i].next, i
+ }
+ c := len(r.cell)
+ if c == cap(r.cell) {
+ buf := make([]cell, c, 4*c)
+ copy(buf, r.cell)
+ r.cell = buf[0 : c+1]
+ } else {
+ r.cell = r.cell[0 : c+1]
+ }
+ r.cell[c] = cell{xi, 0, 0, i}
+ if prev == -1 {
+ r.cellIndex[r.yi] = c
+ } else {
+ r.cell[prev].next = c
+ }
+ return c
+}
+
+// saveCell saves any accumulated r.area/r.cover for (r.xi, r.yi).
+func (r *Rasterizer) saveCell() {
+ if r.area != 0 || r.cover != 0 {
+ i := r.findCell()
+ if i != -1 {
+ r.cell[i].area += r.area
+ r.cell[i].cover += r.cover
+ }
+ r.area = 0
+ r.cover = 0
+ }
+}
+
+// setCell sets the (xi, yi) cell that r is accumulating area/coverage for.
+func (r *Rasterizer) setCell(xi, yi int) {
+ if r.xi != xi || r.yi != yi {
+ r.saveCell()
+ r.xi, r.yi = xi, yi
+ }
+}
+
+// scan accumulates area/coverage for the yi'th scanline, going from
+// x0 to x1 in the horizontal direction (in 26.6 fixed point co-ordinates)
+// and from y0f to y1f fractional vertical units within that scanline.
+func (r *Rasterizer) scan(yi int, x0, y0f, x1, y1f fixed.Int26_6) {
+ // Break the 26.6 fixed point X co-ordinates into integral and fractional parts.
+ x0i := int(x0) / 64
+ x0f := x0 - fixed.Int26_6(64*x0i)
+ x1i := int(x1) / 64
+ x1f := x1 - fixed.Int26_6(64*x1i)
+
+ // A perfectly horizontal scan.
+ if y0f == y1f {
+ r.setCell(x1i, yi)
+ return
+ }
+ dx, dy := x1-x0, y1f-y0f
+ // A single cell scan.
+ if x0i == x1i {
+ r.area += int((x0f + x1f) * dy)
+ r.cover += int(dy)
+ return
+ }
+ // There are at least two cells. Apart from the first and last cells,
+ // all intermediate cells go through the full width of the cell,
+ // or 64 units in 26.6 fixed point format.
+ var (
+ p, q, edge0, edge1 fixed.Int26_6
+ xiDelta int
+ )
+ if dx > 0 {
+ p, q = (64-x0f)*dy, dx
+ edge0, edge1, xiDelta = 0, 64, 1
+ } else {
+ p, q = x0f*dy, -dx
+ edge0, edge1, xiDelta = 64, 0, -1
+ }
+ yDelta, yRem := p/q, p%q
+ if yRem < 0 {
+ yDelta -= 1
+ yRem += q
+ }
+ // Do the first cell.
+ xi, y := x0i, y0f
+ r.area += int((x0f + edge1) * yDelta)
+ r.cover += int(yDelta)
+ xi, y = xi+xiDelta, y+yDelta
+ r.setCell(xi, yi)
+ if xi != x1i {
+ // Do all the intermediate cells.
+ p = 64 * (y1f - y + yDelta)
+ fullDelta, fullRem := p/q, p%q
+ if fullRem < 0 {
+ fullDelta -= 1
+ fullRem += q
+ }
+ yRem -= q
+ for xi != x1i {
+ yDelta = fullDelta
+ yRem += fullRem
+ if yRem >= 0 {
+ yDelta += 1
+ yRem -= q
+ }
+ r.area += int(64 * yDelta)
+ r.cover += int(yDelta)
+ xi, y = xi+xiDelta, y+yDelta
+ r.setCell(xi, yi)
+ }
+ }
+ // Do the last cell.
+ yDelta = y1f - y
+ r.area += int((edge0 + x1f) * yDelta)
+ r.cover += int(yDelta)
+}
+
+// Start starts a new curve at the given point.
+func (r *Rasterizer) Start(a fixed.Point26_6) {
+ r.setCell(int(a.X/64), int(a.Y/64))
+ r.a = a
+}
+
+// Add1 adds a linear segment to the current curve.
+func (r *Rasterizer) Add1(b fixed.Point26_6) {
+ x0, y0 := r.a.X, r.a.Y
+ x1, y1 := b.X, b.Y
+ dx, dy := x1-x0, y1-y0
+ // Break the 26.6 fixed point Y co-ordinates into integral and fractional
+ // parts.
+ y0i := int(y0) / 64
+ y0f := y0 - fixed.Int26_6(64*y0i)
+ y1i := int(y1) / 64
+ y1f := y1 - fixed.Int26_6(64*y1i)
+
+ if y0i == y1i {
+ // There is only one scanline.
+ r.scan(y0i, x0, y0f, x1, y1f)
+
+ } else if dx == 0 {
+ // This is a vertical line segment. We avoid calling r.scan and instead
+ // manipulate r.area and r.cover directly.
+ var (
+ edge0, edge1 fixed.Int26_6
+ yiDelta int
+ )
+ if dy > 0 {
+ edge0, edge1, yiDelta = 0, 64, 1
+ } else {
+ edge0, edge1, yiDelta = 64, 0, -1
+ }
+ x0i, yi := int(x0)/64, y0i
+ x0fTimes2 := (int(x0) - (64 * x0i)) * 2
+ // Do the first pixel.
+ dcover := int(edge1 - y0f)
+ darea := int(x0fTimes2 * dcover)
+ r.area += darea
+ r.cover += dcover
+ yi += yiDelta
+ r.setCell(x0i, yi)
+ // Do all the intermediate pixels.
+ dcover = int(edge1 - edge0)
+ darea = int(x0fTimes2 * dcover)
+ for yi != y1i {
+ r.area += darea
+ r.cover += dcover
+ yi += yiDelta
+ r.setCell(x0i, yi)
+ }
+ // Do the last pixel.
+ dcover = int(y1f - edge0)
+ darea = int(x0fTimes2 * dcover)
+ r.area += darea
+ r.cover += dcover
+
+ } else {
+ // There are at least two scanlines. Apart from the first and last
+ // scanlines, all intermediate scanlines go through the full height of
+ // the row, or 64 units in 26.6 fixed point format.
+ var (
+ p, q, edge0, edge1 fixed.Int26_6
+ yiDelta int
+ )
+ if dy > 0 {
+ p, q = (64-y0f)*dx, dy
+ edge0, edge1, yiDelta = 0, 64, 1
+ } else {
+ p, q = y0f*dx, -dy
+ edge0, edge1, yiDelta = 64, 0, -1
+ }
+ xDelta, xRem := p/q, p%q
+ if xRem < 0 {
+ xDelta -= 1
+ xRem += q
+ }
+ // Do the first scanline.
+ x, yi := x0, y0i
+ r.scan(yi, x, y0f, x+xDelta, edge1)
+ x, yi = x+xDelta, yi+yiDelta
+ r.setCell(int(x)/64, yi)
+ if yi != y1i {
+ // Do all the intermediate scanlines.
+ p = 64 * dx
+ fullDelta, fullRem := p/q, p%q
+ if fullRem < 0 {
+ fullDelta -= 1
+ fullRem += q
+ }
+ xRem -= q
+ for yi != y1i {
+ xDelta = fullDelta
+ xRem += fullRem
+ if xRem >= 0 {
+ xDelta += 1
+ xRem -= q
+ }
+ r.scan(yi, x, edge0, x+xDelta, edge1)
+ x, yi = x+xDelta, yi+yiDelta
+ r.setCell(int(x)/64, yi)
+ }
+ }
+ // Do the last scanline.
+ r.scan(yi, x, edge0, x1, y1f)
+ }
+ // The next lineTo starts from b.
+ r.a = b
+}
+
+// Add2 adds a quadratic segment to the current curve.
+func (r *Rasterizer) Add2(b, c fixed.Point26_6) {
+ // Calculate nSplit (the number of recursive decompositions) based on how
+ // 'curvy' it is. Specifically, how much the middle point b deviates from
+ // (a+c)/2.
+ dev := maxAbs(r.a.X-2*b.X+c.X, r.a.Y-2*b.Y+c.Y) / fixed.Int26_6(r.splitScale2)
+ nsplit := 0
+ for dev > 0 {
+ dev /= 4
+ nsplit++
+ }
+ // dev is 32-bit, and nsplit++ every time we shift off 2 bits, so maxNsplit
+ // is 16.
+ const maxNsplit = 16
+ if nsplit > maxNsplit {
+ panic("freetype/raster: Add2 nsplit too large: " + strconv.Itoa(nsplit))
+ }
+ // Recursively decompose the curve nSplit levels deep.
+ var (
+ pStack [2*maxNsplit + 3]fixed.Point26_6
+ sStack [maxNsplit + 1]int
+ i int
+ )
+ sStack[0] = nsplit
+ pStack[0] = c
+ pStack[1] = b
+ pStack[2] = r.a
+ for i >= 0 {
+ s := sStack[i]
+ p := pStack[2*i:]
+ if s > 0 {
+ // Split the quadratic curve p[:3] into an equivalent set of two
+ // shorter curves: p[:3] and p[2:5]. The new p[4] is the old p[2],
+ // and p[0] is unchanged.
+ mx := p[1].X
+ p[4].X = p[2].X
+ p[3].X = (p[4].X + mx) / 2
+ p[1].X = (p[0].X + mx) / 2
+ p[2].X = (p[1].X + p[3].X) / 2
+ my := p[1].Y
+ p[4].Y = p[2].Y
+ p[3].Y = (p[4].Y + my) / 2
+ p[1].Y = (p[0].Y + my) / 2
+ p[2].Y = (p[1].Y + p[3].Y) / 2
+ // The two shorter curves have one less split to do.
+ sStack[i] = s - 1
+ sStack[i+1] = s - 1
+ i++
+ } else {
+ // Replace the level-0 quadratic with a two-linear-piece
+ // approximation.
+ midx := (p[0].X + 2*p[1].X + p[2].X) / 4
+ midy := (p[0].Y + 2*p[1].Y + p[2].Y) / 4
+ r.Add1(fixed.Point26_6{midx, midy})
+ r.Add1(p[0])
+ i--
+ }
+ }
+}
+
+// Add3 adds a cubic segment to the current curve.
+func (r *Rasterizer) Add3(b, c, d fixed.Point26_6) {
+ // Calculate nSplit (the number of recursive decompositions) based on how
+ // 'curvy' it is.
+ dev2 := maxAbs(r.a.X-3*(b.X+c.X)+d.X, r.a.Y-3*(b.Y+c.Y)+d.Y) / fixed.Int26_6(r.splitScale2)
+ dev3 := maxAbs(r.a.X-2*b.X+d.X, r.a.Y-2*b.Y+d.Y) / fixed.Int26_6(r.splitScale3)
+ nsplit := 0
+ for dev2 > 0 || dev3 > 0 {
+ dev2 /= 8
+ dev3 /= 4
+ nsplit++
+ }
+ // devN is 32-bit, and nsplit++ every time we shift off 2 bits, so
+ // maxNsplit is 16.
+ const maxNsplit = 16
+ if nsplit > maxNsplit {
+ panic("freetype/raster: Add3 nsplit too large: " + strconv.Itoa(nsplit))
+ }
+ // Recursively decompose the curve nSplit levels deep.
+ var (
+ pStack [3*maxNsplit + 4]fixed.Point26_6
+ sStack [maxNsplit + 1]int
+ i int
+ )
+ sStack[0] = nsplit
+ pStack[0] = d
+ pStack[1] = c
+ pStack[2] = b
+ pStack[3] = r.a
+ for i >= 0 {
+ s := sStack[i]
+ p := pStack[3*i:]
+ if s > 0 {
+ // Split the cubic curve p[:4] into an equivalent set of two
+ // shorter curves: p[:4] and p[3:7]. The new p[6] is the old p[3],
+ // and p[0] is unchanged.
+ m01x := (p[0].X + p[1].X) / 2
+ m12x := (p[1].X + p[2].X) / 2
+ m23x := (p[2].X + p[3].X) / 2
+ p[6].X = p[3].X
+ p[5].X = m23x
+ p[1].X = m01x
+ p[2].X = (m01x + m12x) / 2
+ p[4].X = (m12x + m23x) / 2
+ p[3].X = (p[2].X + p[4].X) / 2
+ m01y := (p[0].Y + p[1].Y) / 2
+ m12y := (p[1].Y + p[2].Y) / 2
+ m23y := (p[2].Y + p[3].Y) / 2
+ p[6].Y = p[3].Y
+ p[5].Y = m23y
+ p[1].Y = m01y
+ p[2].Y = (m01y + m12y) / 2
+ p[4].Y = (m12y + m23y) / 2
+ p[3].Y = (p[2].Y + p[4].Y) / 2
+ // The two shorter curves have one less split to do.
+ sStack[i] = s - 1
+ sStack[i+1] = s - 1
+ i++
+ } else {
+ // Replace the level-0 cubic with a two-linear-piece approximation.
+ midx := (p[0].X + 3*(p[1].X+p[2].X) + p[3].X) / 8
+ midy := (p[0].Y + 3*(p[1].Y+p[2].Y) + p[3].Y) / 8
+ r.Add1(fixed.Point26_6{midx, midy})
+ r.Add1(p[0])
+ i--
+ }
+ }
+}
+
+// AddPath adds the given Path.
+func (r *Rasterizer) AddPath(p Path) {
+ for i := 0; i < len(p); {
+ switch p[i] {
+ case 0:
+ r.Start(
+ fixed.Point26_6{p[i+1], p[i+2]},
+ )
+ i += 4
+ case 1:
+ r.Add1(
+ fixed.Point26_6{p[i+1], p[i+2]},
+ )
+ i += 4
+ case 2:
+ r.Add2(
+ fixed.Point26_6{p[i+1], p[i+2]},
+ fixed.Point26_6{p[i+3], p[i+4]},
+ )
+ i += 6
+ case 3:
+ r.Add3(
+ fixed.Point26_6{p[i+1], p[i+2]},
+ fixed.Point26_6{p[i+3], p[i+4]},
+ fixed.Point26_6{p[i+5], p[i+6]},
+ )
+ i += 8
+ default:
+ panic("freetype/raster: bad path")
+ }
+ }
+}
+
+// AddStroke adds a stroked Path.
+func (r *Rasterizer) AddStroke(q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
+ Stroke(r, q, width, cr, jr)
+}
+
+// areaToAlpha converts an area value to a uint32 alpha value. A completely
+// filled pixel corresponds to an area of 64*64*2, and an alpha of 0xffff. The
+// conversion of area values greater than this depends on the winding rule:
+// even-odd or non-zero.
+func (r *Rasterizer) areaToAlpha(area int) uint32 {
+ // The C Freetype implementation (version 2.3.12) does "alpha := area>>1"
+ // without the +1. Round-to-nearest gives a more symmetric result than
+ // round-down. The C implementation also returns 8-bit alpha, not 16-bit
+ // alpha.
+ a := (area + 1) >> 1
+ if a < 0 {
+ a = -a
+ }
+ alpha := uint32(a)
+ if r.UseNonZeroWinding {
+ if alpha > 0x0fff {
+ alpha = 0x0fff
+ }
+ } else {
+ alpha &= 0x1fff
+ if alpha > 0x1000 {
+ alpha = 0x2000 - alpha
+ } else if alpha == 0x1000 {
+ alpha = 0x0fff
+ }
+ }
+ // alpha is now in the range [0x0000, 0x0fff]. Convert that 12-bit alpha to
+ // 16-bit alpha.
+ return alpha<<4 | alpha>>8
+}
+
+// Rasterize converts r's accumulated curves into Spans for p. The Spans passed
+// to p are non-overlapping, and sorted by Y and then X. They all have non-zero
+// width (and 0 <= X0 < X1 <= r.width) and non-zero A, except for the final
+// Span, which has Y, X0, X1 and A all equal to zero.
+func (r *Rasterizer) Rasterize(p Painter) {
+ r.saveCell()
+ s := 0
+ for yi := 0; yi < len(r.cellIndex); yi++ {
+ xi, cover := 0, 0
+ for c := r.cellIndex[yi]; c != -1; c = r.cell[c].next {
+ if cover != 0 && r.cell[c].xi > xi {
+ alpha := r.areaToAlpha(cover * 64 * 2)
+ if alpha != 0 {
+ xi0, xi1 := xi, r.cell[c].xi
+ if xi0 < 0 {
+ xi0 = 0
+ }
+ if xi1 >= r.width {
+ xi1 = r.width
+ }
+ if xi0 < xi1 {
+ r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
+ s++
+ }
+ }
+ }
+ cover += r.cell[c].cover
+ alpha := r.areaToAlpha(cover*64*2 - r.cell[c].area)
+ xi = r.cell[c].xi + 1
+ if alpha != 0 {
+ xi0, xi1 := r.cell[c].xi, xi
+ if xi0 < 0 {
+ xi0 = 0
+ }
+ if xi1 >= r.width {
+ xi1 = r.width
+ }
+ if xi0 < xi1 {
+ r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
+ s++
+ }
+ }
+ if s > len(r.spanBuf)-2 {
+ p.Paint(r.spanBuf[:s], false)
+ s = 0
+ }
+ }
+ }
+ p.Paint(r.spanBuf[:s], true)
+}
+
+// Clear cancels any previous calls to r.Start or r.AddXxx.
+func (r *Rasterizer) Clear() {
+ r.a = fixed.Point26_6{}
+ r.xi = 0
+ r.yi = 0
+ r.area = 0
+ r.cover = 0
+ r.cell = r.cell[:0]
+ for i := 0; i < len(r.cellIndex); i++ {
+ r.cellIndex[i] = -1
+ }
+}
+
+// SetBounds sets the maximum width and height of the rasterized image and
+// calls Clear. The width and height are in pixels, not fixed.Int26_6 units.
+func (r *Rasterizer) SetBounds(width, height int) {
+ if width < 0 {
+ width = 0
+ }
+ if height < 0 {
+ height = 0
+ }
+ // Use the same ssN heuristic as the C Freetype (version 2.4.0)
+ // implementation.
+ ss2, ss3 := 32, 16
+ if width > 24 || height > 24 {
+ ss2, ss3 = 2*ss2, 2*ss3
+ if width > 120 || height > 120 {
+ ss2, ss3 = 2*ss2, 2*ss3
+ }
+ }
+ r.width = width
+ r.splitScale2 = ss2
+ r.splitScale3 = ss3
+ r.cell = r.cellBuf[:0]
+ if height > len(r.cellIndexBuf) {
+ r.cellIndex = make([]int, height)
+ } else {
+ r.cellIndex = r.cellIndexBuf[:height]
+ }
+ r.Clear()
+}
+
+// NewRasterizer creates a new Rasterizer with the given bounds.
+func NewRasterizer(width, height int) *Rasterizer {
+ r := new(Rasterizer)
+ r.SetBounds(width, height)
+ return r
+}
diff --git a/vendor/github.com/golang/freetype/raster/stroke.go b/vendor/github.com/golang/freetype/raster/stroke.go
new file mode 100644
index 000000000..bcc66b268
--- /dev/null
+++ b/vendor/github.com/golang/freetype/raster/stroke.go
@@ -0,0 +1,483 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+package raster
+
+import (
+ "golang.org/x/image/math/fixed"
+)
+
+// Two points are considered practically equal if the square of the distance
+// between them is less than one quarter (i.e. 1024 / 4096).
+const epsilon = fixed.Int52_12(1024)
+
+// A Capper signifies how to begin or end a stroked path.
+type Capper interface {
+ // Cap adds a cap to p given a pivot point and the normal vector of a
+ // terminal segment. The normal's length is half of the stroke width.
+ Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6)
+}
+
+// The CapperFunc type adapts an ordinary function to be a Capper.
+type CapperFunc func(Adder, fixed.Int26_6, fixed.Point26_6, fixed.Point26_6)
+
+func (f CapperFunc) Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
+ f(p, halfWidth, pivot, n1)
+}
+
+// A Joiner signifies how to join interior nodes of a stroked path.
+type Joiner interface {
+ // Join adds a join to the two sides of a stroked path given a pivot
+ // point and the normal vectors of the trailing and leading segments.
+ // Both normals have length equal to half of the stroke width.
+ Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
+}
+
+// The JoinerFunc type adapts an ordinary function to be a Joiner.
+type JoinerFunc func(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
+
+func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
+ f(lhs, rhs, halfWidth, pivot, n0, n1)
+}
+
+// RoundCapper adds round caps to a stroked path.
+var RoundCapper Capper = CapperFunc(roundCapper)
+
+func roundCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
+ // The cubic Bézier approximation to a circle involves the magic number
+ // (√2 - 1) * 4/3, which is approximately 35/64.
+ const k = 35
+ e := pRot90CCW(n1)
+ side := pivot.Add(e)
+ start, end := pivot.Sub(n1), pivot.Add(n1)
+ d, e := n1.Mul(k), e.Mul(k)
+ p.Add3(start.Add(e), side.Sub(d), side)
+ p.Add3(side.Add(d), end.Add(e), end)
+}
+
+// ButtCapper adds butt caps to a stroked path.
+var ButtCapper Capper = CapperFunc(buttCapper)
+
+func buttCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
+ p.Add1(pivot.Add(n1))
+}
+
+// SquareCapper adds square caps to a stroked path.
+var SquareCapper Capper = CapperFunc(squareCapper)
+
+func squareCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
+ e := pRot90CCW(n1)
+ side := pivot.Add(e)
+ p.Add1(side.Sub(n1))
+ p.Add1(side.Add(n1))
+ p.Add1(pivot.Add(n1))
+}
+
+// RoundJoiner adds round joins to a stroked path.
+var RoundJoiner Joiner = JoinerFunc(roundJoiner)
+
+func roundJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
+ dot := pDot(pRot90CW(n0), n1)
+ if dot >= 0 {
+ addArc(lhs, pivot, n0, n1)
+ rhs.Add1(pivot.Sub(n1))
+ } else {
+ lhs.Add1(pivot.Add(n1))
+ addArc(rhs, pivot, pNeg(n0), pNeg(n1))
+ }
+}
+
+// BevelJoiner adds bevel joins to a stroked path.
+var BevelJoiner Joiner = JoinerFunc(bevelJoiner)
+
+func bevelJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
+ lhs.Add1(pivot.Add(n1))
+ rhs.Add1(pivot.Sub(n1))
+}
+
+// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
+// the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The
+// two vectors n0 and n1 must be of equal length.
+func addArc(p Adder, pivot, n0, n1 fixed.Point26_6) {
+ // r2 is the square of the length of n0.
+ r2 := pDot(n0, n0)
+ if r2 < epsilon {
+ // The arc radius is so small that we collapse to a straight line.
+ p.Add1(pivot.Add(n1))
+ return
+ }
+ // We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
+ // a final quadratic segment from s to n1. Each 45-degree segment has
+ // control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled,
+ // rotated and translated. tan(π/8) is approximately 27/64.
+ const tpo8 = 27
+ var s fixed.Point26_6
+ // We determine which octant the angle between n0 and n1 is in via three
+ // dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135
+ // degrees.
+ m0 := pRot45CW(n0)
+ m1 := pRot90CW(n0)
+ m2 := pRot90CW(m0)
+ if pDot(m1, n1) >= 0 {
+ if pDot(n0, n1) >= 0 {
+ if pDot(m2, n1) <= 0 {
+ // n1 is between 0 and 45 degrees clockwise of n0.
+ s = n0
+ } else {
+ // n1 is between 45 and 90 degrees clockwise of n0.
+ p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
+ s = m0
+ }
+ } else {
+ pm1, n0t := pivot.Add(m1), n0.Mul(tpo8)
+ p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
+ p.Add2(pm1.Add(n0t), pm1)
+ if pDot(m0, n1) >= 0 {
+ // n1 is between 90 and 135 degrees clockwise of n0.
+ s = m1
+ } else {
+ // n1 is between 135 and 180 degrees clockwise of n0.
+ p.Add2(pm1.Sub(n0t), pivot.Add(m2))
+ s = m2
+ }
+ }
+ } else {
+ if pDot(n0, n1) >= 0 {
+ if pDot(m0, n1) >= 0 {
+ // n1 is between 0 and 45 degrees counter-clockwise of n0.
+ s = n0
+ } else {
+ // n1 is between 45 and 90 degrees counter-clockwise of n0.
+ p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
+ s = pNeg(m2)
+ }
+ } else {
+ pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8)
+ p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
+ p.Add2(pm1.Add(n0t), pm1)
+ if pDot(m2, n1) <= 0 {
+ // n1 is between 90 and 135 degrees counter-clockwise of n0.
+ s = pNeg(m1)
+ } else {
+ // n1 is between 135 and 180 degrees counter-clockwise of n0.
+ p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
+ s = pNeg(m0)
+ }
+ }
+ }
+ // The final quadratic segment has two endpoints s and n1 and the middle
+ // control point is a multiple of s.Add(n1), i.e. it is on the angle
+ // bisector of those two points. The multiple ranges between 128/256 and
+ // 150/256 as the angle between s and n1 ranges between 0 and 45 degrees.
+ //
+ // When the angle is 0 degrees (i.e. s and n1 are coincident) then
+ // s.Add(n1) is twice s and so the middle control point of the degenerate
+ // quadratic segment should be half s.Add(n1), and half = 128/256.
+ //
+ // When the angle is 45 degrees then 150/256 is the ratio of the lengths of
+ // the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
+ //
+ // d is the normalized dot product between s and n1. Since the angle ranges
+ // between 0 and 45 degrees then d ranges between 256/256 and 181/256.
+ d := 256 * pDot(s, n1) / r2
+ multiple := fixed.Int26_6(150-(150-128)*(d-181)/(256-181)) >> 2
+ p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
+}
+
+// midpoint returns the midpoint of two Points.
+func midpoint(a, b fixed.Point26_6) fixed.Point26_6 {
+ return fixed.Point26_6{(a.X + b.X) / 2, (a.Y + b.Y) / 2}
+}
+
+// angleGreaterThan45 returns whether the angle between two vectors is more
+// than 45 degrees.
+func angleGreaterThan45(v0, v1 fixed.Point26_6) bool {
+ v := pRot45CCW(v0)
+ return pDot(v, v1) < 0 || pDot(pRot90CW(v), v1) < 0
+}
+
+// interpolate returns the point (1-t)*a + t*b.
+func interpolate(a, b fixed.Point26_6, t fixed.Int52_12) fixed.Point26_6 {
+ s := 1<<12 - t
+ x := s*fixed.Int52_12(a.X) + t*fixed.Int52_12(b.X)
+ y := s*fixed.Int52_12(a.Y) + t*fixed.Int52_12(b.Y)
+ return fixed.Point26_6{fixed.Int26_6(x >> 12), fixed.Int26_6(y >> 12)}
+}
+
+// curviest2 returns the value of t for which the quadratic parametric curve
+// (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature.
+//
+// The curvature of the parametric curve f(t) = (x(t), y(t)) is
+// |x′y″-y′x″| / (x′²+y′²)^(3/2).
+//
+// Let d = b-a and e = c-2*b+a, so that f′(t) = 2*d+2*e*t and f″(t) = 2*e.
+// The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex),
+// which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t.
+//
+// Thus, curvature is extreme where the denominator is extreme, i.e. where
+// (x′²+y′²) is extreme. The first order condition is that
+// 2*x′*x″+2*y′*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0.
+// Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey).
+func curviest2(a, b, c fixed.Point26_6) fixed.Int52_12 {
+ dx := int64(b.X - a.X)
+ dy := int64(b.Y - a.Y)
+ ex := int64(c.X - 2*b.X + a.X)
+ ey := int64(c.Y - 2*b.Y + a.Y)
+ if ex == 0 && ey == 0 {
+ return 2048
+ }
+ return fixed.Int52_12(-4096 * (dx*ex + dy*ey) / (ex*ex + ey*ey))
+}
+
+// A stroker holds state for stroking a path.
+type stroker struct {
+ // p is the destination that records the stroked path.
+ p Adder
+ // u is the half-width of the stroke.
+ u fixed.Int26_6
+ // cr and jr specify how to end and connect path segments.
+ cr Capper
+ jr Joiner
+ // r is the reverse path. Stroking a path involves constructing two
+ // parallel paths 2*u apart. The first path is added immediately to p,
+ // the second path is accumulated in r and eventually added in reverse.
+ r Path
+ // a is the most recent segment point. anorm is the segment normal of
+ // length u at that point.
+ a, anorm fixed.Point26_6
+}
+
+// addNonCurvy2 adds a quadratic segment to the stroker, where the segment
+// defined by (k.a, b, c) achieves maximum curvature at either k.a or c.
+func (k *stroker) addNonCurvy2(b, c fixed.Point26_6) {
+ // We repeatedly divide the segment at its middle until it is straight
+ // enough to approximate the stroke by just translating the control points.
+ // ds and ps are stacks of depths and points. t is the top of the stack.
+ const maxDepth = 5
+ var (
+ ds [maxDepth + 1]int
+ ps [2*maxDepth + 3]fixed.Point26_6
+ t int
+ )
+ // Initially the ps stack has one quadratic segment of depth zero.
+ ds[0] = 0
+ ps[2] = k.a
+ ps[1] = b
+ ps[0] = c
+ anorm := k.anorm
+ var cnorm fixed.Point26_6
+
+ for {
+ depth := ds[t]
+ a := ps[2*t+2]
+ b := ps[2*t+1]
+ c := ps[2*t+0]
+ ab := b.Sub(a)
+ bc := c.Sub(b)
+ abIsSmall := pDot(ab, ab) < fixed.Int52_12(1<<12)
+ bcIsSmall := pDot(bc, bc) < fixed.Int52_12(1<<12)
+ if abIsSmall && bcIsSmall {
+ // Approximate the segment by a circular arc.
+ cnorm = pRot90CCW(pNorm(bc, k.u))
+ mac := midpoint(a, c)
+ addArc(k.p, mac, anorm, cnorm)
+ addArc(&k.r, mac, pNeg(anorm), pNeg(cnorm))
+ } else if depth < maxDepth && angleGreaterThan45(ab, bc) {
+ // Divide the segment in two and push both halves on the stack.
+ mab := midpoint(a, b)
+ mbc := midpoint(b, c)
+ t++
+ ds[t+0] = depth + 1
+ ds[t-1] = depth + 1
+ ps[2*t+2] = a
+ ps[2*t+1] = mab
+ ps[2*t+0] = midpoint(mab, mbc)
+ ps[2*t-1] = mbc
+ continue
+ } else {
+ // Translate the control points.
+ bnorm := pRot90CCW(pNorm(c.Sub(a), k.u))
+ cnorm = pRot90CCW(pNorm(bc, k.u))
+ k.p.Add2(b.Add(bnorm), c.Add(cnorm))
+ k.r.Add2(b.Sub(bnorm), c.Sub(cnorm))
+ }
+ if t == 0 {
+ k.a, k.anorm = c, cnorm
+ return
+ }
+ t--
+ anorm = cnorm
+ }
+ panic("unreachable")
+}
+
+// Add1 adds a linear segment to the stroker.
+func (k *stroker) Add1(b fixed.Point26_6) {
+ bnorm := pRot90CCW(pNorm(b.Sub(k.a), k.u))
+ if len(k.r) == 0 {
+ k.p.Start(k.a.Add(bnorm))
+ k.r.Start(k.a.Sub(bnorm))
+ } else {
+ k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm)
+ }
+ k.p.Add1(b.Add(bnorm))
+ k.r.Add1(b.Sub(bnorm))
+ k.a, k.anorm = b, bnorm
+}
+
+// Add2 adds a quadratic segment to the stroker.
+func (k *stroker) Add2(b, c fixed.Point26_6) {
+ ab := b.Sub(k.a)
+ bc := c.Sub(b)
+ abnorm := pRot90CCW(pNorm(ab, k.u))
+ if len(k.r) == 0 {
+ k.p.Start(k.a.Add(abnorm))
+ k.r.Start(k.a.Sub(abnorm))
+ } else {
+ k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm)
+ }
+
+ // Approximate nearly-degenerate quadratics by linear segments.
+ abIsSmall := pDot(ab, ab) < epsilon
+ bcIsSmall := pDot(bc, bc) < epsilon
+ if abIsSmall || bcIsSmall {
+ acnorm := pRot90CCW(pNorm(c.Sub(k.a), k.u))
+ k.p.Add1(c.Add(acnorm))
+ k.r.Add1(c.Sub(acnorm))
+ k.a, k.anorm = c, acnorm
+ return
+ }
+
+ // The quadratic segment (k.a, b, c) has a point of maximum curvature.
+ // If this occurs at an end point, we process the segment as a whole.
+ t := curviest2(k.a, b, c)
+ if t <= 0 || 4096 <= t {
+ k.addNonCurvy2(b, c)
+ return
+ }
+
+ // Otherwise, we perform a de Casteljau decomposition at the point of
+ // maximum curvature and process the two straighter parts.
+ mab := interpolate(k.a, b, t)
+ mbc := interpolate(b, c, t)
+ mabc := interpolate(mab, mbc, t)
+
+ // If the vectors ab and bc are close to being in opposite directions,
+ // then the decomposition can become unstable, so we approximate the
+ // quadratic segment by two linear segments joined by an arc.
+ bcnorm := pRot90CCW(pNorm(bc, k.u))
+ if pDot(abnorm, bcnorm) < -fixed.Int52_12(k.u)*fixed.Int52_12(k.u)*2047/2048 {
+ pArc := pDot(abnorm, bc) < 0
+
+ k.p.Add1(mabc.Add(abnorm))
+ if pArc {
+ z := pRot90CW(abnorm)
+ addArc(k.p, mabc, abnorm, z)
+ addArc(k.p, mabc, z, bcnorm)
+ }
+ k.p.Add1(mabc.Add(bcnorm))
+ k.p.Add1(c.Add(bcnorm))
+
+ k.r.Add1(mabc.Sub(abnorm))
+ if !pArc {
+ z := pRot90CW(abnorm)
+ addArc(&k.r, mabc, pNeg(abnorm), z)
+ addArc(&k.r, mabc, z, pNeg(bcnorm))
+ }
+ k.r.Add1(mabc.Sub(bcnorm))
+ k.r.Add1(c.Sub(bcnorm))
+
+ k.a, k.anorm = c, bcnorm
+ return
+ }
+
+ // Process the decomposed parts.
+ k.addNonCurvy2(mab, mabc)
+ k.addNonCurvy2(mbc, c)
+}
+
+// Add3 adds a cubic segment to the stroker.
+func (k *stroker) Add3(b, c, d fixed.Point26_6) {
+ panic("freetype/raster: stroke unimplemented for cubic segments")
+}
+
+// stroke adds the stroked Path q to p, where q consists of exactly one curve.
+func (k *stroker) stroke(q Path) {
+ // Stroking is implemented by deriving two paths each k.u apart from q.
+ // The left-hand-side path is added immediately to k.p; the right-hand-side
+ // path is accumulated in k.r. Once we've finished adding the LHS to k.p,
+ // we add the RHS in reverse order.
+ k.r = make(Path, 0, len(q))
+ k.a = fixed.Point26_6{q[1], q[2]}
+ for i := 4; i < len(q); {
+ switch q[i] {
+ case 1:
+ k.Add1(
+ fixed.Point26_6{q[i+1], q[i+2]},
+ )
+ i += 4
+ case 2:
+ k.Add2(
+ fixed.Point26_6{q[i+1], q[i+2]},
+ fixed.Point26_6{q[i+3], q[i+4]},
+ )
+ i += 6
+ case 3:
+ k.Add3(
+ fixed.Point26_6{q[i+1], q[i+2]},
+ fixed.Point26_6{q[i+3], q[i+4]},
+ fixed.Point26_6{q[i+5], q[i+6]},
+ )
+ i += 8
+ default:
+ panic("freetype/raster: bad path")
+ }
+ }
+ if len(k.r) == 0 {
+ return
+ }
+ // TODO(nigeltao): if q is a closed curve then we should join the first and
+ // last segments instead of capping them.
+ k.cr.Cap(k.p, k.u, q.lastPoint(), pNeg(k.anorm))
+ addPathReversed(k.p, k.r)
+ pivot := q.firstPoint()
+ k.cr.Cap(k.p, k.u, pivot, pivot.Sub(fixed.Point26_6{k.r[1], k.r[2]}))
+}
+
+// Stroke adds q stroked with the given width to p. The result is typically
+// self-intersecting and should be rasterized with UseNonZeroWinding.
+// cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner.
+func Stroke(p Adder, q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
+ if len(q) == 0 {
+ return
+ }
+ if cr == nil {
+ cr = RoundCapper
+ }
+ if jr == nil {
+ jr = RoundJoiner
+ }
+ if q[0] != 0 {
+ panic("freetype/raster: bad path")
+ }
+ s := stroker{p: p, u: width / 2, cr: cr, jr: jr}
+ i := 0
+ for j := 4; j < len(q); {
+ switch q[j] {
+ case 0:
+ s.stroke(q[i:j])
+ i, j = j, j+4
+ case 1:
+ j += 4
+ case 2:
+ j += 6
+ case 3:
+ j += 8
+ default:
+ panic("freetype/raster: bad path")
+ }
+ }
+ s.stroke(q[i:])
+}
diff --git a/vendor/github.com/golang/freetype/truetype/face.go b/vendor/github.com/golang/freetype/truetype/face.go
new file mode 100644
index 000000000..099006f05
--- /dev/null
+++ b/vendor/github.com/golang/freetype/truetype/face.go
@@ -0,0 +1,507 @@
+// Copyright 2015 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+package truetype
+
+import (
+ "image"
+ "math"
+
+ "github.com/golang/freetype/raster"
+ "golang.org/x/image/font"
+ "golang.org/x/image/math/fixed"
+)
+
+func powerOf2(i int) bool {
+ return i != 0 && (i&(i-1)) == 0
+}
+
+// Options are optional arguments to NewFace.
+type Options struct {
+ // Size is the font size in points, as in "a 10 point font size".
+ //
+ // A zero value means to use a 12 point font size.
+ Size float64
+
+ // DPI is the dots-per-inch resolution.
+ //
+ // A zero value means to use 72 DPI.
+ DPI float64
+
+ // Hinting is how to quantize the glyph nodes.
+ //
+ // A zero value means to use no hinting.
+ Hinting font.Hinting
+
+ // GlyphCacheEntries is the number of entries in the glyph mask image
+ // cache.
+ //
+ // If non-zero, it must be a power of 2.
+ //
+ // A zero value means to use 512 entries.
+ GlyphCacheEntries int
+
+ // SubPixelsX is the number of sub-pixel locations a glyph's dot is
+ // quantized to, in the horizontal direction. For example, a value of 8
+ // means that the dot is quantized to 1/8th of a pixel. This quantization
+ // only affects the glyph mask image, not its bounding box or advance
+ // width. A higher value gives a more faithful glyph image, but reduces the
+ // effectiveness of the glyph cache.
+ //
+ // If non-zero, it must be a power of 2, and be between 1 and 64 inclusive.
+ //
+ // A zero value means to use 4 sub-pixel locations.
+ SubPixelsX int
+
+ // SubPixelsY is the number of sub-pixel locations a glyph's dot is
+ // quantized to, in the vertical direction. For example, a value of 8
+ // means that the dot is quantized to 1/8th of a pixel. This quantization
+ // only affects the glyph mask image, not its bounding box or advance
+ // width. A higher value gives a more faithful glyph image, but reduces the
+ // effectiveness of the glyph cache.
+ //
+ // If non-zero, it must be a power of 2, and be between 1 and 64 inclusive.
+ //
+ // A zero value means to use 1 sub-pixel location.
+ SubPixelsY int
+}
+
+func (o *Options) size() float64 {
+ if o != nil && o.Size > 0 {
+ return o.Size
+ }
+ return 12
+}
+
+func (o *Options) dpi() float64 {
+ if o != nil && o.DPI > 0 {
+ return o.DPI
+ }
+ return 72
+}
+
+func (o *Options) hinting() font.Hinting {
+ if o != nil {
+ switch o.Hinting {
+ case font.HintingVertical, font.HintingFull:
+ // TODO: support vertical hinting.
+ return font.HintingFull
+ }
+ }
+ return font.HintingNone
+}
+
+func (o *Options) glyphCacheEntries() int {
+ if o != nil && powerOf2(o.GlyphCacheEntries) {
+ return o.GlyphCacheEntries
+ }
+ // 512 is 128 * 4 * 1, which lets us cache 128 glyphs at 4 * 1 subpixel
+ // locations in the X and Y direction.
+ return 512
+}
+
+func (o *Options) subPixelsX() (value uint32, halfQuantum, mask fixed.Int26_6) {
+ if o != nil {
+ switch o.SubPixelsX {
+ case 1, 2, 4, 8, 16, 32, 64:
+ return subPixels(o.SubPixelsX)
+ }
+ }
+ // This default value of 4 isn't based on anything scientific, merely as
+ // small a number as possible that looks almost as good as no quantization,
+ // or returning subPixels(64).
+ return subPixels(4)
+}
+
+func (o *Options) subPixelsY() (value uint32, halfQuantum, mask fixed.Int26_6) {
+ if o != nil {
+ switch o.SubPixelsX {
+ case 1, 2, 4, 8, 16, 32, 64:
+ return subPixels(o.SubPixelsX)
+ }
+ }
+ // This default value of 1 isn't based on anything scientific, merely that
+ // vertical sub-pixel glyph rendering is pretty rare. Baseline locations
+ // can usually afford to snap to the pixel grid, so the vertical direction
+ // doesn't have the deal with the horizontal's fractional advance widths.
+ return subPixels(1)
+}
+
+// subPixels returns q and the bias and mask that leads to q quantized
+// sub-pixel locations per full pixel.
+//
+// For example, q == 4 leads to a bias of 8 and a mask of 0xfffffff0, or -16,
+// because we want to round fractions of fixed.Int26_6 as:
+// - 0 to 7 rounds to 0.
+// - 8 to 23 rounds to 16.
+// - 24 to 39 rounds to 32.
+// - 40 to 55 rounds to 48.
+// - 56 to 63 rounds to 64.
+// which means to add 8 and then bitwise-and with -16, in two's complement
+// representation.
+//
+// When q == 1, we want bias == 32 and mask == -64.
+// When q == 2, we want bias == 16 and mask == -32.
+// When q == 4, we want bias == 8 and mask == -16.
+// ...
+// When q == 64, we want bias == 0 and mask == -1. (The no-op case).
+// The pattern is clear.
+func subPixels(q int) (value uint32, bias, mask fixed.Int26_6) {
+ return uint32(q), 32 / fixed.Int26_6(q), -64 / fixed.Int26_6(q)
+}
+
+// glyphCacheEntry caches the arguments and return values of rasterize.
+type glyphCacheEntry struct {
+ key glyphCacheKey
+ val glyphCacheVal
+}
+
+type glyphCacheKey struct {
+ index Index
+ fx, fy uint8
+}
+
+type glyphCacheVal struct {
+ advanceWidth fixed.Int26_6
+ offset image.Point
+ gw int
+ gh int
+}
+
+type indexCacheEntry struct {
+ rune rune
+ index Index
+}
+
+// NewFace returns a new font.Face for the given Font.
+func NewFace(f *Font, opts *Options) font.Face {
+ a := &face{
+ f: f,
+ hinting: opts.hinting(),
+ scale: fixed.Int26_6(0.5 + (opts.size() * opts.dpi() * 64 / 72)),
+ glyphCache: make([]glyphCacheEntry, opts.glyphCacheEntries()),
+ }
+ a.subPixelX, a.subPixelBiasX, a.subPixelMaskX = opts.subPixelsX()
+ a.subPixelY, a.subPixelBiasY, a.subPixelMaskY = opts.subPixelsY()
+
+ // Fill the cache with invalid entries. Valid glyph cache entries have fx
+ // and fy in the range [0, 64). Valid index cache entries have rune >= 0.
+ for i := range a.glyphCache {
+ a.glyphCache[i].key.fy = 0xff
+ }
+ for i := range a.indexCache {
+ a.indexCache[i].rune = -1
+ }
+
+ // Set the rasterizer's bounds to be big enough to handle the largest glyph.
+ b := f.Bounds(a.scale)
+ xmin := +int(b.Min.X) >> 6
+ ymin := -int(b.Max.Y) >> 6
+ xmax := +int(b.Max.X+63) >> 6
+ ymax := -int(b.Min.Y-63) >> 6
+ a.maxw = xmax - xmin
+ a.maxh = ymax - ymin
+ a.masks = image.NewAlpha(image.Rect(0, 0, a.maxw, a.maxh*len(a.glyphCache)))
+ a.r.SetBounds(a.maxw, a.maxh)
+ a.p = facePainter{a}
+
+ return a
+}
+
+type face struct {
+ f *Font
+ hinting font.Hinting
+ scale fixed.Int26_6
+ subPixelX uint32
+ subPixelBiasX fixed.Int26_6
+ subPixelMaskX fixed.Int26_6
+ subPixelY uint32
+ subPixelBiasY fixed.Int26_6
+ subPixelMaskY fixed.Int26_6
+ masks *image.Alpha
+ glyphCache []glyphCacheEntry
+ r raster.Rasterizer
+ p raster.Painter
+ paintOffset int
+ maxw int
+ maxh int
+ glyphBuf GlyphBuf
+ indexCache [indexCacheLen]indexCacheEntry
+
+ // TODO: clip rectangle?
+}
+
+const indexCacheLen = 256
+
+func (a *face) index(r rune) Index {
+ const mask = indexCacheLen - 1
+ c := &a.indexCache[r&mask]
+ if c.rune == r {
+ return c.index
+ }
+ i := a.f.Index(r)
+ c.rune = r
+ c.index = i
+ return i
+}
+
+// Close satisfies the font.Face interface.
+func (a *face) Close() error { return nil }
+
+// Metrics satisfies the font.Face interface.
+func (a *face) Metrics() font.Metrics {
+ scale := float64(a.scale)
+ fupe := float64(a.f.FUnitsPerEm())
+ return font.Metrics{
+ Height: a.scale,
+ Ascent: fixed.Int26_6(math.Ceil(scale * float64(+a.f.ascent) / fupe)),
+ Descent: fixed.Int26_6(math.Ceil(scale * float64(-a.f.descent) / fupe)),
+ }
+}
+
+// Kern satisfies the font.Face interface.
+func (a *face) Kern(r0, r1 rune) fixed.Int26_6 {
+ i0 := a.index(r0)
+ i1 := a.index(r1)
+ kern := a.f.Kern(a.scale, i0, i1)
+ if a.hinting != font.HintingNone {
+ kern = (kern + 32) &^ 63
+ }
+ return kern
+}
+
+// Glyph satisfies the font.Face interface.
+func (a *face) Glyph(dot fixed.Point26_6, r rune) (
+ dr image.Rectangle, mask image.Image, maskp image.Point, advance fixed.Int26_6, ok bool) {
+
+ // Quantize to the sub-pixel granularity.
+ dotX := (dot.X + a.subPixelBiasX) & a.subPixelMaskX
+ dotY := (dot.Y + a.subPixelBiasY) & a.subPixelMaskY
+
+ // Split the coordinates into their integer and fractional parts.
+ ix, fx := int(dotX>>6), dotX&0x3f
+ iy, fy := int(dotY>>6), dotY&0x3f
+
+ index := a.index(r)
+ cIndex := uint32(index)
+ cIndex = cIndex*a.subPixelX - uint32(fx/a.subPixelMaskX)
+ cIndex = cIndex*a.subPixelY - uint32(fy/a.subPixelMaskY)
+ cIndex &= uint32(len(a.glyphCache) - 1)
+ a.paintOffset = a.maxh * int(cIndex)
+ k := glyphCacheKey{
+ index: index,
+ fx: uint8(fx),
+ fy: uint8(fy),
+ }
+ var v glyphCacheVal
+ if a.glyphCache[cIndex].key != k {
+ var ok bool
+ v, ok = a.rasterize(index, fx, fy)
+ if !ok {
+ return image.Rectangle{}, nil, image.Point{}, 0, false
+ }
+ a.glyphCache[cIndex] = glyphCacheEntry{k, v}
+ } else {
+ v = a.glyphCache[cIndex].val
+ }
+
+ dr.Min = image.Point{
+ X: ix + v.offset.X,
+ Y: iy + v.offset.Y,
+ }
+ dr.Max = image.Point{
+ X: dr.Min.X + v.gw,
+ Y: dr.Min.Y + v.gh,
+ }
+ return dr, a.masks, image.Point{Y: a.paintOffset}, v.advanceWidth, true
+}
+
+func (a *face) GlyphBounds(r rune) (bounds fixed.Rectangle26_6, advance fixed.Int26_6, ok bool) {
+ if err := a.glyphBuf.Load(a.f, a.scale, a.index(r), a.hinting); err != nil {
+ return fixed.Rectangle26_6{}, 0, false
+ }
+ xmin := +a.glyphBuf.Bounds.Min.X
+ ymin := -a.glyphBuf.Bounds.Max.Y
+ xmax := +a.glyphBuf.Bounds.Max.X
+ ymax := -a.glyphBuf.Bounds.Min.Y
+ if xmin > xmax || ymin > ymax {
+ return fixed.Rectangle26_6{}, 0, false
+ }
+ return fixed.Rectangle26_6{
+ Min: fixed.Point26_6{
+ X: xmin,
+ Y: ymin,
+ },
+ Max: fixed.Point26_6{
+ X: xmax,
+ Y: ymax,
+ },
+ }, a.glyphBuf.AdvanceWidth, true
+}
+
+func (a *face) GlyphAdvance(r rune) (advance fixed.Int26_6, ok bool) {
+ if err := a.glyphBuf.Load(a.f, a.scale, a.index(r), a.hinting); err != nil {
+ return 0, false
+ }
+ return a.glyphBuf.AdvanceWidth, true
+}
+
+// rasterize returns the advance width, integer-pixel offset to render at, and
+// the width and height of the given glyph at the given sub-pixel offsets.
+//
+// The 26.6 fixed point arguments fx and fy must be in the range [0, 1).
+func (a *face) rasterize(index Index, fx, fy fixed.Int26_6) (v glyphCacheVal, ok bool) {
+ if err := a.glyphBuf.Load(a.f, a.scale, index, a.hinting); err != nil {
+ return glyphCacheVal{}, false
+ }
+ // Calculate the integer-pixel bounds for the glyph.
+ xmin := int(fx+a.glyphBuf.Bounds.Min.X) >> 6
+ ymin := int(fy-a.glyphBuf.Bounds.Max.Y) >> 6
+ xmax := int(fx+a.glyphBuf.Bounds.Max.X+0x3f) >> 6
+ ymax := int(fy-a.glyphBuf.Bounds.Min.Y+0x3f) >> 6
+ if xmin > xmax || ymin > ymax {
+ return glyphCacheVal{}, false
+ }
+ // A TrueType's glyph's nodes can have negative co-ordinates, but the
+ // rasterizer clips anything left of x=0 or above y=0. xmin and ymin are
+ // the pixel offsets, based on the font's FUnit metrics, that let a
+ // negative co-ordinate in TrueType space be non-negative in rasterizer
+ // space. xmin and ymin are typically <= 0.
+ fx -= fixed.Int26_6(xmin << 6)
+ fy -= fixed.Int26_6(ymin << 6)
+ // Rasterize the glyph's vectors.
+ a.r.Clear()
+ pixOffset := a.paintOffset * a.maxw
+ clear(a.masks.Pix[pixOffset : pixOffset+a.maxw*a.maxh])
+ e0 := 0
+ for _, e1 := range a.glyphBuf.Ends {
+ a.drawContour(a.glyphBuf.Points[e0:e1], fx, fy)
+ e0 = e1
+ }
+ a.r.Rasterize(a.p)
+ return glyphCacheVal{
+ a.glyphBuf.AdvanceWidth,
+ image.Point{xmin, ymin},
+ xmax - xmin,
+ ymax - ymin,
+ }, true
+}
+
+func clear(pix []byte) {
+ for i := range pix {
+ pix[i] = 0
+ }
+}
+
+// drawContour draws the given closed contour with the given offset.
+func (a *face) drawContour(ps []Point, dx, dy fixed.Int26_6) {
+ if len(ps) == 0 {
+ return
+ }
+
+ // The low bit of each point's Flags value is whether the point is on the
+ // curve. Truetype fonts only have quadratic Bézier curves, not cubics.
+ // Thus, two consecutive off-curve points imply an on-curve point in the
+ // middle of those two.
+ //
+ // See http://chanae.walon.org/pub/ttf/ttf_glyphs.htm for more details.
+
+ // ps[0] is a truetype.Point measured in FUnits and positive Y going
+ // upwards. start is the same thing measured in fixed point units and
+ // positive Y going downwards, and offset by (dx, dy).
+ start := fixed.Point26_6{
+ X: dx + ps[0].X,
+ Y: dy - ps[0].Y,
+ }
+ var others []Point
+ if ps[0].Flags&0x01 != 0 {
+ others = ps[1:]
+ } else {
+ last := fixed.Point26_6{
+ X: dx + ps[len(ps)-1].X,
+ Y: dy - ps[len(ps)-1].Y,
+ }
+ if ps[len(ps)-1].Flags&0x01 != 0 {
+ start = last
+ others = ps[:len(ps)-1]
+ } else {
+ start = fixed.Point26_6{
+ X: (start.X + last.X) / 2,
+ Y: (start.Y + last.Y) / 2,
+ }
+ others = ps
+ }
+ }
+ a.r.Start(start)
+ q0, on0 := start, true
+ for _, p := range others {
+ q := fixed.Point26_6{
+ X: dx + p.X,
+ Y: dy - p.Y,
+ }
+ on := p.Flags&0x01 != 0
+ if on {
+ if on0 {
+ a.r.Add1(q)
+ } else {
+ a.r.Add2(q0, q)
+ }
+ } else {
+ if on0 {
+ // No-op.
+ } else {
+ mid := fixed.Point26_6{
+ X: (q0.X + q.X) / 2,
+ Y: (q0.Y + q.Y) / 2,
+ }
+ a.r.Add2(q0, mid)
+ }
+ }
+ q0, on0 = q, on
+ }
+ // Close the curve.
+ if on0 {
+ a.r.Add1(start)
+ } else {
+ a.r.Add2(q0, start)
+ }
+}
+
+// facePainter is like a raster.AlphaSrcPainter, with an additional Y offset
+// (face.paintOffset) to the painted spans.
+type facePainter struct {
+ a *face
+}
+
+func (p facePainter) Paint(ss []raster.Span, done bool) {
+ m := p.a.masks
+ b := m.Bounds()
+ b.Min.Y = p.a.paintOffset
+ b.Max.Y = p.a.paintOffset + p.a.maxh
+ for _, s := range ss {
+ s.Y += p.a.paintOffset
+ if s.Y < b.Min.Y {
+ continue
+ }
+ if s.Y >= b.Max.Y {
+ return
+ }
+ if s.X0 < b.Min.X {
+ s.X0 = b.Min.X
+ }
+ if s.X1 > b.Max.X {
+ s.X1 = b.Max.X
+ }
+ if s.X0 >= s.X1 {
+ continue
+ }
+ base := (s.Y-m.Rect.Min.Y)*m.Stride - m.Rect.Min.X
+ p := m.Pix[base+s.X0 : base+s.X1]
+ color := uint8(s.Alpha >> 8)
+ for i := range p {
+ p[i] = color
+ }
+ }
+}
diff --git a/vendor/github.com/golang/freetype/truetype/glyph.go b/vendor/github.com/golang/freetype/truetype/glyph.go
new file mode 100644
index 000000000..c2935a58e
--- /dev/null
+++ b/vendor/github.com/golang/freetype/truetype/glyph.go
@@ -0,0 +1,517 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+package truetype
+
+import (
+ "golang.org/x/image/font"
+ "golang.org/x/image/math/fixed"
+)
+
+// TODO: implement VerticalHinting.
+
+// A Point is a co-ordinate pair plus whether it is 'on' a contour or an 'off'
+// control point.
+type Point struct {
+ X, Y fixed.Int26_6
+ // The Flags' LSB means whether or not this Point is 'on' the contour.
+ // Other bits are reserved for internal use.
+ Flags uint32
+}
+
+// A GlyphBuf holds a glyph's contours. A GlyphBuf can be re-used to load a
+// series of glyphs from a Font.
+type GlyphBuf struct {
+ // AdvanceWidth is the glyph's advance width.
+ AdvanceWidth fixed.Int26_6
+ // Bounds is the glyph's bounding box.
+ Bounds fixed.Rectangle26_6
+ // Points contains all Points from all contours of the glyph. If hinting
+ // was used to load a glyph then Unhinted contains those Points before they
+ // were hinted, and InFontUnits contains those Points before they were
+ // hinted and scaled.
+ Points, Unhinted, InFontUnits []Point
+ // Ends is the point indexes of the end point of each contour. The length
+ // of Ends is the number of contours in the glyph. The i'th contour
+ // consists of points Points[Ends[i-1]:Ends[i]], where Ends[-1] is
+ // interpreted to mean zero.
+ Ends []int
+
+ font *Font
+ scale fixed.Int26_6
+ hinting font.Hinting
+ hinter hinter
+ // phantomPoints are the co-ordinates of the synthetic phantom points
+ // used for hinting and bounding box calculations.
+ phantomPoints [4]Point
+ // pp1x is the X co-ordinate of the first phantom point. The '1' is
+ // using 1-based indexing; pp1x is almost always phantomPoints[0].X.
+ // TODO: eliminate this and consistently use phantomPoints[0].X.
+ pp1x fixed.Int26_6
+ // metricsSet is whether the glyph's metrics have been set yet. For a
+ // compound glyph, a sub-glyph may override the outer glyph's metrics.
+ metricsSet bool
+ // tmp is a scratch buffer.
+ tmp []Point
+}
+
+// Flags for decoding a glyph's contours. These flags are documented at
+// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html.
+const (
+ flagOnCurve = 1 << iota
+ flagXShortVector
+ flagYShortVector
+ flagRepeat
+ flagPositiveXShortVector
+ flagPositiveYShortVector
+
+ // The remaining flags are for internal use.
+ flagTouchedX
+ flagTouchedY
+)
+
+// The same flag bits (0x10 and 0x20) are overloaded to have two meanings,
+// dependent on the value of the flag{X,Y}ShortVector bits.
+const (
+ flagThisXIsSame = flagPositiveXShortVector
+ flagThisYIsSame = flagPositiveYShortVector
+)
+
+// Load loads a glyph's contours from a Font, overwriting any previously loaded
+// contours for this GlyphBuf. scale is the number of 26.6 fixed point units in
+// 1 em, i is the glyph index, and h is the hinting policy.
+func (g *GlyphBuf) Load(f *Font, scale fixed.Int26_6, i Index, h font.Hinting) error {
+ g.Points = g.Points[:0]
+ g.Unhinted = g.Unhinted[:0]
+ g.InFontUnits = g.InFontUnits[:0]
+ g.Ends = g.Ends[:0]
+ g.font = f
+ g.hinting = h
+ g.scale = scale
+ g.pp1x = 0
+ g.phantomPoints = [4]Point{}
+ g.metricsSet = false
+
+ if h != font.HintingNone {
+ if err := g.hinter.init(f, scale); err != nil {
+ return err
+ }
+ }
+ if err := g.load(0, i, true); err != nil {
+ return err
+ }
+ // TODO: this selection of either g.pp1x or g.phantomPoints[0].X isn't ideal,
+ // and should be cleaned up once we have all the testScaling tests passing,
+ // plus additional tests for Freetype-Go's bounding boxes matching C Freetype's.
+ pp1x := g.pp1x
+ if h != font.HintingNone {
+ pp1x = g.phantomPoints[0].X
+ }
+ if pp1x != 0 {
+ for i := range g.Points {
+ g.Points[i].X -= pp1x
+ }
+ }
+
+ advanceWidth := g.phantomPoints[1].X - g.phantomPoints[0].X
+ if h != font.HintingNone {
+ if len(f.hdmx) >= 8 {
+ if n := u32(f.hdmx, 4); n > 3+uint32(i) {
+ for hdmx := f.hdmx[8:]; uint32(len(hdmx)) >= n; hdmx = hdmx[n:] {
+ if fixed.Int26_6(hdmx[0]) == scale>>6 {
+ advanceWidth = fixed.Int26_6(hdmx[2+i]) << 6
+ break
+ }
+ }
+ }
+ }
+ advanceWidth = (advanceWidth + 32) &^ 63
+ }
+ g.AdvanceWidth = advanceWidth
+
+ // Set g.Bounds to the 'control box', which is the bounding box of the
+ // Bézier curves' control points. This is easier to calculate, no smaller
+ // than and often equal to the tightest possible bounding box of the curves
+ // themselves. This approach is what C Freetype does. We can't just scale
+ // the nominal bounding box in the glyf data as the hinting process and
+ // phantom point adjustment may move points outside of that box.
+ if len(g.Points) == 0 {
+ g.Bounds = fixed.Rectangle26_6{}
+ } else {
+ p := g.Points[0]
+ g.Bounds.Min.X = p.X
+ g.Bounds.Max.X = p.X
+ g.Bounds.Min.Y = p.Y
+ g.Bounds.Max.Y = p.Y
+ for _, p := range g.Points[1:] {
+ if g.Bounds.Min.X > p.X {
+ g.Bounds.Min.X = p.X
+ } else if g.Bounds.Max.X < p.X {
+ g.Bounds.Max.X = p.X
+ }
+ if g.Bounds.Min.Y > p.Y {
+ g.Bounds.Min.Y = p.Y
+ } else if g.Bounds.Max.Y < p.Y {
+ g.Bounds.Max.Y = p.Y
+ }
+ }
+ // Snap the box to the grid, if hinting is on.
+ if h != font.HintingNone {
+ g.Bounds.Min.X &^= 63
+ g.Bounds.Min.Y &^= 63
+ g.Bounds.Max.X += 63
+ g.Bounds.Max.X &^= 63
+ g.Bounds.Max.Y += 63
+ g.Bounds.Max.Y &^= 63
+ }
+ }
+ return nil
+}
+
+func (g *GlyphBuf) load(recursion uint32, i Index, useMyMetrics bool) (err error) {
+ // The recursion limit here is arbitrary, but defends against malformed glyphs.
+ if recursion >= 32 {
+ return UnsupportedError("excessive compound glyph recursion")
+ }
+ // Find the relevant slice of g.font.glyf.
+ var g0, g1 uint32
+ if g.font.locaOffsetFormat == locaOffsetFormatShort {
+ g0 = 2 * uint32(u16(g.font.loca, 2*int(i)))
+ g1 = 2 * uint32(u16(g.font.loca, 2*int(i)+2))
+ } else {
+ g0 = u32(g.font.loca, 4*int(i))
+ g1 = u32(g.font.loca, 4*int(i)+4)
+ }
+
+ // Decode the contour count and nominal bounding box, from the first
+ // 10 bytes of the glyf data. boundsYMin and boundsXMax, at offsets 4
+ // and 6, are unused.
+ glyf, ne, boundsXMin, boundsYMax := []byte(nil), 0, fixed.Int26_6(0), fixed.Int26_6(0)
+ if g0+10 <= g1 {
+ glyf = g.font.glyf[g0:g1]
+ ne = int(int16(u16(glyf, 0)))
+ boundsXMin = fixed.Int26_6(int16(u16(glyf, 2)))
+ boundsYMax = fixed.Int26_6(int16(u16(glyf, 8)))
+ }
+
+ // Create the phantom points.
+ uhm, pp1x := g.font.unscaledHMetric(i), fixed.Int26_6(0)
+ uvm := g.font.unscaledVMetric(i, boundsYMax)
+ g.phantomPoints = [4]Point{
+ {X: boundsXMin - uhm.LeftSideBearing},
+ {X: boundsXMin - uhm.LeftSideBearing + uhm.AdvanceWidth},
+ {X: uhm.AdvanceWidth / 2, Y: boundsYMax + uvm.TopSideBearing},
+ {X: uhm.AdvanceWidth / 2, Y: boundsYMax + uvm.TopSideBearing - uvm.AdvanceHeight},
+ }
+ if len(glyf) == 0 {
+ g.addPhantomsAndScale(len(g.Points), len(g.Points), true, true)
+ copy(g.phantomPoints[:], g.Points[len(g.Points)-4:])
+ g.Points = g.Points[:len(g.Points)-4]
+ return nil
+ }
+
+ // Load and hint the contours.
+ if ne < 0 {
+ if ne != -1 {
+ // http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html says that
+ // "the values -2, -3, and so forth, are reserved for future use."
+ return UnsupportedError("negative number of contours")
+ }
+ pp1x = g.font.scale(g.scale * (boundsXMin - uhm.LeftSideBearing))
+ if err := g.loadCompound(recursion, uhm, i, glyf, useMyMetrics); err != nil {
+ return err
+ }
+ } else {
+ np0, ne0 := len(g.Points), len(g.Ends)
+ program := g.loadSimple(glyf, ne)
+ g.addPhantomsAndScale(np0, np0, true, true)
+ pp1x = g.Points[len(g.Points)-4].X
+ if g.hinting != font.HintingNone {
+ if len(program) != 0 {
+ err := g.hinter.run(
+ program,
+ g.Points[np0:],
+ g.Unhinted[np0:],
+ g.InFontUnits[np0:],
+ g.Ends[ne0:],
+ )
+ if err != nil {
+ return err
+ }
+ }
+ // Drop the four phantom points.
+ g.InFontUnits = g.InFontUnits[:len(g.InFontUnits)-4]
+ g.Unhinted = g.Unhinted[:len(g.Unhinted)-4]
+ }
+ if useMyMetrics {
+ copy(g.phantomPoints[:], g.Points[len(g.Points)-4:])
+ }
+ g.Points = g.Points[:len(g.Points)-4]
+ if np0 != 0 {
+ // The hinting program expects the []Ends values to be indexed
+ // relative to the inner glyph, not the outer glyph, so we delay
+ // adding np0 until after the hinting program (if any) has run.
+ for i := ne0; i < len(g.Ends); i++ {
+ g.Ends[i] += np0
+ }
+ }
+ }
+ if useMyMetrics && !g.metricsSet {
+ g.metricsSet = true
+ g.pp1x = pp1x
+ }
+ return nil
+}
+
+// loadOffset is the initial offset for loadSimple and loadCompound. The first
+// 10 bytes are the number of contours and the bounding box.
+const loadOffset = 10
+
+func (g *GlyphBuf) loadSimple(glyf []byte, ne int) (program []byte) {
+ offset := loadOffset
+ for i := 0; i < ne; i++ {
+ g.Ends = append(g.Ends, 1+int(u16(glyf, offset)))
+ offset += 2
+ }
+
+ // Note the TrueType hinting instructions.
+ instrLen := int(u16(glyf, offset))
+ offset += 2
+ program = glyf[offset : offset+instrLen]
+ offset += instrLen
+
+ np0 := len(g.Points)
+ np1 := np0 + int(g.Ends[len(g.Ends)-1])
+
+ // Decode the flags.
+ for i := np0; i < np1; {
+ c := uint32(glyf[offset])
+ offset++
+ g.Points = append(g.Points, Point{Flags: c})
+ i++
+ if c&flagRepeat != 0 {
+ count := glyf[offset]
+ offset++
+ for ; count > 0; count-- {
+ g.Points = append(g.Points, Point{Flags: c})
+ i++
+ }
+ }
+ }
+
+ // Decode the co-ordinates.
+ var x int16
+ for i := np0; i < np1; i++ {
+ f := g.Points[i].Flags
+ if f&flagXShortVector != 0 {
+ dx := int16(glyf[offset])
+ offset++
+ if f&flagPositiveXShortVector == 0 {
+ x -= dx
+ } else {
+ x += dx
+ }
+ } else if f&flagThisXIsSame == 0 {
+ x += int16(u16(glyf, offset))
+ offset += 2
+ }
+ g.Points[i].X = fixed.Int26_6(x)
+ }
+ var y int16
+ for i := np0; i < np1; i++ {
+ f := g.Points[i].Flags
+ if f&flagYShortVector != 0 {
+ dy := int16(glyf[offset])
+ offset++
+ if f&flagPositiveYShortVector == 0 {
+ y -= dy
+ } else {
+ y += dy
+ }
+ } else if f&flagThisYIsSame == 0 {
+ y += int16(u16(glyf, offset))
+ offset += 2
+ }
+ g.Points[i].Y = fixed.Int26_6(y)
+ }
+
+ return program
+}
+
+func (g *GlyphBuf) loadCompound(recursion uint32, uhm HMetric, i Index,
+ glyf []byte, useMyMetrics bool) error {
+
+ // Flags for decoding a compound glyph. These flags are documented at
+ // http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html.
+ const (
+ flagArg1And2AreWords = 1 << iota
+ flagArgsAreXYValues
+ flagRoundXYToGrid
+ flagWeHaveAScale
+ flagUnused
+ flagMoreComponents
+ flagWeHaveAnXAndYScale
+ flagWeHaveATwoByTwo
+ flagWeHaveInstructions
+ flagUseMyMetrics
+ flagOverlapCompound
+ )
+ np0, ne0 := len(g.Points), len(g.Ends)
+ offset := loadOffset
+ for {
+ flags := u16(glyf, offset)
+ component := Index(u16(glyf, offset+2))
+ dx, dy, transform, hasTransform := fixed.Int26_6(0), fixed.Int26_6(0), [4]int16{}, false
+ if flags&flagArg1And2AreWords != 0 {
+ dx = fixed.Int26_6(int16(u16(glyf, offset+4)))
+ dy = fixed.Int26_6(int16(u16(glyf, offset+6)))
+ offset += 8
+ } else {
+ dx = fixed.Int26_6(int16(int8(glyf[offset+4])))
+ dy = fixed.Int26_6(int16(int8(glyf[offset+5])))
+ offset += 6
+ }
+ if flags&flagArgsAreXYValues == 0 {
+ return UnsupportedError("compound glyph transform vector")
+ }
+ if flags&(flagWeHaveAScale|flagWeHaveAnXAndYScale|flagWeHaveATwoByTwo) != 0 {
+ hasTransform = true
+ switch {
+ case flags&flagWeHaveAScale != 0:
+ transform[0] = int16(u16(glyf, offset+0))
+ transform[3] = transform[0]
+ offset += 2
+ case flags&flagWeHaveAnXAndYScale != 0:
+ transform[0] = int16(u16(glyf, offset+0))
+ transform[3] = int16(u16(glyf, offset+2))
+ offset += 4
+ case flags&flagWeHaveATwoByTwo != 0:
+ transform[0] = int16(u16(glyf, offset+0))
+ transform[1] = int16(u16(glyf, offset+2))
+ transform[2] = int16(u16(glyf, offset+4))
+ transform[3] = int16(u16(glyf, offset+6))
+ offset += 8
+ }
+ }
+ savedPP := g.phantomPoints
+ np0 := len(g.Points)
+ componentUMM := useMyMetrics && (flags&flagUseMyMetrics != 0)
+ if err := g.load(recursion+1, component, componentUMM); err != nil {
+ return err
+ }
+ if flags&flagUseMyMetrics == 0 {
+ g.phantomPoints = savedPP
+ }
+ if hasTransform {
+ for j := np0; j < len(g.Points); j++ {
+ p := &g.Points[j]
+ newX := 0 +
+ fixed.Int26_6((int64(p.X)*int64(transform[0])+1<<13)>>14) +
+ fixed.Int26_6((int64(p.Y)*int64(transform[2])+1<<13)>>14)
+ newY := 0 +
+ fixed.Int26_6((int64(p.X)*int64(transform[1])+1<<13)>>14) +
+ fixed.Int26_6((int64(p.Y)*int64(transform[3])+1<<13)>>14)
+ p.X, p.Y = newX, newY
+ }
+ }
+ dx = g.font.scale(g.scale * dx)
+ dy = g.font.scale(g.scale * dy)
+ if flags&flagRoundXYToGrid != 0 {
+ dx = (dx + 32) &^ 63
+ dy = (dy + 32) &^ 63
+ }
+ for j := np0; j < len(g.Points); j++ {
+ p := &g.Points[j]
+ p.X += dx
+ p.Y += dy
+ }
+ // TODO: also adjust g.InFontUnits and g.Unhinted?
+ if flags&flagMoreComponents == 0 {
+ break
+ }
+ }
+
+ instrLen := 0
+ if g.hinting != font.HintingNone && offset+2 <= len(glyf) {
+ instrLen = int(u16(glyf, offset))
+ offset += 2
+ }
+
+ g.addPhantomsAndScale(np0, len(g.Points), false, instrLen > 0)
+ points, ends := g.Points[np0:], g.Ends[ne0:]
+ g.Points = g.Points[:len(g.Points)-4]
+ for j := range points {
+ points[j].Flags &^= flagTouchedX | flagTouchedY
+ }
+
+ if instrLen == 0 {
+ if !g.metricsSet {
+ copy(g.phantomPoints[:], points[len(points)-4:])
+ }
+ return nil
+ }
+
+ // Hint the compound glyph.
+ program := glyf[offset : offset+instrLen]
+ // Temporarily adjust the ends to be relative to this compound glyph.
+ if np0 != 0 {
+ for i := range ends {
+ ends[i] -= np0
+ }
+ }
+ // Hinting instructions of a composite glyph completely refer to the
+ // (already) hinted subglyphs.
+ g.tmp = append(g.tmp[:0], points...)
+ if err := g.hinter.run(program, points, g.tmp, g.tmp, ends); err != nil {
+ return err
+ }
+ if np0 != 0 {
+ for i := range ends {
+ ends[i] += np0
+ }
+ }
+ if !g.metricsSet {
+ copy(g.phantomPoints[:], points[len(points)-4:])
+ }
+ return nil
+}
+
+func (g *GlyphBuf) addPhantomsAndScale(np0, np1 int, simple, adjust bool) {
+ // Add the four phantom points.
+ g.Points = append(g.Points, g.phantomPoints[:]...)
+ // Scale the points.
+ if simple && g.hinting != font.HintingNone {
+ g.InFontUnits = append(g.InFontUnits, g.Points[np1:]...)
+ }
+ for i := np1; i < len(g.Points); i++ {
+ p := &g.Points[i]
+ p.X = g.font.scale(g.scale * p.X)
+ p.Y = g.font.scale(g.scale * p.Y)
+ }
+ if g.hinting == font.HintingNone {
+ return
+ }
+ // Round the 1st phantom point to the grid, shifting all other points equally.
+ // Note that "all other points" starts from np0, not np1.
+ // TODO: delete this adjustment and the np0/np1 distinction, when
+ // we update the compatibility tests to C Freetype 2.5.3.
+ // See http://git.savannah.gnu.org/cgit/freetype/freetype2.git/commit/?id=05c786d990390a7ca18e62962641dac740bacb06
+ if adjust {
+ pp1x := g.Points[len(g.Points)-4].X
+ if dx := ((pp1x + 32) &^ 63) - pp1x; dx != 0 {
+ for i := np0; i < len(g.Points); i++ {
+ g.Points[i].X += dx
+ }
+ }
+ }
+ if simple {
+ g.Unhinted = append(g.Unhinted, g.Points[np1:]...)
+ }
+ // Round the 2nd and 4th phantom point to the grid.
+ p := &g.Points[len(g.Points)-3]
+ p.X = (p.X + 32) &^ 63
+ p = &g.Points[len(g.Points)-1]
+ p.Y = (p.Y + 32) &^ 63
+}
diff --git a/vendor/github.com/golang/freetype/truetype/hint.go b/vendor/github.com/golang/freetype/truetype/hint.go
new file mode 100644
index 000000000..0315de511
--- /dev/null
+++ b/vendor/github.com/golang/freetype/truetype/hint.go
@@ -0,0 +1,1763 @@
+// Copyright 2012 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+package truetype
+
+// This file implements a Truetype bytecode interpreter.
+// The opcodes are described at https://developer.apple.com/fonts/TTRefMan/RM05/Chap5.html
+
+import (
+ "errors"
+ "math"
+
+ "golang.org/x/image/math/fixed"
+)
+
+const (
+ twilightZone = 0
+ glyphZone = 1
+ numZone = 2
+)
+
+type pointType uint32
+
+const (
+ current pointType = 0
+ unhinted pointType = 1
+ inFontUnits pointType = 2
+ numPointType = 3
+)
+
+// callStackEntry is a bytecode call stack entry.
+type callStackEntry struct {
+ program []byte
+ pc int
+ loopCount int32
+}
+
+// hinter implements bytecode hinting. A hinter can be re-used to hint a series
+// of glyphs from a Font.
+type hinter struct {
+ stack, store []int32
+
+ // functions is a map from function number to bytecode.
+ functions map[int32][]byte
+
+ // font and scale are the font and scale last used for this hinter.
+ // Changing the font will require running the new font's fpgm bytecode.
+ // Changing either will require running the font's prep bytecode.
+ font *Font
+ scale fixed.Int26_6
+
+ // gs and defaultGS are the current and default graphics state. The
+ // default graphics state is the global default graphics state after
+ // the font's fpgm and prep programs have been run.
+ gs, defaultGS graphicsState
+
+ // points and ends are the twilight zone's points, glyph's points
+ // and glyph's contour boundaries.
+ points [numZone][numPointType][]Point
+ ends []int
+
+ // scaledCVT is the lazily initialized scaled Control Value Table.
+ scaledCVTInitialized bool
+ scaledCVT []fixed.Int26_6
+}
+
+// graphicsState is described at https://developer.apple.com/fonts/TTRefMan/RM04/Chap4.html
+type graphicsState struct {
+ // Projection vector, freedom vector and dual projection vector.
+ pv, fv, dv [2]f2dot14
+ // Reference points and zone pointers.
+ rp, zp [3]int32
+ // Control Value / Single Width Cut-In.
+ controlValueCutIn, singleWidthCutIn, singleWidth fixed.Int26_6
+ // Delta base / shift.
+ deltaBase, deltaShift int32
+ // Minimum distance.
+ minDist fixed.Int26_6
+ // Loop count.
+ loop int32
+ // Rounding policy.
+ roundPeriod, roundPhase, roundThreshold fixed.Int26_6
+ roundSuper45 bool
+ // Auto-flip.
+ autoFlip bool
+}
+
+var globalDefaultGS = graphicsState{
+ pv: [2]f2dot14{0x4000, 0}, // Unit vector along the X axis.
+ fv: [2]f2dot14{0x4000, 0},
+ dv: [2]f2dot14{0x4000, 0},
+ zp: [3]int32{1, 1, 1},
+ controlValueCutIn: (17 << 6) / 16, // 17/16 as a fixed.Int26_6.
+ deltaBase: 9,
+ deltaShift: 3,
+ minDist: 1 << 6, // 1 as a fixed.Int26_6.
+ loop: 1,
+ roundPeriod: 1 << 6, // 1 as a fixed.Int26_6.
+ roundThreshold: 1 << 5, // 1/2 as a fixed.Int26_6.
+ roundSuper45: false,
+ autoFlip: true,
+}
+
+func resetTwilightPoints(f *Font, p []Point) []Point {
+ if n := int(f.maxTwilightPoints) + 4; n <= cap(p) {
+ p = p[:n]
+ for i := range p {
+ p[i] = Point{}
+ }
+ } else {
+ p = make([]Point, n)
+ }
+ return p
+}
+
+func (h *hinter) init(f *Font, scale fixed.Int26_6) error {
+ h.points[twilightZone][0] = resetTwilightPoints(f, h.points[twilightZone][0])
+ h.points[twilightZone][1] = resetTwilightPoints(f, h.points[twilightZone][1])
+ h.points[twilightZone][2] = resetTwilightPoints(f, h.points[twilightZone][2])
+
+ rescale := h.scale != scale
+ if h.font != f {
+ h.font, rescale = f, true
+ if h.functions == nil {
+ h.functions = make(map[int32][]byte)
+ } else {
+ for k := range h.functions {
+ delete(h.functions, k)
+ }
+ }
+
+ if x := int(f.maxStackElements); x > len(h.stack) {
+ x += 255
+ x &^= 255
+ h.stack = make([]int32, x)
+ }
+ if x := int(f.maxStorage); x > len(h.store) {
+ x += 15
+ x &^= 15
+ h.store = make([]int32, x)
+ }
+ if len(f.fpgm) != 0 {
+ if err := h.run(f.fpgm, nil, nil, nil, nil); err != nil {
+ return err
+ }
+ }
+ }
+
+ if rescale {
+ h.scale = scale
+ h.scaledCVTInitialized = false
+
+ h.defaultGS = globalDefaultGS
+
+ if len(f.prep) != 0 {
+ if err := h.run(f.prep, nil, nil, nil, nil); err != nil {
+ return err
+ }
+ h.defaultGS = h.gs
+ // The MS rasterizer doesn't allow the following graphics state
+ // variables to be modified by the CVT program.
+ h.defaultGS.pv = globalDefaultGS.pv
+ h.defaultGS.fv = globalDefaultGS.fv
+ h.defaultGS.dv = globalDefaultGS.dv
+ h.defaultGS.rp = globalDefaultGS.rp
+ h.defaultGS.zp = globalDefaultGS.zp
+ h.defaultGS.loop = globalDefaultGS.loop
+ }
+ }
+ return nil
+}
+
+func (h *hinter) run(program []byte, pCurrent, pUnhinted, pInFontUnits []Point, ends []int) error {
+ h.gs = h.defaultGS
+ h.points[glyphZone][current] = pCurrent
+ h.points[glyphZone][unhinted] = pUnhinted
+ h.points[glyphZone][inFontUnits] = pInFontUnits
+ h.ends = ends
+
+ if len(program) > 50000 {
+ return errors.New("truetype: hinting: too many instructions")
+ }
+ var (
+ steps, pc, top int
+ opcode uint8
+
+ callStack [32]callStackEntry
+ callStackTop int
+ )
+
+ for 0 <= pc && pc < len(program) {
+ steps++
+ if steps == 100000 {
+ return errors.New("truetype: hinting: too many steps")
+ }
+ opcode = program[pc]
+ if top < int(popCount[opcode]) {
+ return errors.New("truetype: hinting: stack underflow")
+ }
+ switch opcode {
+
+ case opSVTCA0:
+ h.gs.pv = [2]f2dot14{0, 0x4000}
+ h.gs.fv = [2]f2dot14{0, 0x4000}
+ h.gs.dv = [2]f2dot14{0, 0x4000}
+
+ case opSVTCA1:
+ h.gs.pv = [2]f2dot14{0x4000, 0}
+ h.gs.fv = [2]f2dot14{0x4000, 0}
+ h.gs.dv = [2]f2dot14{0x4000, 0}
+
+ case opSPVTCA0:
+ h.gs.pv = [2]f2dot14{0, 0x4000}
+ h.gs.dv = [2]f2dot14{0, 0x4000}
+
+ case opSPVTCA1:
+ h.gs.pv = [2]f2dot14{0x4000, 0}
+ h.gs.dv = [2]f2dot14{0x4000, 0}
+
+ case opSFVTCA0:
+ h.gs.fv = [2]f2dot14{0, 0x4000}
+
+ case opSFVTCA1:
+ h.gs.fv = [2]f2dot14{0x4000, 0}
+
+ case opSPVTL0, opSPVTL1, opSFVTL0, opSFVTL1:
+ top -= 2
+ p1 := h.point(0, current, h.stack[top+0])
+ p2 := h.point(0, current, h.stack[top+1])
+ if p1 == nil || p2 == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ dx := f2dot14(p1.X - p2.X)
+ dy := f2dot14(p1.Y - p2.Y)
+ if dx == 0 && dy == 0 {
+ dx = 0x4000
+ } else if opcode&1 != 0 {
+ // Counter-clockwise rotation.
+ dx, dy = -dy, dx
+ }
+ v := normalize(dx, dy)
+ if opcode < opSFVTL0 {
+ h.gs.pv = v
+ h.gs.dv = v
+ } else {
+ h.gs.fv = v
+ }
+
+ case opSPVFS:
+ top -= 2
+ h.gs.pv = normalize(f2dot14(h.stack[top]), f2dot14(h.stack[top+1]))
+ h.gs.dv = h.gs.pv
+
+ case opSFVFS:
+ top -= 2
+ h.gs.fv = normalize(f2dot14(h.stack[top]), f2dot14(h.stack[top+1]))
+
+ case opGPV:
+ if top+1 >= len(h.stack) {
+ return errors.New("truetype: hinting: stack overflow")
+ }
+ h.stack[top+0] = int32(h.gs.pv[0])
+ h.stack[top+1] = int32(h.gs.pv[1])
+ top += 2
+
+ case opGFV:
+ if top+1 >= len(h.stack) {
+ return errors.New("truetype: hinting: stack overflow")
+ }
+ h.stack[top+0] = int32(h.gs.fv[0])
+ h.stack[top+1] = int32(h.gs.fv[1])
+ top += 2
+
+ case opSFVTPV:
+ h.gs.fv = h.gs.pv
+
+ case opISECT:
+ top -= 5
+ p := h.point(2, current, h.stack[top+0])
+ a0 := h.point(1, current, h.stack[top+1])
+ a1 := h.point(1, current, h.stack[top+2])
+ b0 := h.point(0, current, h.stack[top+3])
+ b1 := h.point(0, current, h.stack[top+4])
+ if p == nil || a0 == nil || a1 == nil || b0 == nil || b1 == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+
+ dbx := b1.X - b0.X
+ dby := b1.Y - b0.Y
+ dax := a1.X - a0.X
+ day := a1.Y - a0.Y
+ dx := b0.X - a0.X
+ dy := b0.Y - a0.Y
+ discriminant := mulDiv(int64(dax), int64(-dby), 0x40) +
+ mulDiv(int64(day), int64(dbx), 0x40)
+ dotProduct := mulDiv(int64(dax), int64(dbx), 0x40) +
+ mulDiv(int64(day), int64(dby), 0x40)
+ // The discriminant above is actually a cross product of vectors
+ // da and db. Together with the dot product, they can be used as
+ // surrogates for sine and cosine of the angle between the vectors.
+ // Indeed,
+ // dotproduct = |da||db|cos(angle)
+ // discriminant = |da||db|sin(angle)
+ // We use these equations to reject grazing intersections by
+ // thresholding abs(tan(angle)) at 1/19, corresponding to 3 degrees.
+ absDisc, absDotP := discriminant, dotProduct
+ if absDisc < 0 {
+ absDisc = -absDisc
+ }
+ if absDotP < 0 {
+ absDotP = -absDotP
+ }
+ if 19*absDisc > absDotP {
+ val := mulDiv(int64(dx), int64(-dby), 0x40) +
+ mulDiv(int64(dy), int64(dbx), 0x40)
+ rx := mulDiv(val, int64(dax), discriminant)
+ ry := mulDiv(val, int64(day), discriminant)
+ p.X = a0.X + fixed.Int26_6(rx)
+ p.Y = a0.Y + fixed.Int26_6(ry)
+ } else {
+ p.X = (a0.X + a1.X + b0.X + b1.X) / 4
+ p.Y = (a0.Y + a1.Y + b0.Y + b1.Y) / 4
+ }
+ p.Flags |= flagTouchedX | flagTouchedY
+
+ case opSRP0, opSRP1, opSRP2:
+ top--
+ h.gs.rp[opcode-opSRP0] = h.stack[top]
+
+ case opSZP0, opSZP1, opSZP2:
+ top--
+ h.gs.zp[opcode-opSZP0] = h.stack[top]
+
+ case opSZPS:
+ top--
+ h.gs.zp[0] = h.stack[top]
+ h.gs.zp[1] = h.stack[top]
+ h.gs.zp[2] = h.stack[top]
+
+ case opSLOOP:
+ top--
+ if h.stack[top] <= 0 {
+ return errors.New("truetype: hinting: invalid data")
+ }
+ h.gs.loop = h.stack[top]
+
+ case opRTG:
+ h.gs.roundPeriod = 1 << 6
+ h.gs.roundPhase = 0
+ h.gs.roundThreshold = 1 << 5
+ h.gs.roundSuper45 = false
+
+ case opRTHG:
+ h.gs.roundPeriod = 1 << 6
+ h.gs.roundPhase = 1 << 5
+ h.gs.roundThreshold = 1 << 5
+ h.gs.roundSuper45 = false
+
+ case opSMD:
+ top--
+ h.gs.minDist = fixed.Int26_6(h.stack[top])
+
+ case opELSE:
+ opcode = 1
+ goto ifelse
+
+ case opJMPR:
+ top--
+ pc += int(h.stack[top])
+ continue
+
+ case opSCVTCI:
+ top--
+ h.gs.controlValueCutIn = fixed.Int26_6(h.stack[top])
+
+ case opSSWCI:
+ top--
+ h.gs.singleWidthCutIn = fixed.Int26_6(h.stack[top])
+
+ case opSSW:
+ top--
+ h.gs.singleWidth = h.font.scale(h.scale * fixed.Int26_6(h.stack[top]))
+
+ case opDUP:
+ if top >= len(h.stack) {
+ return errors.New("truetype: hinting: stack overflow")
+ }
+ h.stack[top] = h.stack[top-1]
+ top++
+
+ case opPOP:
+ top--
+
+ case opCLEAR:
+ top = 0
+
+ case opSWAP:
+ h.stack[top-1], h.stack[top-2] = h.stack[top-2], h.stack[top-1]
+
+ case opDEPTH:
+ if top >= len(h.stack) {
+ return errors.New("truetype: hinting: stack overflow")
+ }
+ h.stack[top] = int32(top)
+ top++
+
+ case opCINDEX, opMINDEX:
+ x := int(h.stack[top-1])
+ if x <= 0 || x >= top {
+ return errors.New("truetype: hinting: invalid data")
+ }
+ h.stack[top-1] = h.stack[top-1-x]
+ if opcode == opMINDEX {
+ copy(h.stack[top-1-x:top-1], h.stack[top-x:top])
+ top--
+ }
+
+ case opALIGNPTS:
+ top -= 2
+ p := h.point(1, current, h.stack[top])
+ q := h.point(0, current, h.stack[top+1])
+ if p == nil || q == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ d := dotProduct(fixed.Int26_6(q.X-p.X), fixed.Int26_6(q.Y-p.Y), h.gs.pv) / 2
+ h.move(p, +d, true)
+ h.move(q, -d, true)
+
+ case opUTP:
+ top--
+ p := h.point(0, current, h.stack[top])
+ if p == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ p.Flags &^= flagTouchedX | flagTouchedY
+
+ case opLOOPCALL, opCALL:
+ if callStackTop >= len(callStack) {
+ return errors.New("truetype: hinting: call stack overflow")
+ }
+ top--
+ f, ok := h.functions[h.stack[top]]
+ if !ok {
+ return errors.New("truetype: hinting: undefined function")
+ }
+ callStack[callStackTop] = callStackEntry{program, pc, 1}
+ if opcode == opLOOPCALL {
+ top--
+ if h.stack[top] == 0 {
+ break
+ }
+ callStack[callStackTop].loopCount = h.stack[top]
+ }
+ callStackTop++
+ program, pc = f, 0
+ continue
+
+ case opFDEF:
+ // Save all bytecode up until the next ENDF.
+ startPC := pc + 1
+ fdefloop:
+ for {
+ pc++
+ if pc >= len(program) {
+ return errors.New("truetype: hinting: unbalanced FDEF")
+ }
+ switch program[pc] {
+ case opFDEF:
+ return errors.New("truetype: hinting: nested FDEF")
+ case opENDF:
+ top--
+ h.functions[h.stack[top]] = program[startPC : pc+1]
+ break fdefloop
+ default:
+ var ok bool
+ pc, ok = skipInstructionPayload(program, pc)
+ if !ok {
+ return errors.New("truetype: hinting: unbalanced FDEF")
+ }
+ }
+ }
+
+ case opENDF:
+ if callStackTop == 0 {
+ return errors.New("truetype: hinting: call stack underflow")
+ }
+ callStackTop--
+ callStack[callStackTop].loopCount--
+ if callStack[callStackTop].loopCount != 0 {
+ callStackTop++
+ pc = 0
+ continue
+ }
+ program, pc = callStack[callStackTop].program, callStack[callStackTop].pc
+
+ case opMDAP0, opMDAP1:
+ top--
+ i := h.stack[top]
+ p := h.point(0, current, i)
+ if p == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ distance := fixed.Int26_6(0)
+ if opcode == opMDAP1 {
+ distance = dotProduct(p.X, p.Y, h.gs.pv)
+ // TODO: metrics compensation.
+ distance = h.round(distance) - distance
+ }
+ h.move(p, distance, true)
+ h.gs.rp[0] = i
+ h.gs.rp[1] = i
+
+ case opIUP0, opIUP1:
+ iupY, mask := opcode == opIUP0, uint32(flagTouchedX)
+ if iupY {
+ mask = flagTouchedY
+ }
+ prevEnd := 0
+ for _, end := range h.ends {
+ for i := prevEnd; i < end; i++ {
+ for i < end && h.points[glyphZone][current][i].Flags&mask == 0 {
+ i++
+ }
+ if i == end {
+ break
+ }
+ firstTouched, curTouched := i, i
+ i++
+ for ; i < end; i++ {
+ if h.points[glyphZone][current][i].Flags&mask != 0 {
+ h.iupInterp(iupY, curTouched+1, i-1, curTouched, i)
+ curTouched = i
+ }
+ }
+ if curTouched == firstTouched {
+ h.iupShift(iupY, prevEnd, end, curTouched)
+ } else {
+ h.iupInterp(iupY, curTouched+1, end-1, curTouched, firstTouched)
+ if firstTouched > 0 {
+ h.iupInterp(iupY, prevEnd, firstTouched-1, curTouched, firstTouched)
+ }
+ }
+ }
+ prevEnd = end
+ }
+
+ case opSHP0, opSHP1:
+ if top < int(h.gs.loop) {
+ return errors.New("truetype: hinting: stack underflow")
+ }
+ _, _, d, ok := h.displacement(opcode&1 == 0)
+ if !ok {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ for ; h.gs.loop != 0; h.gs.loop-- {
+ top--
+ p := h.point(2, current, h.stack[top])
+ if p == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ h.move(p, d, true)
+ }
+ h.gs.loop = 1
+
+ case opSHC0, opSHC1:
+ top--
+ zonePointer, i, d, ok := h.displacement(opcode&1 == 0)
+ if !ok {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ if h.gs.zp[2] == 0 {
+ // TODO: implement this when we have a glyph that does this.
+ return errors.New("hinting: unimplemented SHC instruction")
+ }
+ contour := h.stack[top]
+ if contour < 0 || len(ends) <= int(contour) {
+ return errors.New("truetype: hinting: contour out of range")
+ }
+ j0, j1 := int32(0), int32(h.ends[contour])
+ if contour > 0 {
+ j0 = int32(h.ends[contour-1])
+ }
+ move := h.gs.zp[zonePointer] != h.gs.zp[2]
+ for j := j0; j < j1; j++ {
+ if move || j != i {
+ h.move(h.point(2, current, j), d, true)
+ }
+ }
+
+ case opSHZ0, opSHZ1:
+ top--
+ zonePointer, i, d, ok := h.displacement(opcode&1 == 0)
+ if !ok {
+ return errors.New("truetype: hinting: point out of range")
+ }
+
+ // As per C Freetype, SHZ doesn't move the phantom points, or mark
+ // the points as touched.
+ limit := int32(len(h.points[h.gs.zp[2]][current]))
+ if h.gs.zp[2] == glyphZone {
+ limit -= 4
+ }
+ for j := int32(0); j < limit; j++ {
+ if i != j || h.gs.zp[zonePointer] != h.gs.zp[2] {
+ h.move(h.point(2, current, j), d, false)
+ }
+ }
+
+ case opSHPIX:
+ top--
+ d := fixed.Int26_6(h.stack[top])
+ if top < int(h.gs.loop) {
+ return errors.New("truetype: hinting: stack underflow")
+ }
+ for ; h.gs.loop != 0; h.gs.loop-- {
+ top--
+ p := h.point(2, current, h.stack[top])
+ if p == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ h.move(p, d, true)
+ }
+ h.gs.loop = 1
+
+ case opIP:
+ if top < int(h.gs.loop) {
+ return errors.New("truetype: hinting: stack underflow")
+ }
+ pointType := inFontUnits
+ twilight := h.gs.zp[0] == 0 || h.gs.zp[1] == 0 || h.gs.zp[2] == 0
+ if twilight {
+ pointType = unhinted
+ }
+ p := h.point(1, pointType, h.gs.rp[2])
+ oldP := h.point(0, pointType, h.gs.rp[1])
+ oldRange := dotProduct(p.X-oldP.X, p.Y-oldP.Y, h.gs.dv)
+
+ p = h.point(1, current, h.gs.rp[2])
+ curP := h.point(0, current, h.gs.rp[1])
+ curRange := dotProduct(p.X-curP.X, p.Y-curP.Y, h.gs.pv)
+ for ; h.gs.loop != 0; h.gs.loop-- {
+ top--
+ i := h.stack[top]
+ p = h.point(2, pointType, i)
+ oldDist := dotProduct(p.X-oldP.X, p.Y-oldP.Y, h.gs.dv)
+ p = h.point(2, current, i)
+ curDist := dotProduct(p.X-curP.X, p.Y-curP.Y, h.gs.pv)
+ newDist := fixed.Int26_6(0)
+ if oldDist != 0 {
+ if oldRange != 0 {
+ newDist = fixed.Int26_6(mulDiv(int64(oldDist), int64(curRange), int64(oldRange)))
+ } else {
+ newDist = -oldDist
+ }
+ }
+ h.move(p, newDist-curDist, true)
+ }
+ h.gs.loop = 1
+
+ case opMSIRP0, opMSIRP1:
+ top -= 2
+ i := h.stack[top]
+ distance := fixed.Int26_6(h.stack[top+1])
+
+ // TODO: special case h.gs.zp[1] == 0 in C Freetype.
+ ref := h.point(0, current, h.gs.rp[0])
+ p := h.point(1, current, i)
+ if ref == nil || p == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ curDist := dotProduct(p.X-ref.X, p.Y-ref.Y, h.gs.pv)
+
+ // Set-RP0 bit.
+ if opcode == opMSIRP1 {
+ h.gs.rp[0] = i
+ }
+ h.gs.rp[1] = h.gs.rp[0]
+ h.gs.rp[2] = i
+
+ // Move the point.
+ h.move(p, distance-curDist, true)
+
+ case opALIGNRP:
+ if top < int(h.gs.loop) {
+ return errors.New("truetype: hinting: stack underflow")
+ }
+ ref := h.point(0, current, h.gs.rp[0])
+ if ref == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ for ; h.gs.loop != 0; h.gs.loop-- {
+ top--
+ p := h.point(1, current, h.stack[top])
+ if p == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ h.move(p, -dotProduct(p.X-ref.X, p.Y-ref.Y, h.gs.pv), true)
+ }
+ h.gs.loop = 1
+
+ case opRTDG:
+ h.gs.roundPeriod = 1 << 5
+ h.gs.roundPhase = 0
+ h.gs.roundThreshold = 1 << 4
+ h.gs.roundSuper45 = false
+
+ case opMIAP0, opMIAP1:
+ top -= 2
+ i := h.stack[top]
+ distance := h.getScaledCVT(h.stack[top+1])
+ if h.gs.zp[0] == 0 {
+ p := h.point(0, unhinted, i)
+ q := h.point(0, current, i)
+ p.X = fixed.Int26_6((int64(distance) * int64(h.gs.fv[0])) >> 14)
+ p.Y = fixed.Int26_6((int64(distance) * int64(h.gs.fv[1])) >> 14)
+ *q = *p
+ }
+ p := h.point(0, current, i)
+ oldDist := dotProduct(p.X, p.Y, h.gs.pv)
+ if opcode == opMIAP1 {
+ if fabs(distance-oldDist) > h.gs.controlValueCutIn {
+ distance = oldDist
+ }
+ // TODO: metrics compensation.
+ distance = h.round(distance)
+ }
+ h.move(p, distance-oldDist, true)
+ h.gs.rp[0] = i
+ h.gs.rp[1] = i
+
+ case opNPUSHB:
+ opcode = 0
+ goto push
+
+ case opNPUSHW:
+ opcode = 0x80
+ goto push
+
+ case opWS:
+ top -= 2
+ i := int(h.stack[top])
+ if i < 0 || len(h.store) <= i {
+ return errors.New("truetype: hinting: invalid data")
+ }
+ h.store[i] = h.stack[top+1]
+
+ case opRS:
+ i := int(h.stack[top-1])
+ if i < 0 || len(h.store) <= i {
+ return errors.New("truetype: hinting: invalid data")
+ }
+ h.stack[top-1] = h.store[i]
+
+ case opWCVTP:
+ top -= 2
+ h.setScaledCVT(h.stack[top], fixed.Int26_6(h.stack[top+1]))
+
+ case opRCVT:
+ h.stack[top-1] = int32(h.getScaledCVT(h.stack[top-1]))
+
+ case opGC0, opGC1:
+ i := h.stack[top-1]
+ if opcode == opGC0 {
+ p := h.point(2, current, i)
+ h.stack[top-1] = int32(dotProduct(p.X, p.Y, h.gs.pv))
+ } else {
+ p := h.point(2, unhinted, i)
+ // Using dv as per C Freetype.
+ h.stack[top-1] = int32(dotProduct(p.X, p.Y, h.gs.dv))
+ }
+
+ case opSCFS:
+ top -= 2
+ i := h.stack[top]
+ p := h.point(2, current, i)
+ if p == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ c := dotProduct(p.X, p.Y, h.gs.pv)
+ h.move(p, fixed.Int26_6(h.stack[top+1])-c, true)
+ if h.gs.zp[2] != 0 {
+ break
+ }
+ q := h.point(2, unhinted, i)
+ if q == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ q.X = p.X
+ q.Y = p.Y
+
+ case opMD0, opMD1:
+ top--
+ pt, v, scale := pointType(0), [2]f2dot14{}, false
+ if opcode == opMD0 {
+ pt = current
+ v = h.gs.pv
+ } else if h.gs.zp[0] == 0 || h.gs.zp[1] == 0 {
+ pt = unhinted
+ v = h.gs.dv
+ } else {
+ pt = inFontUnits
+ v = h.gs.dv
+ scale = true
+ }
+ p := h.point(0, pt, h.stack[top-1])
+ q := h.point(1, pt, h.stack[top])
+ if p == nil || q == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ d := int32(dotProduct(p.X-q.X, p.Y-q.Y, v))
+ if scale {
+ d = int32(int64(d*int32(h.scale)) / int64(h.font.fUnitsPerEm))
+ }
+ h.stack[top-1] = d
+
+ case opMPPEM, opMPS:
+ if top >= len(h.stack) {
+ return errors.New("truetype: hinting: stack overflow")
+ }
+ // For MPS, point size should be irrelevant; we return the PPEM.
+ h.stack[top] = int32(h.scale) >> 6
+ top++
+
+ case opFLIPON, opFLIPOFF:
+ h.gs.autoFlip = opcode == opFLIPON
+
+ case opDEBUG:
+ // No-op.
+
+ case opLT:
+ top--
+ h.stack[top-1] = bool2int32(h.stack[top-1] < h.stack[top])
+
+ case opLTEQ:
+ top--
+ h.stack[top-1] = bool2int32(h.stack[top-1] <= h.stack[top])
+
+ case opGT:
+ top--
+ h.stack[top-1] = bool2int32(h.stack[top-1] > h.stack[top])
+
+ case opGTEQ:
+ top--
+ h.stack[top-1] = bool2int32(h.stack[top-1] >= h.stack[top])
+
+ case opEQ:
+ top--
+ h.stack[top-1] = bool2int32(h.stack[top-1] == h.stack[top])
+
+ case opNEQ:
+ top--
+ h.stack[top-1] = bool2int32(h.stack[top-1] != h.stack[top])
+
+ case opODD, opEVEN:
+ i := h.round(fixed.Int26_6(h.stack[top-1])) >> 6
+ h.stack[top-1] = int32(i&1) ^ int32(opcode-opODD)
+
+ case opIF:
+ top--
+ if h.stack[top] == 0 {
+ opcode = 0
+ goto ifelse
+ }
+
+ case opEIF:
+ // No-op.
+
+ case opAND:
+ top--
+ h.stack[top-1] = bool2int32(h.stack[top-1] != 0 && h.stack[top] != 0)
+
+ case opOR:
+ top--
+ h.stack[top-1] = bool2int32(h.stack[top-1]|h.stack[top] != 0)
+
+ case opNOT:
+ h.stack[top-1] = bool2int32(h.stack[top-1] == 0)
+
+ case opDELTAP1:
+ goto delta
+
+ case opSDB:
+ top--
+ h.gs.deltaBase = h.stack[top]
+
+ case opSDS:
+ top--
+ h.gs.deltaShift = h.stack[top]
+
+ case opADD:
+ top--
+ h.stack[top-1] += h.stack[top]
+
+ case opSUB:
+ top--
+ h.stack[top-1] -= h.stack[top]
+
+ case opDIV:
+ top--
+ if h.stack[top] == 0 {
+ return errors.New("truetype: hinting: division by zero")
+ }
+ h.stack[top-1] = int32(fdiv(fixed.Int26_6(h.stack[top-1]), fixed.Int26_6(h.stack[top])))
+
+ case opMUL:
+ top--
+ h.stack[top-1] = int32(fmul(fixed.Int26_6(h.stack[top-1]), fixed.Int26_6(h.stack[top])))
+
+ case opABS:
+ if h.stack[top-1] < 0 {
+ h.stack[top-1] = -h.stack[top-1]
+ }
+
+ case opNEG:
+ h.stack[top-1] = -h.stack[top-1]
+
+ case opFLOOR:
+ h.stack[top-1] &^= 63
+
+ case opCEILING:
+ h.stack[top-1] += 63
+ h.stack[top-1] &^= 63
+
+ case opROUND00, opROUND01, opROUND10, opROUND11:
+ // The four flavors of opROUND are equivalent. See the comment below on
+ // opNROUND for the rationale.
+ h.stack[top-1] = int32(h.round(fixed.Int26_6(h.stack[top-1])))
+
+ case opNROUND00, opNROUND01, opNROUND10, opNROUND11:
+ // No-op. The spec says to add one of four "compensations for the engine
+ // characteristics", to cater for things like "different dot-size printers".
+ // https://developer.apple.com/fonts/TTRefMan/RM02/Chap2.html#engine_compensation
+ // This code does not implement engine compensation, as we don't expect to
+ // be used to output on dot-matrix printers.
+
+ case opWCVTF:
+ top -= 2
+ h.setScaledCVT(h.stack[top], h.font.scale(h.scale*fixed.Int26_6(h.stack[top+1])))
+
+ case opDELTAP2, opDELTAP3, opDELTAC1, opDELTAC2, opDELTAC3:
+ goto delta
+
+ case opSROUND, opS45ROUND:
+ top--
+ switch (h.stack[top] >> 6) & 0x03 {
+ case 0:
+ h.gs.roundPeriod = 1 << 5
+ case 1, 3:
+ h.gs.roundPeriod = 1 << 6
+ case 2:
+ h.gs.roundPeriod = 1 << 7
+ }
+ h.gs.roundSuper45 = opcode == opS45ROUND
+ if h.gs.roundSuper45 {
+ // The spec says to multiply by √2, but the C Freetype code says 1/√2.
+ // We go with 1/√2.
+ h.gs.roundPeriod *= 46341
+ h.gs.roundPeriod /= 65536
+ }
+ h.gs.roundPhase = h.gs.roundPeriod * fixed.Int26_6((h.stack[top]>>4)&0x03) / 4
+ if x := h.stack[top] & 0x0f; x != 0 {
+ h.gs.roundThreshold = h.gs.roundPeriod * fixed.Int26_6(x-4) / 8
+ } else {
+ h.gs.roundThreshold = h.gs.roundPeriod - 1
+ }
+
+ case opJROT:
+ top -= 2
+ if h.stack[top+1] != 0 {
+ pc += int(h.stack[top])
+ continue
+ }
+
+ case opJROF:
+ top -= 2
+ if h.stack[top+1] == 0 {
+ pc += int(h.stack[top])
+ continue
+ }
+
+ case opROFF:
+ h.gs.roundPeriod = 0
+ h.gs.roundPhase = 0
+ h.gs.roundThreshold = 0
+ h.gs.roundSuper45 = false
+
+ case opRUTG:
+ h.gs.roundPeriod = 1 << 6
+ h.gs.roundPhase = 0
+ h.gs.roundThreshold = 1<<6 - 1
+ h.gs.roundSuper45 = false
+
+ case opRDTG:
+ h.gs.roundPeriod = 1 << 6
+ h.gs.roundPhase = 0
+ h.gs.roundThreshold = 0
+ h.gs.roundSuper45 = false
+
+ case opSANGW, opAA:
+ // These ops are "anachronistic" and no longer used.
+ top--
+
+ case opFLIPPT:
+ if top < int(h.gs.loop) {
+ return errors.New("truetype: hinting: stack underflow")
+ }
+ points := h.points[glyphZone][current]
+ for ; h.gs.loop != 0; h.gs.loop-- {
+ top--
+ i := h.stack[top]
+ if i < 0 || len(points) <= int(i) {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ points[i].Flags ^= flagOnCurve
+ }
+ h.gs.loop = 1
+
+ case opFLIPRGON, opFLIPRGOFF:
+ top -= 2
+ i, j, points := h.stack[top], h.stack[top+1], h.points[glyphZone][current]
+ if i < 0 || len(points) <= int(i) || j < 0 || len(points) <= int(j) {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ for ; i <= j; i++ {
+ if opcode == opFLIPRGON {
+ points[i].Flags |= flagOnCurve
+ } else {
+ points[i].Flags &^= flagOnCurve
+ }
+ }
+
+ case opSCANCTRL:
+ // We do not support dropout control, as we always rasterize grayscale glyphs.
+ top--
+
+ case opSDPVTL0, opSDPVTL1:
+ top -= 2
+ for i := 0; i < 2; i++ {
+ pt := unhinted
+ if i != 0 {
+ pt = current
+ }
+ p := h.point(1, pt, h.stack[top])
+ q := h.point(2, pt, h.stack[top+1])
+ if p == nil || q == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ dx := f2dot14(p.X - q.X)
+ dy := f2dot14(p.Y - q.Y)
+ if dx == 0 && dy == 0 {
+ dx = 0x4000
+ } else if opcode&1 != 0 {
+ // Counter-clockwise rotation.
+ dx, dy = -dy, dx
+ }
+ if i == 0 {
+ h.gs.dv = normalize(dx, dy)
+ } else {
+ h.gs.pv = normalize(dx, dy)
+ }
+ }
+
+ case opGETINFO:
+ res := int32(0)
+ if h.stack[top-1]&(1<<0) != 0 {
+ // Set the engine version. We hard-code this to 35, the same as
+ // the C freetype code, which says that "Version~35 corresponds
+ // to MS rasterizer v.1.7 as used e.g. in Windows~98".
+ res |= 35
+ }
+ if h.stack[top-1]&(1<<5) != 0 {
+ // Set that we support grayscale.
+ res |= 1 << 12
+ }
+ // We set no other bits, as we do not support rotated or stretched glyphs.
+ h.stack[top-1] = res
+
+ case opIDEF:
+ // IDEF is for ancient versions of the bytecode interpreter, and is no longer used.
+ return errors.New("truetype: hinting: unsupported IDEF instruction")
+
+ case opROLL:
+ h.stack[top-1], h.stack[top-3], h.stack[top-2] =
+ h.stack[top-3], h.stack[top-2], h.stack[top-1]
+
+ case opMAX:
+ top--
+ if h.stack[top-1] < h.stack[top] {
+ h.stack[top-1] = h.stack[top]
+ }
+
+ case opMIN:
+ top--
+ if h.stack[top-1] > h.stack[top] {
+ h.stack[top-1] = h.stack[top]
+ }
+
+ case opSCANTYPE:
+ // We do not support dropout control, as we always rasterize grayscale glyphs.
+ top--
+
+ case opINSTCTRL:
+ // TODO: support instruction execution control? It seems rare, and even when
+ // nominally used (e.g. Source Sans Pro), it seems conditional on extreme or
+ // unusual rasterization conditions. For example, the code snippet at
+ // https://developer.apple.com/fonts/TTRefMan/RM05/Chap5.html#INSTCTRL
+ // uses INSTCTRL when grid-fitting a rotated or stretched glyph, but
+ // freetype-go does not support rotated or stretched glyphs.
+ top -= 2
+
+ default:
+ if opcode < opPUSHB000 {
+ return errors.New("truetype: hinting: unrecognized instruction")
+ }
+
+ if opcode < opMDRP00000 {
+ // PUSHxxxx opcode.
+
+ if opcode < opPUSHW000 {
+ opcode -= opPUSHB000 - 1
+ } else {
+ opcode -= opPUSHW000 - 1 - 0x80
+ }
+ goto push
+ }
+
+ if opcode < opMIRP00000 {
+ // MDRPxxxxx opcode.
+
+ top--
+ i := h.stack[top]
+ ref := h.point(0, current, h.gs.rp[0])
+ p := h.point(1, current, i)
+ if ref == nil || p == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+
+ oldDist := fixed.Int26_6(0)
+ if h.gs.zp[0] == 0 || h.gs.zp[1] == 0 {
+ p0 := h.point(1, unhinted, i)
+ p1 := h.point(0, unhinted, h.gs.rp[0])
+ oldDist = dotProduct(p0.X-p1.X, p0.Y-p1.Y, h.gs.dv)
+ } else {
+ p0 := h.point(1, inFontUnits, i)
+ p1 := h.point(0, inFontUnits, h.gs.rp[0])
+ oldDist = dotProduct(p0.X-p1.X, p0.Y-p1.Y, h.gs.dv)
+ oldDist = h.font.scale(h.scale * oldDist)
+ }
+
+ // Single-width cut-in test.
+ if x := fabs(oldDist - h.gs.singleWidth); x < h.gs.singleWidthCutIn {
+ if oldDist >= 0 {
+ oldDist = +h.gs.singleWidth
+ } else {
+ oldDist = -h.gs.singleWidth
+ }
+ }
+
+ // Rounding bit.
+ // TODO: metrics compensation.
+ distance := oldDist
+ if opcode&0x04 != 0 {
+ distance = h.round(oldDist)
+ }
+
+ // Minimum distance bit.
+ if opcode&0x08 != 0 {
+ if oldDist >= 0 {
+ if distance < h.gs.minDist {
+ distance = h.gs.minDist
+ }
+ } else {
+ if distance > -h.gs.minDist {
+ distance = -h.gs.minDist
+ }
+ }
+ }
+
+ // Set-RP0 bit.
+ h.gs.rp[1] = h.gs.rp[0]
+ h.gs.rp[2] = i
+ if opcode&0x10 != 0 {
+ h.gs.rp[0] = i
+ }
+
+ // Move the point.
+ oldDist = dotProduct(p.X-ref.X, p.Y-ref.Y, h.gs.pv)
+ h.move(p, distance-oldDist, true)
+
+ } else {
+ // MIRPxxxxx opcode.
+
+ top -= 2
+ i := h.stack[top]
+ cvtDist := h.getScaledCVT(h.stack[top+1])
+ if fabs(cvtDist-h.gs.singleWidth) < h.gs.singleWidthCutIn {
+ if cvtDist >= 0 {
+ cvtDist = +h.gs.singleWidth
+ } else {
+ cvtDist = -h.gs.singleWidth
+ }
+ }
+
+ if h.gs.zp[1] == 0 {
+ // TODO: implement once we have a .ttf file that triggers
+ // this, so that we can step through C's freetype.
+ return errors.New("truetype: hinting: unimplemented twilight point adjustment")
+ }
+
+ ref := h.point(0, unhinted, h.gs.rp[0])
+ p := h.point(1, unhinted, i)
+ if ref == nil || p == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ oldDist := dotProduct(p.X-ref.X, p.Y-ref.Y, h.gs.dv)
+
+ ref = h.point(0, current, h.gs.rp[0])
+ p = h.point(1, current, i)
+ if ref == nil || p == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ curDist := dotProduct(p.X-ref.X, p.Y-ref.Y, h.gs.pv)
+
+ if h.gs.autoFlip && oldDist^cvtDist < 0 {
+ cvtDist = -cvtDist
+ }
+
+ // Rounding bit.
+ // TODO: metrics compensation.
+ distance := cvtDist
+ if opcode&0x04 != 0 {
+ // The CVT value is only used if close enough to oldDist.
+ if (h.gs.zp[0] == h.gs.zp[1]) &&
+ (fabs(cvtDist-oldDist) > h.gs.controlValueCutIn) {
+
+ distance = oldDist
+ }
+ distance = h.round(distance)
+ }
+
+ // Minimum distance bit.
+ if opcode&0x08 != 0 {
+ if oldDist >= 0 {
+ if distance < h.gs.minDist {
+ distance = h.gs.minDist
+ }
+ } else {
+ if distance > -h.gs.minDist {
+ distance = -h.gs.minDist
+ }
+ }
+ }
+
+ // Set-RP0 bit.
+ h.gs.rp[1] = h.gs.rp[0]
+ h.gs.rp[2] = i
+ if opcode&0x10 != 0 {
+ h.gs.rp[0] = i
+ }
+
+ // Move the point.
+ h.move(p, distance-curDist, true)
+ }
+ }
+ pc++
+ continue
+
+ ifelse:
+ // Skip past bytecode until the next ELSE (if opcode == 0) or the
+ // next EIF (for all opcodes). Opcode == 0 means that we have come
+ // from an IF. Opcode == 1 means that we have come from an ELSE.
+ {
+ ifelseloop:
+ for depth := 0; ; {
+ pc++
+ if pc >= len(program) {
+ return errors.New("truetype: hinting: unbalanced IF or ELSE")
+ }
+ switch program[pc] {
+ case opIF:
+ depth++
+ case opELSE:
+ if depth == 0 && opcode == 0 {
+ break ifelseloop
+ }
+ case opEIF:
+ depth--
+ if depth < 0 {
+ break ifelseloop
+ }
+ default:
+ var ok bool
+ pc, ok = skipInstructionPayload(program, pc)
+ if !ok {
+ return errors.New("truetype: hinting: unbalanced IF or ELSE")
+ }
+ }
+ }
+ pc++
+ continue
+ }
+
+ push:
+ // Push n elements from the program to the stack, where n is the low 7 bits of
+ // opcode. If the low 7 bits are zero, then n is the next byte from the program.
+ // The high bit being 0 means that the elements are zero-extended bytes.
+ // The high bit being 1 means that the elements are sign-extended words.
+ {
+ width := 1
+ if opcode&0x80 != 0 {
+ opcode &^= 0x80
+ width = 2
+ }
+ if opcode == 0 {
+ pc++
+ if pc >= len(program) {
+ return errors.New("truetype: hinting: insufficient data")
+ }
+ opcode = program[pc]
+ }
+ pc++
+ if top+int(opcode) > len(h.stack) {
+ return errors.New("truetype: hinting: stack overflow")
+ }
+ if pc+width*int(opcode) > len(program) {
+ return errors.New("truetype: hinting: insufficient data")
+ }
+ for ; opcode > 0; opcode-- {
+ if width == 1 {
+ h.stack[top] = int32(program[pc])
+ } else {
+ h.stack[top] = int32(int8(program[pc]))<<8 | int32(program[pc+1])
+ }
+ top++
+ pc += width
+ }
+ continue
+ }
+
+ delta:
+ {
+ if opcode >= opDELTAC1 && !h.scaledCVTInitialized {
+ h.initializeScaledCVT()
+ }
+ top--
+ n := h.stack[top]
+ if int32(top) < 2*n {
+ return errors.New("truetype: hinting: stack underflow")
+ }
+ for ; n > 0; n-- {
+ top -= 2
+ b := h.stack[top]
+ c := (b & 0xf0) >> 4
+ switch opcode {
+ case opDELTAP2, opDELTAC2:
+ c += 16
+ case opDELTAP3, opDELTAC3:
+ c += 32
+ }
+ c += h.gs.deltaBase
+ if ppem := (int32(h.scale) + 1<<5) >> 6; ppem != c {
+ continue
+ }
+ b = (b & 0x0f) - 8
+ if b >= 0 {
+ b++
+ }
+ b = b * 64 / (1 << uint32(h.gs.deltaShift))
+ if opcode >= opDELTAC1 {
+ a := h.stack[top+1]
+ if a < 0 || len(h.scaledCVT) <= int(a) {
+ return errors.New("truetype: hinting: index out of range")
+ }
+ h.scaledCVT[a] += fixed.Int26_6(b)
+ } else {
+ p := h.point(0, current, h.stack[top+1])
+ if p == nil {
+ return errors.New("truetype: hinting: point out of range")
+ }
+ h.move(p, fixed.Int26_6(b), true)
+ }
+ }
+ pc++
+ continue
+ }
+ }
+ return nil
+}
+
+func (h *hinter) initializeScaledCVT() {
+ h.scaledCVTInitialized = true
+ if n := len(h.font.cvt) / 2; n <= cap(h.scaledCVT) {
+ h.scaledCVT = h.scaledCVT[:n]
+ } else {
+ if n < 32 {
+ n = 32
+ }
+ h.scaledCVT = make([]fixed.Int26_6, len(h.font.cvt)/2, n)
+ }
+ for i := range h.scaledCVT {
+ unscaled := uint16(h.font.cvt[2*i])<<8 | uint16(h.font.cvt[2*i+1])
+ h.scaledCVT[i] = h.font.scale(h.scale * fixed.Int26_6(int16(unscaled)))
+ }
+}
+
+// getScaledCVT returns the scaled value from the font's Control Value Table.
+func (h *hinter) getScaledCVT(i int32) fixed.Int26_6 {
+ if !h.scaledCVTInitialized {
+ h.initializeScaledCVT()
+ }
+ if i < 0 || len(h.scaledCVT) <= int(i) {
+ return 0
+ }
+ return h.scaledCVT[i]
+}
+
+// setScaledCVT overrides the scaled value from the font's Control Value Table.
+func (h *hinter) setScaledCVT(i int32, v fixed.Int26_6) {
+ if !h.scaledCVTInitialized {
+ h.initializeScaledCVT()
+ }
+ if i < 0 || len(h.scaledCVT) <= int(i) {
+ return
+ }
+ h.scaledCVT[i] = v
+}
+
+func (h *hinter) point(zonePointer uint32, pt pointType, i int32) *Point {
+ points := h.points[h.gs.zp[zonePointer]][pt]
+ if i < 0 || len(points) <= int(i) {
+ return nil
+ }
+ return &points[i]
+}
+
+func (h *hinter) move(p *Point, distance fixed.Int26_6, touch bool) {
+ fvx := int64(h.gs.fv[0])
+ pvx := int64(h.gs.pv[0])
+ if fvx == 0x4000 && pvx == 0x4000 {
+ p.X += fixed.Int26_6(distance)
+ if touch {
+ p.Flags |= flagTouchedX
+ }
+ return
+ }
+
+ fvy := int64(h.gs.fv[1])
+ pvy := int64(h.gs.pv[1])
+ if fvy == 0x4000 && pvy == 0x4000 {
+ p.Y += fixed.Int26_6(distance)
+ if touch {
+ p.Flags |= flagTouchedY
+ }
+ return
+ }
+
+ fvDotPv := (fvx*pvx + fvy*pvy) >> 14
+
+ if fvx != 0 {
+ p.X += fixed.Int26_6(mulDiv(fvx, int64(distance), fvDotPv))
+ if touch {
+ p.Flags |= flagTouchedX
+ }
+ }
+
+ if fvy != 0 {
+ p.Y += fixed.Int26_6(mulDiv(fvy, int64(distance), fvDotPv))
+ if touch {
+ p.Flags |= flagTouchedY
+ }
+ }
+}
+
+func (h *hinter) iupInterp(interpY bool, p1, p2, ref1, ref2 int) {
+ if p1 > p2 {
+ return
+ }
+ if ref1 >= len(h.points[glyphZone][current]) ||
+ ref2 >= len(h.points[glyphZone][current]) {
+ return
+ }
+
+ var ifu1, ifu2 fixed.Int26_6
+ if interpY {
+ ifu1 = h.points[glyphZone][inFontUnits][ref1].Y
+ ifu2 = h.points[glyphZone][inFontUnits][ref2].Y
+ } else {
+ ifu1 = h.points[glyphZone][inFontUnits][ref1].X
+ ifu2 = h.points[glyphZone][inFontUnits][ref2].X
+ }
+ if ifu1 > ifu2 {
+ ifu1, ifu2 = ifu2, ifu1
+ ref1, ref2 = ref2, ref1
+ }
+
+ var unh1, unh2, delta1, delta2 fixed.Int26_6
+ if interpY {
+ unh1 = h.points[glyphZone][unhinted][ref1].Y
+ unh2 = h.points[glyphZone][unhinted][ref2].Y
+ delta1 = h.points[glyphZone][current][ref1].Y - unh1
+ delta2 = h.points[glyphZone][current][ref2].Y - unh2
+ } else {
+ unh1 = h.points[glyphZone][unhinted][ref1].X
+ unh2 = h.points[glyphZone][unhinted][ref2].X
+ delta1 = h.points[glyphZone][current][ref1].X - unh1
+ delta2 = h.points[glyphZone][current][ref2].X - unh2
+ }
+
+ var xy, ifuXY fixed.Int26_6
+ if ifu1 == ifu2 {
+ for i := p1; i <= p2; i++ {
+ if interpY {
+ xy = h.points[glyphZone][unhinted][i].Y
+ } else {
+ xy = h.points[glyphZone][unhinted][i].X
+ }
+
+ if xy <= unh1 {
+ xy += delta1
+ } else {
+ xy += delta2
+ }
+
+ if interpY {
+ h.points[glyphZone][current][i].Y = xy
+ } else {
+ h.points[glyphZone][current][i].X = xy
+ }
+ }
+ return
+ }
+
+ scale, scaleOK := int64(0), false
+ for i := p1; i <= p2; i++ {
+ if interpY {
+ xy = h.points[glyphZone][unhinted][i].Y
+ ifuXY = h.points[glyphZone][inFontUnits][i].Y
+ } else {
+ xy = h.points[glyphZone][unhinted][i].X
+ ifuXY = h.points[glyphZone][inFontUnits][i].X
+ }
+
+ if xy <= unh1 {
+ xy += delta1
+ } else if xy >= unh2 {
+ xy += delta2
+ } else {
+ if !scaleOK {
+ scaleOK = true
+ scale = mulDiv(int64(unh2+delta2-unh1-delta1), 0x10000, int64(ifu2-ifu1))
+ }
+ numer := int64(ifuXY-ifu1) * scale
+ if numer >= 0 {
+ numer += 0x8000
+ } else {
+ numer -= 0x8000
+ }
+ xy = unh1 + delta1 + fixed.Int26_6(numer/0x10000)
+ }
+
+ if interpY {
+ h.points[glyphZone][current][i].Y = xy
+ } else {
+ h.points[glyphZone][current][i].X = xy
+ }
+ }
+}
+
+func (h *hinter) iupShift(interpY bool, p1, p2, p int) {
+ var delta fixed.Int26_6
+ if interpY {
+ delta = h.points[glyphZone][current][p].Y - h.points[glyphZone][unhinted][p].Y
+ } else {
+ delta = h.points[glyphZone][current][p].X - h.points[glyphZone][unhinted][p].X
+ }
+ if delta == 0 {
+ return
+ }
+ for i := p1; i < p2; i++ {
+ if i == p {
+ continue
+ }
+ if interpY {
+ h.points[glyphZone][current][i].Y += delta
+ } else {
+ h.points[glyphZone][current][i].X += delta
+ }
+ }
+}
+
+func (h *hinter) displacement(useZP1 bool) (zonePointer uint32, i int32, d fixed.Int26_6, ok bool) {
+ zonePointer, i = uint32(0), h.gs.rp[1]
+ if useZP1 {
+ zonePointer, i = 1, h.gs.rp[2]
+ }
+ p := h.point(zonePointer, current, i)
+ q := h.point(zonePointer, unhinted, i)
+ if p == nil || q == nil {
+ return 0, 0, 0, false
+ }
+ d = dotProduct(p.X-q.X, p.Y-q.Y, h.gs.pv)
+ return zonePointer, i, d, true
+}
+
+// skipInstructionPayload increments pc by the extra data that follows a
+// variable length PUSHB or PUSHW instruction.
+func skipInstructionPayload(program []byte, pc int) (newPC int, ok bool) {
+ switch program[pc] {
+ case opNPUSHB:
+ pc++
+ if pc >= len(program) {
+ return 0, false
+ }
+ pc += int(program[pc])
+ case opNPUSHW:
+ pc++
+ if pc >= len(program) {
+ return 0, false
+ }
+ pc += 2 * int(program[pc])
+ case opPUSHB000, opPUSHB001, opPUSHB010, opPUSHB011,
+ opPUSHB100, opPUSHB101, opPUSHB110, opPUSHB111:
+ pc += int(program[pc] - (opPUSHB000 - 1))
+ case opPUSHW000, opPUSHW001, opPUSHW010, opPUSHW011,
+ opPUSHW100, opPUSHW101, opPUSHW110, opPUSHW111:
+ pc += 2 * int(program[pc]-(opPUSHW000-1))
+ }
+ return pc, true
+}
+
+// f2dot14 is a 2.14 fixed point number.
+type f2dot14 int16
+
+func normalize(x, y f2dot14) [2]f2dot14 {
+ fx, fy := float64(x), float64(y)
+ l := 0x4000 / math.Hypot(fx, fy)
+ fx *= l
+ if fx >= 0 {
+ fx += 0.5
+ } else {
+ fx -= 0.5
+ }
+ fy *= l
+ if fy >= 0 {
+ fy += 0.5
+ } else {
+ fy -= 0.5
+ }
+ return [2]f2dot14{f2dot14(fx), f2dot14(fy)}
+}
+
+// fabs returns abs(x) in 26.6 fixed point arithmetic.
+func fabs(x fixed.Int26_6) fixed.Int26_6 {
+ if x < 0 {
+ return -x
+ }
+ return x
+}
+
+// fdiv returns x/y in 26.6 fixed point arithmetic.
+func fdiv(x, y fixed.Int26_6) fixed.Int26_6 {
+ return fixed.Int26_6((int64(x) << 6) / int64(y))
+}
+
+// fmul returns x*y in 26.6 fixed point arithmetic.
+func fmul(x, y fixed.Int26_6) fixed.Int26_6 {
+ return fixed.Int26_6((int64(x)*int64(y) + 1<<5) >> 6)
+}
+
+// dotProduct returns the dot product of [x, y] and q. It is almost the same as
+// px := int64(x)
+// py := int64(y)
+// qx := int64(q[0])
+// qy := int64(q[1])
+// return fixed.Int26_6((px*qx + py*qy + 1<<13) >> 14)
+// except that the computation is done with 32-bit integers to produce exactly
+// the same rounding behavior as C Freetype.
+func dotProduct(x, y fixed.Int26_6, q [2]f2dot14) fixed.Int26_6 {
+ // Compute x*q[0] as 64-bit value.
+ l := uint32((int32(x) & 0xFFFF) * int32(q[0]))
+ m := (int32(x) >> 16) * int32(q[0])
+
+ lo1 := l + (uint32(m) << 16)
+ hi1 := (m >> 16) + (int32(l) >> 31) + bool2int32(lo1 < l)
+
+ // Compute y*q[1] as 64-bit value.
+ l = uint32((int32(y) & 0xFFFF) * int32(q[1]))
+ m = (int32(y) >> 16) * int32(q[1])
+
+ lo2 := l + (uint32(m) << 16)
+ hi2 := (m >> 16) + (int32(l) >> 31) + bool2int32(lo2 < l)
+
+ // Add them.
+ lo := lo1 + lo2
+ hi := hi1 + hi2 + bool2int32(lo < lo1)
+
+ // Divide the result by 2^14 with rounding.
+ s := hi >> 31
+ l = lo + uint32(s)
+ hi += s + bool2int32(l < lo)
+ lo = l
+
+ l = lo + 0x2000
+ hi += bool2int32(l < lo)
+
+ return fixed.Int26_6((uint32(hi) << 18) | (l >> 14))
+}
+
+// mulDiv returns x*y/z, rounded to the nearest integer.
+func mulDiv(x, y, z int64) int64 {
+ xy := x * y
+ if z < 0 {
+ xy, z = -xy, -z
+ }
+ if xy >= 0 {
+ xy += z / 2
+ } else {
+ xy -= z / 2
+ }
+ return xy / z
+}
+
+// round rounds the given number. The rounding algorithm is described at
+// https://developer.apple.com/fonts/TTRefMan/RM02/Chap2.html#rounding
+func (h *hinter) round(x fixed.Int26_6) fixed.Int26_6 {
+ if h.gs.roundPeriod == 0 {
+ // Rounding is off.
+ return x
+ }
+ if x >= 0 {
+ ret := x - h.gs.roundPhase + h.gs.roundThreshold
+ if h.gs.roundSuper45 {
+ ret /= h.gs.roundPeriod
+ ret *= h.gs.roundPeriod
+ } else {
+ ret &= -h.gs.roundPeriod
+ }
+ if x != 0 && ret < 0 {
+ ret = 0
+ }
+ return ret + h.gs.roundPhase
+ }
+ ret := -x - h.gs.roundPhase + h.gs.roundThreshold
+ if h.gs.roundSuper45 {
+ ret /= h.gs.roundPeriod
+ ret *= h.gs.roundPeriod
+ } else {
+ ret &= -h.gs.roundPeriod
+ }
+ if ret < 0 {
+ ret = 0
+ }
+ return -ret - h.gs.roundPhase
+}
+
+func bool2int32(b bool) int32 {
+ if b {
+ return 1
+ }
+ return 0
+}
diff --git a/vendor/github.com/golang/freetype/truetype/opcodes.go b/vendor/github.com/golang/freetype/truetype/opcodes.go
new file mode 100644
index 000000000..1880e1e63
--- /dev/null
+++ b/vendor/github.com/golang/freetype/truetype/opcodes.go
@@ -0,0 +1,289 @@
+// Copyright 2012 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+package truetype
+
+// The Truetype opcodes are summarized at
+// https://developer.apple.com/fonts/TTRefMan/RM07/appendixA.html
+
+const (
+ opSVTCA0 = 0x00 // Set freedom and projection Vectors To Coordinate Axis
+ opSVTCA1 = 0x01 // .
+ opSPVTCA0 = 0x02 // Set Projection Vector To Coordinate Axis
+ opSPVTCA1 = 0x03 // .
+ opSFVTCA0 = 0x04 // Set Freedom Vector to Coordinate Axis
+ opSFVTCA1 = 0x05 // .
+ opSPVTL0 = 0x06 // Set Projection Vector To Line
+ opSPVTL1 = 0x07 // .
+ opSFVTL0 = 0x08 // Set Freedom Vector To Line
+ opSFVTL1 = 0x09 // .
+ opSPVFS = 0x0a // Set Projection Vector From Stack
+ opSFVFS = 0x0b // Set Freedom Vector From Stack
+ opGPV = 0x0c // Get Projection Vector
+ opGFV = 0x0d // Get Freedom Vector
+ opSFVTPV = 0x0e // Set Freedom Vector To Projection Vector
+ opISECT = 0x0f // moves point p to the InterSECTion of two lines
+ opSRP0 = 0x10 // Set Reference Point 0
+ opSRP1 = 0x11 // Set Reference Point 1
+ opSRP2 = 0x12 // Set Reference Point 2
+ opSZP0 = 0x13 // Set Zone Pointer 0
+ opSZP1 = 0x14 // Set Zone Pointer 1
+ opSZP2 = 0x15 // Set Zone Pointer 2
+ opSZPS = 0x16 // Set Zone PointerS
+ opSLOOP = 0x17 // Set LOOP variable
+ opRTG = 0x18 // Round To Grid
+ opRTHG = 0x19 // Round To Half Grid
+ opSMD = 0x1a // Set Minimum Distance
+ opELSE = 0x1b // ELSE clause
+ opJMPR = 0x1c // JuMP Relative
+ opSCVTCI = 0x1d // Set Control Value Table Cut-In
+ opSSWCI = 0x1e // Set Single Width Cut-In
+ opSSW = 0x1f // Set Single Width
+ opDUP = 0x20 // DUPlicate top stack element
+ opPOP = 0x21 // POP top stack element
+ opCLEAR = 0x22 // CLEAR the stack
+ opSWAP = 0x23 // SWAP the top two elements on the stack
+ opDEPTH = 0x24 // DEPTH of the stack
+ opCINDEX = 0x25 // Copy the INDEXed element to the top of the stack
+ opMINDEX = 0x26 // Move the INDEXed element to the top of the stack
+ opALIGNPTS = 0x27 // ALIGN PoinTS
+ op_0x28 = 0x28 // deprecated
+ opUTP = 0x29 // UnTouch Point
+ opLOOPCALL = 0x2a // LOOP and CALL function
+ opCALL = 0x2b // CALL function
+ opFDEF = 0x2c // Function DEFinition
+ opENDF = 0x2d // END Function definition
+ opMDAP0 = 0x2e // Move Direct Absolute Point
+ opMDAP1 = 0x2f // .
+ opIUP0 = 0x30 // Interpolate Untouched Points through the outline
+ opIUP1 = 0x31 // .
+ opSHP0 = 0x32 // SHift Point using reference point
+ opSHP1 = 0x33 // .
+ opSHC0 = 0x34 // SHift Contour using reference point
+ opSHC1 = 0x35 // .
+ opSHZ0 = 0x36 // SHift Zone using reference point
+ opSHZ1 = 0x37 // .
+ opSHPIX = 0x38 // SHift point by a PIXel amount
+ opIP = 0x39 // Interpolate Point
+ opMSIRP0 = 0x3a // Move Stack Indirect Relative Point
+ opMSIRP1 = 0x3b // .
+ opALIGNRP = 0x3c // ALIGN to Reference Point
+ opRTDG = 0x3d // Round To Double Grid
+ opMIAP0 = 0x3e // Move Indirect Absolute Point
+ opMIAP1 = 0x3f // .
+ opNPUSHB = 0x40 // PUSH N Bytes
+ opNPUSHW = 0x41 // PUSH N Words
+ opWS = 0x42 // Write Store
+ opRS = 0x43 // Read Store
+ opWCVTP = 0x44 // Write Control Value Table in Pixel units
+ opRCVT = 0x45 // Read Control Value Table entry
+ opGC0 = 0x46 // Get Coordinate projected onto the projection vector
+ opGC1 = 0x47 // .
+ opSCFS = 0x48 // Sets Coordinate From the Stack using projection vector and freedom vector
+ opMD0 = 0x49 // Measure Distance
+ opMD1 = 0x4a // .
+ opMPPEM = 0x4b // Measure Pixels Per EM
+ opMPS = 0x4c // Measure Point Size
+ opFLIPON = 0x4d // set the auto FLIP Boolean to ON
+ opFLIPOFF = 0x4e // set the auto FLIP Boolean to OFF
+ opDEBUG = 0x4f // DEBUG call
+ opLT = 0x50 // Less Than
+ opLTEQ = 0x51 // Less Than or EQual
+ opGT = 0x52 // Greater Than
+ opGTEQ = 0x53 // Greater Than or EQual
+ opEQ = 0x54 // EQual
+ opNEQ = 0x55 // Not EQual
+ opODD = 0x56 // ODD
+ opEVEN = 0x57 // EVEN
+ opIF = 0x58 // IF test
+ opEIF = 0x59 // End IF
+ opAND = 0x5a // logical AND
+ opOR = 0x5b // logical OR
+ opNOT = 0x5c // logical NOT
+ opDELTAP1 = 0x5d // DELTA exception P1
+ opSDB = 0x5e // Set Delta Base in the graphics state
+ opSDS = 0x5f // Set Delta Shift in the graphics state
+ opADD = 0x60 // ADD
+ opSUB = 0x61 // SUBtract
+ opDIV = 0x62 // DIVide
+ opMUL = 0x63 // MULtiply
+ opABS = 0x64 // ABSolute value
+ opNEG = 0x65 // NEGate
+ opFLOOR = 0x66 // FLOOR
+ opCEILING = 0x67 // CEILING
+ opROUND00 = 0x68 // ROUND value
+ opROUND01 = 0x69 // .
+ opROUND10 = 0x6a // .
+ opROUND11 = 0x6b // .
+ opNROUND00 = 0x6c // No ROUNDing of value
+ opNROUND01 = 0x6d // .
+ opNROUND10 = 0x6e // .
+ opNROUND11 = 0x6f // .
+ opWCVTF = 0x70 // Write Control Value Table in Funits
+ opDELTAP2 = 0x71 // DELTA exception P2
+ opDELTAP3 = 0x72 // DELTA exception P3
+ opDELTAC1 = 0x73 // DELTA exception C1
+ opDELTAC2 = 0x74 // DELTA exception C2
+ opDELTAC3 = 0x75 // DELTA exception C3
+ opSROUND = 0x76 // Super ROUND
+ opS45ROUND = 0x77 // Super ROUND 45 degrees
+ opJROT = 0x78 // Jump Relative On True
+ opJROF = 0x79 // Jump Relative On False
+ opROFF = 0x7a // Round OFF
+ op_0x7b = 0x7b // deprecated
+ opRUTG = 0x7c // Round Up To Grid
+ opRDTG = 0x7d // Round Down To Grid
+ opSANGW = 0x7e // Set ANGle Weight
+ opAA = 0x7f // Adjust Angle
+ opFLIPPT = 0x80 // FLIP PoinT
+ opFLIPRGON = 0x81 // FLIP RanGe ON
+ opFLIPRGOFF = 0x82 // FLIP RanGe OFF
+ op_0x83 = 0x83 // deprecated
+ op_0x84 = 0x84 // deprecated
+ opSCANCTRL = 0x85 // SCAN conversion ConTRoL
+ opSDPVTL0 = 0x86 // Set Dual Projection Vector To Line
+ opSDPVTL1 = 0x87 // .
+ opGETINFO = 0x88 // GET INFOrmation
+ opIDEF = 0x89 // Instruction DEFinition
+ opROLL = 0x8a // ROLL the top three stack elements
+ opMAX = 0x8b // MAXimum of top two stack elements
+ opMIN = 0x8c // MINimum of top two stack elements
+ opSCANTYPE = 0x8d // SCANTYPE
+ opINSTCTRL = 0x8e // INSTRuction execution ConTRoL
+ op_0x8f = 0x8f
+ op_0x90 = 0x90
+ op_0x91 = 0x91
+ op_0x92 = 0x92
+ op_0x93 = 0x93
+ op_0x94 = 0x94
+ op_0x95 = 0x95
+ op_0x96 = 0x96
+ op_0x97 = 0x97
+ op_0x98 = 0x98
+ op_0x99 = 0x99
+ op_0x9a = 0x9a
+ op_0x9b = 0x9b
+ op_0x9c = 0x9c
+ op_0x9d = 0x9d
+ op_0x9e = 0x9e
+ op_0x9f = 0x9f
+ op_0xa0 = 0xa0
+ op_0xa1 = 0xa1
+ op_0xa2 = 0xa2
+ op_0xa3 = 0xa3
+ op_0xa4 = 0xa4
+ op_0xa5 = 0xa5
+ op_0xa6 = 0xa6
+ op_0xa7 = 0xa7
+ op_0xa8 = 0xa8
+ op_0xa9 = 0xa9
+ op_0xaa = 0xaa
+ op_0xab = 0xab
+ op_0xac = 0xac
+ op_0xad = 0xad
+ op_0xae = 0xae
+ op_0xaf = 0xaf
+ opPUSHB000 = 0xb0 // PUSH Bytes
+ opPUSHB001 = 0xb1 // .
+ opPUSHB010 = 0xb2 // .
+ opPUSHB011 = 0xb3 // .
+ opPUSHB100 = 0xb4 // .
+ opPUSHB101 = 0xb5 // .
+ opPUSHB110 = 0xb6 // .
+ opPUSHB111 = 0xb7 // .
+ opPUSHW000 = 0xb8 // PUSH Words
+ opPUSHW001 = 0xb9 // .
+ opPUSHW010 = 0xba // .
+ opPUSHW011 = 0xbb // .
+ opPUSHW100 = 0xbc // .
+ opPUSHW101 = 0xbd // .
+ opPUSHW110 = 0xbe // .
+ opPUSHW111 = 0xbf // .
+ opMDRP00000 = 0xc0 // Move Direct Relative Point
+ opMDRP00001 = 0xc1 // .
+ opMDRP00010 = 0xc2 // .
+ opMDRP00011 = 0xc3 // .
+ opMDRP00100 = 0xc4 // .
+ opMDRP00101 = 0xc5 // .
+ opMDRP00110 = 0xc6 // .
+ opMDRP00111 = 0xc7 // .
+ opMDRP01000 = 0xc8 // .
+ opMDRP01001 = 0xc9 // .
+ opMDRP01010 = 0xca // .
+ opMDRP01011 = 0xcb // .
+ opMDRP01100 = 0xcc // .
+ opMDRP01101 = 0xcd // .
+ opMDRP01110 = 0xce // .
+ opMDRP01111 = 0xcf // .
+ opMDRP10000 = 0xd0 // .
+ opMDRP10001 = 0xd1 // .
+ opMDRP10010 = 0xd2 // .
+ opMDRP10011 = 0xd3 // .
+ opMDRP10100 = 0xd4 // .
+ opMDRP10101 = 0xd5 // .
+ opMDRP10110 = 0xd6 // .
+ opMDRP10111 = 0xd7 // .
+ opMDRP11000 = 0xd8 // .
+ opMDRP11001 = 0xd9 // .
+ opMDRP11010 = 0xda // .
+ opMDRP11011 = 0xdb // .
+ opMDRP11100 = 0xdc // .
+ opMDRP11101 = 0xdd // .
+ opMDRP11110 = 0xde // .
+ opMDRP11111 = 0xdf // .
+ opMIRP00000 = 0xe0 // Move Indirect Relative Point
+ opMIRP00001 = 0xe1 // .
+ opMIRP00010 = 0xe2 // .
+ opMIRP00011 = 0xe3 // .
+ opMIRP00100 = 0xe4 // .
+ opMIRP00101 = 0xe5 // .
+ opMIRP00110 = 0xe6 // .
+ opMIRP00111 = 0xe7 // .
+ opMIRP01000 = 0xe8 // .
+ opMIRP01001 = 0xe9 // .
+ opMIRP01010 = 0xea // .
+ opMIRP01011 = 0xeb // .
+ opMIRP01100 = 0xec // .
+ opMIRP01101 = 0xed // .
+ opMIRP01110 = 0xee // .
+ opMIRP01111 = 0xef // .
+ opMIRP10000 = 0xf0 // .
+ opMIRP10001 = 0xf1 // .
+ opMIRP10010 = 0xf2 // .
+ opMIRP10011 = 0xf3 // .
+ opMIRP10100 = 0xf4 // .
+ opMIRP10101 = 0xf5 // .
+ opMIRP10110 = 0xf6 // .
+ opMIRP10111 = 0xf7 // .
+ opMIRP11000 = 0xf8 // .
+ opMIRP11001 = 0xf9 // .
+ opMIRP11010 = 0xfa // .
+ opMIRP11011 = 0xfb // .
+ opMIRP11100 = 0xfc // .
+ opMIRP11101 = 0xfd // .
+ opMIRP11110 = 0xfe // .
+ opMIRP11111 = 0xff // .
+)
+
+// popCount is the number of stack elements that each opcode pops.
+var popCount = [256]uint8{
+ // 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
+ 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 5, // 0x00 - 0x0f
+ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, // 0x10 - 0x1f
+ 1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 2, 1, 1, 0, 1, 1, // 0x20 - 0x2f
+ 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 2, 2, 0, 0, 2, 2, // 0x30 - 0x3f
+ 0, 0, 2, 1, 2, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, // 0x40 - 0x4f
+ 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 1, // 0x50 - 0x5f
+ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0x60 - 0x6f
+ 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 1, 1, // 0x70 - 0x7f
+ 0, 2, 2, 0, 0, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 0, // 0x80 - 0x8f
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x90 - 0x9f
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xa0 - 0xaf
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xb0 - 0xbf
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0xc0 - 0xcf
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0xd0 - 0xdf
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 0xe0 - 0xef
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 0xf0 - 0xff
+}
diff --git a/vendor/github.com/golang/freetype/truetype/truetype.go b/vendor/github.com/golang/freetype/truetype/truetype.go
new file mode 100644
index 000000000..9e943d3ec
--- /dev/null
+++ b/vendor/github.com/golang/freetype/truetype/truetype.go
@@ -0,0 +1,643 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+// Package truetype provides a parser for the TTF and TTC file formats.
+// Those formats are documented at http://developer.apple.com/fonts/TTRefMan/
+// and http://www.microsoft.com/typography/otspec/
+//
+// Some of a font's methods provide lengths or co-ordinates, e.g. bounds, font
+// metrics and control points. All these methods take a scale parameter, which
+// is the number of pixels in 1 em, expressed as a 26.6 fixed point value. For
+// example, if 1 em is 10 pixels then scale is fixed.I(10), which is equal to
+// fixed.Int26_6(10 << 6).
+//
+// To measure a TrueType font in ideal FUnit space, use scale equal to
+// font.FUnitsPerEm().
+package truetype
+
+import (
+ "fmt"
+
+ "golang.org/x/image/math/fixed"
+)
+
+// An Index is a Font's index of a rune.
+type Index uint16
+
+// A NameID identifies a name table entry.
+//
+// See https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6name.html
+type NameID uint16
+
+const (
+ NameIDCopyright NameID = 0
+ NameIDFontFamily = 1
+ NameIDFontSubfamily = 2
+ NameIDUniqueSubfamilyID = 3
+ NameIDFontFullName = 4
+ NameIDNameTableVersion = 5
+ NameIDPostscriptName = 6
+ NameIDTrademarkNotice = 7
+ NameIDManufacturerName = 8
+ NameIDDesignerName = 9
+ NameIDFontDescription = 10
+ NameIDFontVendorURL = 11
+ NameIDFontDesignerURL = 12
+ NameIDFontLicense = 13
+ NameIDFontLicenseURL = 14
+ NameIDPreferredFamily = 16
+ NameIDPreferredSubfamily = 17
+ NameIDCompatibleName = 18
+ NameIDSampleText = 19
+)
+
+const (
+ // A 32-bit encoding consists of a most-significant 16-bit Platform ID and a
+ // least-significant 16-bit Platform Specific ID. The magic numbers are
+ // specified at https://www.microsoft.com/typography/otspec/name.htm
+ unicodeEncoding = 0x00000003 // PID = 0 (Unicode), PSID = 3 (Unicode 2.0)
+ microsoftSymbolEncoding = 0x00030000 // PID = 3 (Microsoft), PSID = 0 (Symbol)
+ microsoftUCS2Encoding = 0x00030001 // PID = 3 (Microsoft), PSID = 1 (UCS-2)
+ microsoftUCS4Encoding = 0x0003000a // PID = 3 (Microsoft), PSID = 10 (UCS-4)
+)
+
+// An HMetric holds the horizontal metrics of a single glyph.
+type HMetric struct {
+ AdvanceWidth, LeftSideBearing fixed.Int26_6
+}
+
+// A VMetric holds the vertical metrics of a single glyph.
+type VMetric struct {
+ AdvanceHeight, TopSideBearing fixed.Int26_6
+}
+
+// A FormatError reports that the input is not a valid TrueType font.
+type FormatError string
+
+func (e FormatError) Error() string {
+ return "freetype: invalid TrueType format: " + string(e)
+}
+
+// An UnsupportedError reports that the input uses a valid but unimplemented
+// TrueType feature.
+type UnsupportedError string
+
+func (e UnsupportedError) Error() string {
+ return "freetype: unsupported TrueType feature: " + string(e)
+}
+
+// u32 returns the big-endian uint32 at b[i:].
+func u32(b []byte, i int) uint32 {
+ return uint32(b[i])<<24 | uint32(b[i+1])<<16 | uint32(b[i+2])<<8 | uint32(b[i+3])
+}
+
+// u16 returns the big-endian uint16 at b[i:].
+func u16(b []byte, i int) uint16 {
+ return uint16(b[i])<<8 | uint16(b[i+1])
+}
+
+// readTable returns a slice of the TTF data given by a table's directory entry.
+func readTable(ttf []byte, offsetLength []byte) ([]byte, error) {
+ offset := int(u32(offsetLength, 0))
+ if offset < 0 {
+ return nil, FormatError(fmt.Sprintf("offset too large: %d", uint32(offset)))
+ }
+ length := int(u32(offsetLength, 4))
+ if length < 0 {
+ return nil, FormatError(fmt.Sprintf("length too large: %d", uint32(length)))
+ }
+ end := offset + length
+ if end < 0 || end > len(ttf) {
+ return nil, FormatError(fmt.Sprintf("offset + length too large: %d", uint32(offset)+uint32(length)))
+ }
+ return ttf[offset:end], nil
+}
+
+// parseSubtables returns the offset and platformID of the best subtable in
+// table, where best favors a Unicode cmap encoding, and failing that, a
+// Microsoft cmap encoding. offset is the offset of the first subtable in
+// table, and size is the size of each subtable.
+//
+// If pred is non-nil, then only subtables that satisfy that predicate will be
+// considered.
+func parseSubtables(table []byte, name string, offset, size int, pred func([]byte) bool) (
+ bestOffset int, bestPID uint32, retErr error) {
+
+ if len(table) < 4 {
+ return 0, 0, FormatError(name + " too short")
+ }
+ nSubtables := int(u16(table, 2))
+ if len(table) < size*nSubtables+offset {
+ return 0, 0, FormatError(name + " too short")
+ }
+ ok := false
+ for i := 0; i < nSubtables; i, offset = i+1, offset+size {
+ if pred != nil && !pred(table[offset:]) {
+ continue
+ }
+ // We read the 16-bit Platform ID and 16-bit Platform Specific ID as a single uint32.
+ // All values are big-endian.
+ pidPsid := u32(table, offset)
+ // We prefer the Unicode cmap encoding. Failing to find that, we fall
+ // back onto the Microsoft cmap encoding.
+ if pidPsid == unicodeEncoding {
+ bestOffset, bestPID, ok = offset, pidPsid>>16, true
+ break
+
+ } else if pidPsid == microsoftSymbolEncoding ||
+ pidPsid == microsoftUCS2Encoding ||
+ pidPsid == microsoftUCS4Encoding {
+
+ bestOffset, bestPID, ok = offset, pidPsid>>16, true
+ // We don't break out of the for loop, so that Unicode can override Microsoft.
+ }
+ }
+ if !ok {
+ return 0, 0, UnsupportedError(name + " encoding")
+ }
+ return bestOffset, bestPID, nil
+}
+
+const (
+ locaOffsetFormatUnknown int = iota
+ locaOffsetFormatShort
+ locaOffsetFormatLong
+)
+
+// A cm holds a parsed cmap entry.
+type cm struct {
+ start, end, delta, offset uint32
+}
+
+// A Font represents a Truetype font.
+type Font struct {
+ // Tables sliced from the TTF data. The different tables are documented
+ // at http://developer.apple.com/fonts/TTRefMan/RM06/Chap6.html
+ cmap, cvt, fpgm, glyf, hdmx, head, hhea, hmtx, kern, loca, maxp, name, os2, prep, vmtx []byte
+
+ cmapIndexes []byte
+
+ // Cached values derived from the raw ttf data.
+ cm []cm
+ locaOffsetFormat int
+ nGlyph, nHMetric, nKern int
+ fUnitsPerEm int32
+ ascent int32 // In FUnits.
+ descent int32 // In FUnits; typically negative.
+ bounds fixed.Rectangle26_6 // In FUnits.
+ // Values from the maxp section.
+ maxTwilightPoints, maxStorage, maxFunctionDefs, maxStackElements uint16
+}
+
+func (f *Font) parseCmap() error {
+ const (
+ cmapFormat4 = 4
+ cmapFormat12 = 12
+ languageIndependent = 0
+ )
+
+ offset, _, err := parseSubtables(f.cmap, "cmap", 4, 8, nil)
+ if err != nil {
+ return err
+ }
+ offset = int(u32(f.cmap, offset+4))
+ if offset <= 0 || offset > len(f.cmap) {
+ return FormatError("bad cmap offset")
+ }
+
+ cmapFormat := u16(f.cmap, offset)
+ switch cmapFormat {
+ case cmapFormat4:
+ language := u16(f.cmap, offset+4)
+ if language != languageIndependent {
+ return UnsupportedError(fmt.Sprintf("language: %d", language))
+ }
+ segCountX2 := int(u16(f.cmap, offset+6))
+ if segCountX2%2 == 1 {
+ return FormatError(fmt.Sprintf("bad segCountX2: %d", segCountX2))
+ }
+ segCount := segCountX2 / 2
+ offset += 14
+ f.cm = make([]cm, segCount)
+ for i := 0; i < segCount; i++ {
+ f.cm[i].end = uint32(u16(f.cmap, offset))
+ offset += 2
+ }
+ offset += 2
+ for i := 0; i < segCount; i++ {
+ f.cm[i].start = uint32(u16(f.cmap, offset))
+ offset += 2
+ }
+ for i := 0; i < segCount; i++ {
+ f.cm[i].delta = uint32(u16(f.cmap, offset))
+ offset += 2
+ }
+ for i := 0; i < segCount; i++ {
+ f.cm[i].offset = uint32(u16(f.cmap, offset))
+ offset += 2
+ }
+ f.cmapIndexes = f.cmap[offset:]
+ return nil
+
+ case cmapFormat12:
+ if u16(f.cmap, offset+2) != 0 {
+ return FormatError(fmt.Sprintf("cmap format: % x", f.cmap[offset:offset+4]))
+ }
+ length := u32(f.cmap, offset+4)
+ language := u32(f.cmap, offset+8)
+ if language != languageIndependent {
+ return UnsupportedError(fmt.Sprintf("language: %d", language))
+ }
+ nGroups := u32(f.cmap, offset+12)
+ if length != 12*nGroups+16 {
+ return FormatError("inconsistent cmap length")
+ }
+ offset += 16
+ f.cm = make([]cm, nGroups)
+ for i := uint32(0); i < nGroups; i++ {
+ f.cm[i].start = u32(f.cmap, offset+0)
+ f.cm[i].end = u32(f.cmap, offset+4)
+ f.cm[i].delta = u32(f.cmap, offset+8) - f.cm[i].start
+ offset += 12
+ }
+ return nil
+ }
+ return UnsupportedError(fmt.Sprintf("cmap format: %d", cmapFormat))
+}
+
+func (f *Font) parseHead() error {
+ if len(f.head) != 54 {
+ return FormatError(fmt.Sprintf("bad head length: %d", len(f.head)))
+ }
+ f.fUnitsPerEm = int32(u16(f.head, 18))
+ f.bounds.Min.X = fixed.Int26_6(int16(u16(f.head, 36)))
+ f.bounds.Min.Y = fixed.Int26_6(int16(u16(f.head, 38)))
+ f.bounds.Max.X = fixed.Int26_6(int16(u16(f.head, 40)))
+ f.bounds.Max.Y = fixed.Int26_6(int16(u16(f.head, 42)))
+ switch i := u16(f.head, 50); i {
+ case 0:
+ f.locaOffsetFormat = locaOffsetFormatShort
+ case 1:
+ f.locaOffsetFormat = locaOffsetFormatLong
+ default:
+ return FormatError(fmt.Sprintf("bad indexToLocFormat: %d", i))
+ }
+ return nil
+}
+
+func (f *Font) parseHhea() error {
+ if len(f.hhea) != 36 {
+ return FormatError(fmt.Sprintf("bad hhea length: %d", len(f.hhea)))
+ }
+ f.ascent = int32(int16(u16(f.hhea, 4)))
+ f.descent = int32(int16(u16(f.hhea, 6)))
+ f.nHMetric = int(u16(f.hhea, 34))
+ if 4*f.nHMetric+2*(f.nGlyph-f.nHMetric) != len(f.hmtx) {
+ return FormatError(fmt.Sprintf("bad hmtx length: %d", len(f.hmtx)))
+ }
+ return nil
+}
+
+func (f *Font) parseKern() error {
+ // Apple's TrueType documentation (http://developer.apple.com/fonts/TTRefMan/RM06/Chap6kern.html) says:
+ // "Previous versions of the 'kern' table defined both the version and nTables fields in the header
+ // as UInt16 values and not UInt32 values. Use of the older format on the Mac OS is discouraged
+ // (although AAT can sense an old kerning table and still make correct use of it). Microsoft
+ // Windows still uses the older format for the 'kern' table and will not recognize the newer one.
+ // Fonts targeted for the Mac OS only should use the new format; fonts targeted for both the Mac OS
+ // and Windows should use the old format."
+ // Since we expect that almost all fonts aim to be Windows-compatible, we only parse the "older" format,
+ // just like the C Freetype implementation.
+ if len(f.kern) == 0 {
+ if f.nKern != 0 {
+ return FormatError("bad kern table length")
+ }
+ return nil
+ }
+ if len(f.kern) < 18 {
+ return FormatError("kern data too short")
+ }
+ version, offset := u16(f.kern, 0), 2
+ if version != 0 {
+ return UnsupportedError(fmt.Sprintf("kern version: %d", version))
+ }
+ n, offset := u16(f.kern, offset), offset+2
+ if n != 1 {
+ return UnsupportedError(fmt.Sprintf("kern nTables: %d", n))
+ }
+ offset += 2
+ length, offset := int(u16(f.kern, offset)), offset+2
+ coverage, offset := u16(f.kern, offset), offset+2
+ if coverage != 0x0001 {
+ // We only support horizontal kerning.
+ return UnsupportedError(fmt.Sprintf("kern coverage: 0x%04x", coverage))
+ }
+ f.nKern, offset = int(u16(f.kern, offset)), offset+2
+ if 6*f.nKern != length-14 {
+ return FormatError("bad kern table length")
+ }
+ return nil
+}
+
+func (f *Font) parseMaxp() error {
+ if len(f.maxp) != 32 {
+ return FormatError(fmt.Sprintf("bad maxp length: %d", len(f.maxp)))
+ }
+ f.nGlyph = int(u16(f.maxp, 4))
+ f.maxTwilightPoints = u16(f.maxp, 16)
+ f.maxStorage = u16(f.maxp, 18)
+ f.maxFunctionDefs = u16(f.maxp, 20)
+ f.maxStackElements = u16(f.maxp, 24)
+ return nil
+}
+
+// scale returns x divided by f.fUnitsPerEm, rounded to the nearest integer.
+func (f *Font) scale(x fixed.Int26_6) fixed.Int26_6 {
+ if x >= 0 {
+ x += fixed.Int26_6(f.fUnitsPerEm) / 2
+ } else {
+ x -= fixed.Int26_6(f.fUnitsPerEm) / 2
+ }
+ return x / fixed.Int26_6(f.fUnitsPerEm)
+}
+
+// Bounds returns the union of a Font's glyphs' bounds.
+func (f *Font) Bounds(scale fixed.Int26_6) fixed.Rectangle26_6 {
+ b := f.bounds
+ b.Min.X = f.scale(scale * b.Min.X)
+ b.Min.Y = f.scale(scale * b.Min.Y)
+ b.Max.X = f.scale(scale * b.Max.X)
+ b.Max.Y = f.scale(scale * b.Max.Y)
+ return b
+}
+
+// FUnitsPerEm returns the number of FUnits in a Font's em-square's side.
+func (f *Font) FUnitsPerEm() int32 {
+ return f.fUnitsPerEm
+}
+
+// Index returns a Font's index for the given rune.
+func (f *Font) Index(x rune) Index {
+ c := uint32(x)
+ for i, j := 0, len(f.cm); i < j; {
+ h := i + (j-i)/2
+ cm := &f.cm[h]
+ if c < cm.start {
+ j = h
+ } else if cm.end < c {
+ i = h + 1
+ } else if cm.offset == 0 {
+ return Index(c + cm.delta)
+ } else {
+ offset := int(cm.offset) + 2*(h-len(f.cm)+int(c-cm.start))
+ return Index(u16(f.cmapIndexes, offset))
+ }
+ }
+ return 0
+}
+
+// Name returns the Font's name value for the given NameID. It returns "" if
+// there was an error, or if that name was not found.
+func (f *Font) Name(id NameID) string {
+ x, platformID, err := parseSubtables(f.name, "name", 6, 12, func(b []byte) bool {
+ return NameID(u16(b, 6)) == id
+ })
+ if err != nil {
+ return ""
+ }
+ offset, length := u16(f.name, 4)+u16(f.name, x+10), u16(f.name, x+8)
+ // Return the ASCII value of the encoded string.
+ // The string is encoded as UTF-16 on non-Apple platformIDs; Apple is platformID 1.
+ src := f.name[offset : offset+length]
+ var dst []byte
+ if platformID != 1 { // UTF-16.
+ if len(src)&1 != 0 {
+ return ""
+ }
+ dst = make([]byte, len(src)/2)
+ for i := range dst {
+ dst[i] = printable(u16(src, 2*i))
+ }
+ } else { // ASCII.
+ dst = make([]byte, len(src))
+ for i, c := range src {
+ dst[i] = printable(uint16(c))
+ }
+ }
+ return string(dst)
+}
+
+func printable(r uint16) byte {
+ if 0x20 <= r && r < 0x7f {
+ return byte(r)
+ }
+ return '?'
+}
+
+// unscaledHMetric returns the unscaled horizontal metrics for the glyph with
+// the given index.
+func (f *Font) unscaledHMetric(i Index) (h HMetric) {
+ j := int(i)
+ if j < 0 || f.nGlyph <= j {
+ return HMetric{}
+ }
+ if j >= f.nHMetric {
+ p := 4 * (f.nHMetric - 1)
+ return HMetric{
+ AdvanceWidth: fixed.Int26_6(u16(f.hmtx, p)),
+ LeftSideBearing: fixed.Int26_6(int16(u16(f.hmtx, p+2*(j-f.nHMetric)+4))),
+ }
+ }
+ return HMetric{
+ AdvanceWidth: fixed.Int26_6(u16(f.hmtx, 4*j)),
+ LeftSideBearing: fixed.Int26_6(int16(u16(f.hmtx, 4*j+2))),
+ }
+}
+
+// HMetric returns the horizontal metrics for the glyph with the given index.
+func (f *Font) HMetric(scale fixed.Int26_6, i Index) HMetric {
+ h := f.unscaledHMetric(i)
+ h.AdvanceWidth = f.scale(scale * h.AdvanceWidth)
+ h.LeftSideBearing = f.scale(scale * h.LeftSideBearing)
+ return h
+}
+
+// unscaledVMetric returns the unscaled vertical metrics for the glyph with
+// the given index. yMax is the top of the glyph's bounding box.
+func (f *Font) unscaledVMetric(i Index, yMax fixed.Int26_6) (v VMetric) {
+ j := int(i)
+ if j < 0 || f.nGlyph <= j {
+ return VMetric{}
+ }
+ if 4*j+4 <= len(f.vmtx) {
+ return VMetric{
+ AdvanceHeight: fixed.Int26_6(u16(f.vmtx, 4*j)),
+ TopSideBearing: fixed.Int26_6(int16(u16(f.vmtx, 4*j+2))),
+ }
+ }
+ // The OS/2 table has grown over time.
+ // https://developer.apple.com/fonts/TTRefMan/RM06/Chap6OS2.html
+ // says that it was originally 68 bytes. Optional fields, including
+ // the ascender and descender, are described at
+ // http://www.microsoft.com/typography/otspec/os2.htm
+ if len(f.os2) >= 72 {
+ sTypoAscender := fixed.Int26_6(int16(u16(f.os2, 68)))
+ sTypoDescender := fixed.Int26_6(int16(u16(f.os2, 70)))
+ return VMetric{
+ AdvanceHeight: sTypoAscender - sTypoDescender,
+ TopSideBearing: sTypoAscender - yMax,
+ }
+ }
+ return VMetric{
+ AdvanceHeight: fixed.Int26_6(f.fUnitsPerEm),
+ TopSideBearing: 0,
+ }
+}
+
+// VMetric returns the vertical metrics for the glyph with the given index.
+func (f *Font) VMetric(scale fixed.Int26_6, i Index) VMetric {
+ // TODO: should 0 be bounds.YMax?
+ v := f.unscaledVMetric(i, 0)
+ v.AdvanceHeight = f.scale(scale * v.AdvanceHeight)
+ v.TopSideBearing = f.scale(scale * v.TopSideBearing)
+ return v
+}
+
+// Kern returns the horizontal adjustment for the given glyph pair. A positive
+// kern means to move the glyphs further apart.
+func (f *Font) Kern(scale fixed.Int26_6, i0, i1 Index) fixed.Int26_6 {
+ if f.nKern == 0 {
+ return 0
+ }
+ g := uint32(i0)<<16 | uint32(i1)
+ lo, hi := 0, f.nKern
+ for lo < hi {
+ i := (lo + hi) / 2
+ ig := u32(f.kern, 18+6*i)
+ if ig < g {
+ lo = i + 1
+ } else if ig > g {
+ hi = i
+ } else {
+ return f.scale(scale * fixed.Int26_6(int16(u16(f.kern, 22+6*i))))
+ }
+ }
+ return 0
+}
+
+// Parse returns a new Font for the given TTF or TTC data.
+//
+// For TrueType Collections, the first font in the collection is parsed.
+func Parse(ttf []byte) (font *Font, err error) {
+ return parse(ttf, 0)
+}
+
+func parse(ttf []byte, offset int) (font *Font, err error) {
+ if len(ttf)-offset < 12 {
+ err = FormatError("TTF data is too short")
+ return
+ }
+ originalOffset := offset
+ magic, offset := u32(ttf, offset), offset+4
+ switch magic {
+ case 0x00010000:
+ // No-op.
+ case 0x74746366: // "ttcf" as a big-endian uint32.
+ if originalOffset != 0 {
+ err = FormatError("recursive TTC")
+ return
+ }
+ ttcVersion, offset := u32(ttf, offset), offset+4
+ if ttcVersion != 0x00010000 {
+ // TODO: support TTC version 2.0, once I have such a .ttc file to test with.
+ err = FormatError("bad TTC version")
+ return
+ }
+ numFonts, offset := int(u32(ttf, offset)), offset+4
+ if numFonts <= 0 {
+ err = FormatError("bad number of TTC fonts")
+ return
+ }
+ if len(ttf[offset:])/4 < numFonts {
+ err = FormatError("TTC offset table is too short")
+ return
+ }
+ // TODO: provide an API to select which font in a TrueType collection to return,
+ // not just the first one. This may require an API to parse a TTC's name tables,
+ // so users of this package can select the font in a TTC by name.
+ offset = int(u32(ttf, offset))
+ if offset <= 0 || offset > len(ttf) {
+ err = FormatError("bad TTC offset")
+ return
+ }
+ return parse(ttf, offset)
+ default:
+ err = FormatError("bad TTF version")
+ return
+ }
+ n, offset := int(u16(ttf, offset)), offset+2
+ if len(ttf) < 16*n+12 {
+ err = FormatError("TTF data is too short")
+ return
+ }
+ f := new(Font)
+ // Assign the table slices.
+ for i := 0; i < n; i++ {
+ x := 16*i + 12
+ switch string(ttf[x : x+4]) {
+ case "cmap":
+ f.cmap, err = readTable(ttf, ttf[x+8:x+16])
+ case "cvt ":
+ f.cvt, err = readTable(ttf, ttf[x+8:x+16])
+ case "fpgm":
+ f.fpgm, err = readTable(ttf, ttf[x+8:x+16])
+ case "glyf":
+ f.glyf, err = readTable(ttf, ttf[x+8:x+16])
+ case "hdmx":
+ f.hdmx, err = readTable(ttf, ttf[x+8:x+16])
+ case "head":
+ f.head, err = readTable(ttf, ttf[x+8:x+16])
+ case "hhea":
+ f.hhea, err = readTable(ttf, ttf[x+8:x+16])
+ case "hmtx":
+ f.hmtx, err = readTable(ttf, ttf[x+8:x+16])
+ case "kern":
+ f.kern, err = readTable(ttf, ttf[x+8:x+16])
+ case "loca":
+ f.loca, err = readTable(ttf, ttf[x+8:x+16])
+ case "maxp":
+ f.maxp, err = readTable(ttf, ttf[x+8:x+16])
+ case "name":
+ f.name, err = readTable(ttf, ttf[x+8:x+16])
+ case "OS/2":
+ f.os2, err = readTable(ttf, ttf[x+8:x+16])
+ case "prep":
+ f.prep, err = readTable(ttf, ttf[x+8:x+16])
+ case "vmtx":
+ f.vmtx, err = readTable(ttf, ttf[x+8:x+16])
+ }
+ if err != nil {
+ return
+ }
+ }
+ // Parse and sanity-check the TTF data.
+ if err = f.parseHead(); err != nil {
+ return
+ }
+ if err = f.parseMaxp(); err != nil {
+ return
+ }
+ if err = f.parseCmap(); err != nil {
+ return
+ }
+ if err = f.parseKern(); err != nil {
+ return
+ }
+ if err = f.parseHhea(); err != nil {
+ return
+ }
+ font = f
+ return
+}
diff --git a/vendor/github.com/golang/groupcache/LICENSE b/vendor/github.com/golang/groupcache/LICENSE
new file mode 100644
index 000000000..37ec93a14
--- /dev/null
+++ b/vendor/github.com/golang/groupcache/LICENSE
@@ -0,0 +1,191 @@
+Apache License
+Version 2.0, January 2004
+http://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+"License" shall mean the terms and conditions for use, reproduction, and
+distribution as defined by Sections 1 through 9 of this document.
+
+"Licensor" shall mean the copyright owner or entity authorized by the copyright
+owner that is granting the License.
+
+"Legal Entity" shall mean the union of the acting entity and all other entities
+that control, are controlled by, or are under common control with that entity.
+For the purposes of this definition, "control" means (i) the power, direct or
+indirect, to cause the direction or management of such entity, whether by
+contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
+outstanding shares, or (iii) beneficial ownership of such entity.
+
+"You" (or "Your") shall mean an individual or Legal Entity exercising
+permissions granted by this License.
+
+"Source" form shall mean the preferred form for making modifications, including
+but not limited to software source code, documentation source, and configuration
+files.
+
+"Object" form shall mean any form resulting from mechanical transformation or
+translation of a Source form, including but not limited to compiled object code,
+generated documentation, and conversions to other media types.
+
+"Work" shall mean the work of authorship, whether in Source or Object form, made
+available under the License, as indicated by a copyright notice that is included
+in or attached to the work (an example is provided in the Appendix below).
+
+"Derivative Works" shall mean any work, whether in Source or Object form, that
+is based on (or derived from) the Work and for which the editorial revisions,
+annotations, elaborations, or other modifications represent, as a whole, an
+original work of authorship. For the purposes of this License, Derivative Works
+shall not include works that remain separable from, or merely link (or bind by
+name) to the interfaces of, the Work and Derivative Works thereof.
+
+"Contribution" shall mean any work of authorship, including the original version
+of the Work and any modifications or additions to that Work or Derivative Works
+thereof, that is intentionally submitted to Licensor for inclusion in the Work
+by the copyright owner or by an individual or Legal Entity authorized to submit
+on behalf of the copyright owner. For the purposes of this definition,
+"submitted" means any form of electronic, verbal, or written communication sent
+to the Licensor or its representatives, including but not limited to
+communication on electronic mailing lists, source code control systems, and
+issue tracking systems that are managed by, or on behalf of, the Licensor for
+the purpose of discussing and improving the Work, but excluding communication
+that is conspicuously marked or otherwise designated in writing by the copyright
+owner as "Not a Contribution."
+
+"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
+of whom a Contribution has been received by Licensor and subsequently
+incorporated within the Work.
+
+2. Grant of Copyright License.
+
+Subject to the terms and conditions of this License, each Contributor hereby
+grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
+irrevocable copyright license to reproduce, prepare Derivative Works of,
+publicly display, publicly perform, sublicense, and distribute the Work and such
+Derivative Works in Source or Object form.
+
+3. Grant of Patent License.
+
+Subject to the terms and conditions of this License, each Contributor hereby
+grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
+irrevocable (except as stated in this section) patent license to make, have
+made, use, offer to sell, sell, import, and otherwise transfer the Work, where
+such license applies only to those patent claims licensable by such Contributor
+that are necessarily infringed by their Contribution(s) alone or by combination
+of their Contribution(s) with the Work to which such Contribution(s) was
+submitted. If You institute patent litigation against any entity (including a
+cross-claim or counterclaim in a lawsuit) alleging that the Work or a
+Contribution incorporated within the Work constitutes direct or contributory
+patent infringement, then any patent licenses granted to You under this License
+for that Work shall terminate as of the date such litigation is filed.
+
+4. Redistribution.
+
+You may reproduce and distribute copies of the Work or Derivative Works thereof
+in any medium, with or without modifications, and in Source or Object form,
+provided that You meet the following conditions:
+
+You must give any other recipients of the Work or Derivative Works a copy of
+this License; and
+You must cause any modified files to carry prominent notices stating that You
+changed the files; and
+You must retain, in the Source form of any Derivative Works that You distribute,
+all copyright, patent, trademark, and attribution notices from the Source form
+of the Work, excluding those notices that do not pertain to any part of the
+Derivative Works; and
+If the Work includes a "NOTICE" text file as part of its distribution, then any
+Derivative Works that You distribute must include a readable copy of the
+attribution notices contained within such NOTICE file, excluding those notices
+that do not pertain to any part of the Derivative Works, in at least one of the
+following places: within a NOTICE text file distributed as part of the
+Derivative Works; within the Source form or documentation, if provided along
+with the Derivative Works; or, within a display generated by the Derivative
+Works, if and wherever such third-party notices normally appear. The contents of
+the NOTICE file are for informational purposes only and do not modify the
+License. You may add Your own attribution notices within Derivative Works that
+You distribute, alongside or as an addendum to the NOTICE text from the Work,
+provided that such additional attribution notices cannot be construed as
+modifying the License.
+You may add Your own copyright statement to Your modifications and may provide
+additional or different license terms and conditions for use, reproduction, or
+distribution of Your modifications, or for any such Derivative Works as a whole,
+provided Your use, reproduction, and distribution of the Work otherwise complies
+with the conditions stated in this License.
+
+5. Submission of Contributions.
+
+Unless You explicitly state otherwise, any Contribution intentionally submitted
+for inclusion in the Work by You to the Licensor shall be under the terms and
+conditions of this License, without any additional terms or conditions.
+Notwithstanding the above, nothing herein shall supersede or modify the terms of
+any separate license agreement you may have executed with Licensor regarding
+such Contributions.
+
+6. Trademarks.
+
+This License does not grant permission to use the trade names, trademarks,
+service marks, or product names of the Licensor, except as required for
+reasonable and customary use in describing the origin of the Work and
+reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty.
+
+Unless required by applicable law or agreed to in writing, Licensor provides the
+Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
+including, without limitation, any warranties or conditions of TITLE,
+NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
+solely responsible for determining the appropriateness of using or
+redistributing the Work and assume any risks associated with Your exercise of
+permissions under this License.
+
+8. Limitation of Liability.
+
+In no event and under no legal theory, whether in tort (including negligence),
+contract, or otherwise, unless required by applicable law (such as deliberate
+and grossly negligent acts) or agreed to in writing, shall any Contributor be
+liable to You for damages, including any direct, indirect, special, incidental,
+or consequential damages of any character arising as a result of this License or
+out of the use or inability to use the Work (including but not limited to
+damages for loss of goodwill, work stoppage, computer failure or malfunction, or
+any and all other commercial damages or losses), even if such Contributor has
+been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability.
+
+While redistributing the Work or Derivative Works thereof, You may choose to
+offer, and charge a fee for, acceptance of support, warranty, indemnity, or
+other liability obligations and/or rights consistent with this License. However,
+in accepting such obligations, You may act only on Your own behalf and on Your
+sole responsibility, not on behalf of any other Contributor, and only if You
+agree to indemnify, defend, and hold each Contributor harmless for any liability
+incurred by, or claims asserted against, such Contributor by reason of your
+accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work
+
+To apply the Apache License to your work, attach the following boilerplate
+notice, with the fields enclosed by brackets "[]" replaced with your own
+identifying information. (Don't include the brackets!) The text should be
+enclosed in the appropriate comment syntax for the file format. We also
+recommend that a file or class name and description of purpose be included on
+the same "printed page" as the copyright notice for easier identification within
+third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/vendor/github.com/golang/groupcache/lru/lru.go b/vendor/github.com/golang/groupcache/lru/lru.go
new file mode 100644
index 000000000..cdfe2991f
--- /dev/null
+++ b/vendor/github.com/golang/groupcache/lru/lru.go
@@ -0,0 +1,121 @@
+/*
+Copyright 2013 Google Inc.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+// Package lru implements an LRU cache.
+package lru
+
+import "container/list"
+
+// Cache is an LRU cache. It is not safe for concurrent access.
+type Cache struct {
+ // MaxEntries is the maximum number of cache entries before
+ // an item is evicted. Zero means no limit.
+ MaxEntries int
+
+ // OnEvicted optionally specificies a callback function to be
+ // executed when an entry is purged from the cache.
+ OnEvicted func(key Key, value interface{})
+
+ ll *list.List
+ cache map[interface{}]*list.Element
+}
+
+// A Key may be any value that is comparable. See http://golang.org/ref/spec#Comparison_operators
+type Key interface{}
+
+type entry struct {
+ key Key
+ value interface{}
+}
+
+// New creates a new Cache.
+// If maxEntries is zero, the cache has no limit and it's assumed
+// that eviction is done by the caller.
+func New(maxEntries int) *Cache {
+ return &Cache{
+ MaxEntries: maxEntries,
+ ll: list.New(),
+ cache: make(map[interface{}]*list.Element),
+ }
+}
+
+// Add adds a value to the cache.
+func (c *Cache) Add(key Key, value interface{}) {
+ if c.cache == nil {
+ c.cache = make(map[interface{}]*list.Element)
+ c.ll = list.New()
+ }
+ if ee, ok := c.cache[key]; ok {
+ c.ll.MoveToFront(ee)
+ ee.Value.(*entry).value = value
+ return
+ }
+ ele := c.ll.PushFront(&entry{key, value})
+ c.cache[key] = ele
+ if c.MaxEntries != 0 && c.ll.Len() > c.MaxEntries {
+ c.RemoveOldest()
+ }
+}
+
+// Get looks up a key's value from the cache.
+func (c *Cache) Get(key Key) (value interface{}, ok bool) {
+ if c.cache == nil {
+ return
+ }
+ if ele, hit := c.cache[key]; hit {
+ c.ll.MoveToFront(ele)
+ return ele.Value.(*entry).value, true
+ }
+ return
+}
+
+// Remove removes the provided key from the cache.
+func (c *Cache) Remove(key Key) {
+ if c.cache == nil {
+ return
+ }
+ if ele, hit := c.cache[key]; hit {
+ c.removeElement(ele)
+ }
+}
+
+// RemoveOldest removes the oldest item from the cache.
+func (c *Cache) RemoveOldest() {
+ if c.cache == nil {
+ return
+ }
+ ele := c.ll.Back()
+ if ele != nil {
+ c.removeElement(ele)
+ }
+}
+
+func (c *Cache) removeElement(e *list.Element) {
+ c.ll.Remove(e)
+ kv := e.Value.(*entry)
+ delete(c.cache, kv.key)
+ if c.OnEvicted != nil {
+ c.OnEvicted(kv.key, kv.value)
+ }
+}
+
+// Len returns the number of items in the cache.
+func (c *Cache) Len() int {
+ if c.cache == nil {
+ return 0
+ }
+ return c.ll.Len()
+}