summaryrefslogtreecommitdiffstats
path: root/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster
diff options
context:
space:
mode:
Diffstat (limited to 'Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster')
-rw-r--r--Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/geom.go280
-rw-r--r--Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/paint.go292
-rw-r--r--Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go579
-rw-r--r--Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/stroke.go466
4 files changed, 1617 insertions, 0 deletions
diff --git a/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/geom.go b/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/geom.go
new file mode 100644
index 000000000..63c86e6ab
--- /dev/null
+++ b/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/geom.go
@@ -0,0 +1,280 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+package raster
+
+import (
+ "fmt"
+ "math"
+)
+
+// A Fix32 is a 24.8 fixed point number.
+type Fix32 int32
+
+// A Fix64 is a 48.16 fixed point number.
+type Fix64 int64
+
+// String returns a human-readable representation of a 24.8 fixed point number.
+// For example, the number one-and-a-quarter becomes "1:064".
+func (x Fix32) String() string {
+ if x < 0 {
+ x = -x
+ return fmt.Sprintf("-%d:%03d", int32(x/256), int32(x%256))
+ }
+ return fmt.Sprintf("%d:%03d", int32(x/256), int32(x%256))
+}
+
+// String returns a human-readable representation of a 48.16 fixed point number.
+// For example, the number one-and-a-quarter becomes "1:16384".
+func (x Fix64) String() string {
+ if x < 0 {
+ x = -x
+ return fmt.Sprintf("-%d:%05d", int64(x/65536), int64(x%65536))
+ }
+ return fmt.Sprintf("%d:%05d", int64(x/65536), int64(x%65536))
+}
+
+// maxAbs returns the maximum of abs(a) and abs(b).
+func maxAbs(a, b Fix32) Fix32 {
+ if a < 0 {
+ a = -a
+ }
+ if b < 0 {
+ b = -b
+ }
+ if a < b {
+ return b
+ }
+ return a
+}
+
+// A Point represents a two-dimensional point or vector, in 24.8 fixed point
+// format.
+type Point struct {
+ X, Y Fix32
+}
+
+// String returns a human-readable representation of a Point.
+func (p Point) String() string {
+ return "(" + p.X.String() + ", " + p.Y.String() + ")"
+}
+
+// Add returns the vector p + q.
+func (p Point) Add(q Point) Point {
+ return Point{p.X + q.X, p.Y + q.Y}
+}
+
+// Sub returns the vector p - q.
+func (p Point) Sub(q Point) Point {
+ return Point{p.X - q.X, p.Y - q.Y}
+}
+
+// Mul returns the vector k * p.
+func (p Point) Mul(k Fix32) Point {
+ return Point{p.X * k / 256, p.Y * k / 256}
+}
+
+// Neg returns the vector -p, or equivalently p rotated by 180 degrees.
+func (p Point) Neg() Point {
+ return Point{-p.X, -p.Y}
+}
+
+// Dot returns the dot product p·q.
+func (p Point) Dot(q Point) Fix64 {
+ px, py := int64(p.X), int64(p.Y)
+ qx, qy := int64(q.X), int64(q.Y)
+ return Fix64(px*qx + py*qy)
+}
+
+// Len returns the length of the vector p.
+func (p Point) Len() Fix32 {
+ // TODO(nigeltao): use fixed point math.
+ x := float64(p.X)
+ y := float64(p.Y)
+ return Fix32(math.Sqrt(x*x + y*y))
+}
+
+// Norm returns the vector p normalized to the given length, or the zero Point
+// if p is degenerate.
+func (p Point) Norm(length Fix32) Point {
+ d := p.Len()
+ if d == 0 {
+ return Point{}
+ }
+ s, t := int64(length), int64(d)
+ x := int64(p.X) * s / t
+ y := int64(p.Y) * s / t
+ return Point{Fix32(x), Fix32(y)}
+}
+
+// Rot45CW returns the vector p rotated clockwise by 45 degrees.
+// Note that the Y-axis grows downwards, so {1, 0}.Rot45CW is {1/√2, 1/√2}.
+func (p Point) Rot45CW() Point {
+ // 181/256 is approximately 1/√2, or sin(π/4).
+ px, py := int64(p.X), int64(p.Y)
+ qx := (+px - py) * 181 / 256
+ qy := (+px + py) * 181 / 256
+ return Point{Fix32(qx), Fix32(qy)}
+}
+
+// Rot90CW returns the vector p rotated clockwise by 90 degrees.
+// Note that the Y-axis grows downwards, so {1, 0}.Rot90CW is {0, 1}.
+func (p Point) Rot90CW() Point {
+ return Point{-p.Y, p.X}
+}
+
+// Rot135CW returns the vector p rotated clockwise by 135 degrees.
+// Note that the Y-axis grows downwards, so {1, 0}.Rot135CW is {-1/√2, 1/√2}.
+func (p Point) Rot135CW() Point {
+ // 181/256 is approximately 1/√2, or sin(π/4).
+ px, py := int64(p.X), int64(p.Y)
+ qx := (-px - py) * 181 / 256
+ qy := (+px - py) * 181 / 256
+ return Point{Fix32(qx), Fix32(qy)}
+}
+
+// Rot45CCW returns the vector p rotated counter-clockwise by 45 degrees.
+// Note that the Y-axis grows downwards, so {1, 0}.Rot45CCW is {1/√2, -1/√2}.
+func (p Point) Rot45CCW() Point {
+ // 181/256 is approximately 1/√2, or sin(π/4).
+ px, py := int64(p.X), int64(p.Y)
+ qx := (+px + py) * 181 / 256
+ qy := (-px + py) * 181 / 256
+ return Point{Fix32(qx), Fix32(qy)}
+}
+
+// Rot90CCW returns the vector p rotated counter-clockwise by 90 degrees.
+// Note that the Y-axis grows downwards, so {1, 0}.Rot90CCW is {0, -1}.
+func (p Point) Rot90CCW() Point {
+ return Point{p.Y, -p.X}
+}
+
+// Rot135CCW returns the vector p rotated counter-clockwise by 135 degrees.
+// Note that the Y-axis grows downwards, so {1, 0}.Rot135CCW is {-1/√2, -1/√2}.
+func (p Point) Rot135CCW() Point {
+ // 181/256 is approximately 1/√2, or sin(π/4).
+ px, py := int64(p.X), int64(p.Y)
+ qx := (-px + py) * 181 / 256
+ qy := (-px - py) * 181 / 256
+ return Point{Fix32(qx), Fix32(qy)}
+}
+
+// An Adder accumulates points on a curve.
+type Adder interface {
+ // Start starts a new curve at the given point.
+ Start(a Point)
+ // Add1 adds a linear segment to the current curve.
+ Add1(b Point)
+ // Add2 adds a quadratic segment to the current curve.
+ Add2(b, c Point)
+ // Add3 adds a cubic segment to the current curve.
+ Add3(b, c, d Point)
+}
+
+// A Path is a sequence of curves, and a curve is a start point followed by a
+// sequence of linear, quadratic or cubic segments.
+type Path []Fix32
+
+// String returns a human-readable representation of a Path.
+func (p Path) String() string {
+ s := ""
+ for i := 0; i < len(p); {
+ if i != 0 {
+ s += " "
+ }
+ switch p[i] {
+ case 0:
+ s += "S0" + fmt.Sprint([]Fix32(p[i+1:i+3]))
+ i += 4
+ case 1:
+ s += "A1" + fmt.Sprint([]Fix32(p[i+1:i+3]))
+ i += 4
+ case 2:
+ s += "A2" + fmt.Sprint([]Fix32(p[i+1:i+5]))
+ i += 6
+ case 3:
+ s += "A3" + fmt.Sprint([]Fix32(p[i+1:i+7]))
+ i += 8
+ default:
+ panic("freetype/raster: bad path")
+ }
+ }
+ return s
+}
+
+// Clear cancels any previous calls to p.Start or p.AddXxx.
+func (p *Path) Clear() {
+ *p = (*p)[:0]
+}
+
+// Start starts a new curve at the given point.
+func (p *Path) Start(a Point) {
+ *p = append(*p, 0, a.X, a.Y, 0)
+}
+
+// Add1 adds a linear segment to the current curve.
+func (p *Path) Add1(b Point) {
+ *p = append(*p, 1, b.X, b.Y, 1)
+}
+
+// Add2 adds a quadratic segment to the current curve.
+func (p *Path) Add2(b, c Point) {
+ *p = append(*p, 2, b.X, b.Y, c.X, c.Y, 2)
+}
+
+// Add3 adds a cubic segment to the current curve.
+func (p *Path) Add3(b, c, d Point) {
+ *p = append(*p, 3, b.X, b.Y, c.X, c.Y, d.X, d.Y, 3)
+}
+
+// AddPath adds the Path q to p.
+func (p *Path) AddPath(q Path) {
+ *p = append(*p, q...)
+}
+
+// AddStroke adds a stroked Path.
+func (p *Path) AddStroke(q Path, width Fix32, cr Capper, jr Joiner) {
+ Stroke(p, q, width, cr, jr)
+}
+
+// firstPoint returns the first point in a non-empty Path.
+func (p Path) firstPoint() Point {
+ return Point{p[1], p[2]}
+}
+
+// lastPoint returns the last point in a non-empty Path.
+func (p Path) lastPoint() Point {
+ return Point{p[len(p)-3], p[len(p)-2]}
+}
+
+// addPathReversed adds q reversed to p.
+// For example, if q consists of a linear segment from A to B followed by a
+// quadratic segment from B to C to D, then the values of q looks like:
+// index: 01234567890123
+// value: 0AA01BB12CCDD2
+// So, when adding q backwards to p, we want to Add2(C, B) followed by Add1(A).
+func addPathReversed(p Adder, q Path) {
+ if len(q) == 0 {
+ return
+ }
+ i := len(q) - 1
+ for {
+ switch q[i] {
+ case 0:
+ return
+ case 1:
+ i -= 4
+ p.Add1(Point{q[i-2], q[i-1]})
+ case 2:
+ i -= 6
+ p.Add2(Point{q[i+2], q[i+3]}, Point{q[i-2], q[i-1]})
+ case 3:
+ i -= 8
+ p.Add3(Point{q[i+4], q[i+5]}, Point{q[i+2], q[i+3]}, Point{q[i-2], q[i-1]})
+ default:
+ panic("freetype/raster: bad path")
+ }
+ }
+}
diff --git a/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/paint.go b/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/paint.go
new file mode 100644
index 000000000..13cccc192
--- /dev/null
+++ b/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/paint.go
@@ -0,0 +1,292 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+package raster
+
+import (
+ "image"
+ "image/color"
+ "image/draw"
+ "math"
+)
+
+// A Span is a horizontal segment of pixels with constant alpha. X0 is an
+// inclusive bound and X1 is exclusive, the same as for slices. A fully
+// opaque Span has A == 1<<32 - 1.
+type Span struct {
+ Y, X0, X1 int
+ A uint32
+}
+
+// A Painter knows how to paint a batch of Spans. Rasterization may involve
+// Painting multiple batches, and done will be true for the final batch.
+// The Spans' Y values are monotonically increasing during a rasterization.
+// Paint may use all of ss as scratch space during the call.
+type Painter interface {
+ Paint(ss []Span, done bool)
+}
+
+// The PainterFunc type adapts an ordinary function to the Painter interface.
+type PainterFunc func(ss []Span, done bool)
+
+// Paint just delegates the call to f.
+func (f PainterFunc) Paint(ss []Span, done bool) { f(ss, done) }
+
+// An AlphaOverPainter is a Painter that paints Spans onto an image.Alpha
+// using the Over Porter-Duff composition operator.
+type AlphaOverPainter struct {
+ Image *image.Alpha
+}
+
+// Paint satisfies the Painter interface by painting ss onto an image.Alpha.
+func (r AlphaOverPainter) Paint(ss []Span, done bool) {
+ b := r.Image.Bounds()
+ for _, s := range ss {
+ if s.Y < b.Min.Y {
+ continue
+ }
+ if s.Y >= b.Max.Y {
+ return
+ }
+ if s.X0 < b.Min.X {
+ s.X0 = b.Min.X
+ }
+ if s.X1 > b.Max.X {
+ s.X1 = b.Max.X
+ }
+ if s.X0 >= s.X1 {
+ continue
+ }
+ base := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride - r.Image.Rect.Min.X
+ p := r.Image.Pix[base+s.X0 : base+s.X1]
+ a := int(s.A >> 24)
+ for i, c := range p {
+ v := int(c)
+ p[i] = uint8((v*255 + (255-v)*a) / 255)
+ }
+ }
+}
+
+// NewAlphaOverPainter creates a new AlphaOverPainter for the given image.
+func NewAlphaOverPainter(m *image.Alpha) AlphaOverPainter {
+ return AlphaOverPainter{m}
+}
+
+// An AlphaSrcPainter is a Painter that paints Spans onto an image.Alpha
+// using the Src Porter-Duff composition operator.
+type AlphaSrcPainter struct {
+ Image *image.Alpha
+}
+
+// Paint satisfies the Painter interface by painting ss onto an image.Alpha.
+func (r AlphaSrcPainter) Paint(ss []Span, done bool) {
+ b := r.Image.Bounds()
+ for _, s := range ss {
+ if s.Y < b.Min.Y {
+ continue
+ }
+ if s.Y >= b.Max.Y {
+ return
+ }
+ if s.X0 < b.Min.X {
+ s.X0 = b.Min.X
+ }
+ if s.X1 > b.Max.X {
+ s.X1 = b.Max.X
+ }
+ if s.X0 >= s.X1 {
+ continue
+ }
+ base := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride - r.Image.Rect.Min.X
+ p := r.Image.Pix[base+s.X0 : base+s.X1]
+ color := uint8(s.A >> 24)
+ for i := range p {
+ p[i] = color
+ }
+ }
+}
+
+// NewAlphaSrcPainter creates a new AlphaSrcPainter for the given image.
+func NewAlphaSrcPainter(m *image.Alpha) AlphaSrcPainter {
+ return AlphaSrcPainter{m}
+}
+
+type RGBAPainter struct {
+ // The image to compose onto.
+ Image *image.RGBA
+ // The Porter-Duff composition operator.
+ Op draw.Op
+ // The 16-bit color to paint the spans.
+ cr, cg, cb, ca uint32
+}
+
+// Paint satisfies the Painter interface by painting ss onto an image.RGBA.
+func (r *RGBAPainter) Paint(ss []Span, done bool) {
+ b := r.Image.Bounds()
+ for _, s := range ss {
+ if s.Y < b.Min.Y {
+ continue
+ }
+ if s.Y >= b.Max.Y {
+ return
+ }
+ if s.X0 < b.Min.X {
+ s.X0 = b.Min.X
+ }
+ if s.X1 > b.Max.X {
+ s.X1 = b.Max.X
+ }
+ if s.X0 >= s.X1 {
+ continue
+ }
+ // This code is similar to drawGlyphOver in $GOROOT/src/pkg/image/draw/draw.go.
+ ma := s.A >> 16
+ const m = 1<<16 - 1
+ i0 := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride + (s.X0-r.Image.Rect.Min.X)*4
+ i1 := i0 + (s.X1-s.X0)*4
+ if r.Op == draw.Over {
+ for i := i0; i < i1; i += 4 {
+ dr := uint32(r.Image.Pix[i+0])
+ dg := uint32(r.Image.Pix[i+1])
+ db := uint32(r.Image.Pix[i+2])
+ da := uint32(r.Image.Pix[i+3])
+ a := (m - (r.ca * ma / m)) * 0x101
+ r.Image.Pix[i+0] = uint8((dr*a + r.cr*ma) / m >> 8)
+ r.Image.Pix[i+1] = uint8((dg*a + r.cg*ma) / m >> 8)
+ r.Image.Pix[i+2] = uint8((db*a + r.cb*ma) / m >> 8)
+ r.Image.Pix[i+3] = uint8((da*a + r.ca*ma) / m >> 8)
+ }
+ } else {
+ for i := i0; i < i1; i += 4 {
+ r.Image.Pix[i+0] = uint8(r.cr * ma / m >> 8)
+ r.Image.Pix[i+1] = uint8(r.cg * ma / m >> 8)
+ r.Image.Pix[i+2] = uint8(r.cb * ma / m >> 8)
+ r.Image.Pix[i+3] = uint8(r.ca * ma / m >> 8)
+ }
+ }
+ }
+}
+
+// SetColor sets the color to paint the spans.
+func (r *RGBAPainter) SetColor(c color.Color) {
+ r.cr, r.cg, r.cb, r.ca = c.RGBA()
+}
+
+// NewRGBAPainter creates a new RGBAPainter for the given image.
+func NewRGBAPainter(m *image.RGBA) *RGBAPainter {
+ return &RGBAPainter{Image: m}
+}
+
+// A MonochromePainter wraps another Painter, quantizing each Span's alpha to
+// be either fully opaque or fully transparent.
+type MonochromePainter struct {
+ Painter Painter
+ y, x0, x1 int
+}
+
+// Paint delegates to the wrapped Painter after quantizing each Span's alpha
+// value and merging adjacent fully opaque Spans.
+func (m *MonochromePainter) Paint(ss []Span, done bool) {
+ // We compact the ss slice, discarding any Spans whose alpha quantizes to zero.
+ j := 0
+ for _, s := range ss {
+ if s.A >= 1<<31 {
+ if m.y == s.Y && m.x1 == s.X0 {
+ m.x1 = s.X1
+ } else {
+ ss[j] = Span{m.y, m.x0, m.x1, 1<<32 - 1}
+ j++
+ m.y, m.x0, m.x1 = s.Y, s.X0, s.X1
+ }
+ }
+ }
+ if done {
+ // Flush the accumulated Span.
+ finalSpan := Span{m.y, m.x0, m.x1, 1<<32 - 1}
+ if j < len(ss) {
+ ss[j] = finalSpan
+ j++
+ m.Painter.Paint(ss[:j], true)
+ } else if j == len(ss) {
+ m.Painter.Paint(ss, false)
+ if cap(ss) > 0 {
+ ss = ss[:1]
+ } else {
+ ss = make([]Span, 1)
+ }
+ ss[0] = finalSpan
+ m.Painter.Paint(ss, true)
+ } else {
+ panic("unreachable")
+ }
+ // Reset the accumulator, so that this Painter can be re-used.
+ m.y, m.x0, m.x1 = 0, 0, 0
+ } else {
+ m.Painter.Paint(ss[:j], false)
+ }
+}
+
+// NewMonochromePainter creates a new MonochromePainter that wraps the given
+// Painter.
+func NewMonochromePainter(p Painter) *MonochromePainter {
+ return &MonochromePainter{Painter: p}
+}
+
+// A GammaCorrectionPainter wraps another Painter, performing gamma-correction
+// on each Span's alpha value.
+type GammaCorrectionPainter struct {
+ // The wrapped Painter.
+ Painter Painter
+ // Precomputed alpha values for linear interpolation, with fully opaque == 1<<16-1.
+ a [256]uint16
+ // Whether gamma correction is a no-op.
+ gammaIsOne bool
+}
+
+// Paint delegates to the wrapped Painter after performing gamma-correction
+// on each Span.
+func (g *GammaCorrectionPainter) Paint(ss []Span, done bool) {
+ if !g.gammaIsOne {
+ const (
+ M = 0x1010101 // 255*M == 1<<32-1
+ N = 0x8080 // N = M>>9, and N < 1<<16-1
+ )
+ for i, s := range ss {
+ if s.A == 0 || s.A == 1<<32-1 {
+ continue
+ }
+ p, q := s.A/M, (s.A%M)>>9
+ // The resultant alpha is a linear interpolation of g.a[p] and g.a[p+1].
+ a := uint32(g.a[p])*(N-q) + uint32(g.a[p+1])*q
+ a = (a + N/2) / N
+ // Convert the alpha from 16-bit (which is g.a's range) to 32-bit.
+ a |= a << 16
+ ss[i].A = a
+ }
+ }
+ g.Painter.Paint(ss, done)
+}
+
+// SetGamma sets the gamma value.
+func (g *GammaCorrectionPainter) SetGamma(gamma float64) {
+ if gamma == 1.0 {
+ g.gammaIsOne = true
+ return
+ }
+ g.gammaIsOne = false
+ for i := 0; i < 256; i++ {
+ a := float64(i) / 0xff
+ a = math.Pow(a, gamma)
+ g.a[i] = uint16(0xffff * a)
+ }
+}
+
+// NewGammaCorrectionPainter creates a new GammaCorrectionPainter that wraps
+// the given Painter.
+func NewGammaCorrectionPainter(p Painter, gamma float64) *GammaCorrectionPainter {
+ g := &GammaCorrectionPainter{Painter: p}
+ g.SetGamma(gamma)
+ return g
+}
diff --git a/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go b/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go
new file mode 100644
index 000000000..45af7eaa2
--- /dev/null
+++ b/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/raster.go
@@ -0,0 +1,579 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+// The raster package provides an anti-aliasing 2-D rasterizer.
+//
+// It is part of the larger Freetype-Go suite of font-related packages,
+// but the raster package is not specific to font rasterization, and can
+// be used standalone without any other Freetype-Go package.
+//
+// Rasterization is done by the same area/coverage accumulation algorithm
+// as the Freetype "smooth" module, and the Anti-Grain Geometry library.
+// A description of the area/coverage algorithm is at
+// http://projects.tuxee.net/cl-vectors/section-the-cl-aa-algorithm
+package raster
+
+import (
+ "strconv"
+)
+
+// A cell is part of a linked list (for a given yi co-ordinate) of accumulated
+// area/coverage for the pixel at (xi, yi).
+type cell struct {
+ xi int
+ area, cover int
+ next int
+}
+
+type Rasterizer struct {
+ // If false, the default behavior is to use the even-odd winding fill
+ // rule during Rasterize.
+ UseNonZeroWinding bool
+ // An offset (in pixels) to the painted spans.
+ Dx, Dy int
+
+ // The width of the Rasterizer. The height is implicit in len(cellIndex).
+ width int
+ // splitScaleN is the scaling factor used to determine how many times
+ // to decompose a quadratic or cubic segment into a linear approximation.
+ splitScale2, splitScale3 int
+
+ // The current pen position.
+ a Point
+ // The current cell and its area/coverage being accumulated.
+ xi, yi int
+ area, cover int
+
+ // Saved cells.
+ cell []cell
+ // Linked list of cells, one per row.
+ cellIndex []int
+ // Buffers.
+ cellBuf [256]cell
+ cellIndexBuf [64]int
+ spanBuf [64]Span
+}
+
+// findCell returns the index in r.cell for the cell corresponding to
+// (r.xi, r.yi). The cell is created if necessary.
+func (r *Rasterizer) findCell() int {
+ if r.yi < 0 || r.yi >= len(r.cellIndex) {
+ return -1
+ }
+ xi := r.xi
+ if xi < 0 {
+ xi = -1
+ } else if xi > r.width {
+ xi = r.width
+ }
+ i, prev := r.cellIndex[r.yi], -1
+ for i != -1 && r.cell[i].xi <= xi {
+ if r.cell[i].xi == xi {
+ return i
+ }
+ i, prev = r.cell[i].next, i
+ }
+ c := len(r.cell)
+ if c == cap(r.cell) {
+ buf := make([]cell, c, 4*c)
+ copy(buf, r.cell)
+ r.cell = buf[0 : c+1]
+ } else {
+ r.cell = r.cell[0 : c+1]
+ }
+ r.cell[c] = cell{xi, 0, 0, i}
+ if prev == -1 {
+ r.cellIndex[r.yi] = c
+ } else {
+ r.cell[prev].next = c
+ }
+ return c
+}
+
+// saveCell saves any accumulated r.area/r.cover for (r.xi, r.yi).
+func (r *Rasterizer) saveCell() {
+ if r.area != 0 || r.cover != 0 {
+ i := r.findCell()
+ if i != -1 {
+ r.cell[i].area += r.area
+ r.cell[i].cover += r.cover
+ }
+ r.area = 0
+ r.cover = 0
+ }
+}
+
+// setCell sets the (xi, yi) cell that r is accumulating area/coverage for.
+func (r *Rasterizer) setCell(xi, yi int) {
+ if r.xi != xi || r.yi != yi {
+ r.saveCell()
+ r.xi, r.yi = xi, yi
+ }
+}
+
+// scan accumulates area/coverage for the yi'th scanline, going from
+// x0 to x1 in the horizontal direction (in 24.8 fixed point co-ordinates)
+// and from y0f to y1f fractional vertical units within that scanline.
+func (r *Rasterizer) scan(yi int, x0, y0f, x1, y1f Fix32) {
+ // Break the 24.8 fixed point X co-ordinates into integral and fractional parts.
+ x0i := int(x0) / 256
+ x0f := x0 - Fix32(256*x0i)
+ x1i := int(x1) / 256
+ x1f := x1 - Fix32(256*x1i)
+
+ // A perfectly horizontal scan.
+ if y0f == y1f {
+ r.setCell(x1i, yi)
+ return
+ }
+ dx, dy := x1-x0, y1f-y0f
+ // A single cell scan.
+ if x0i == x1i {
+ r.area += int((x0f + x1f) * dy)
+ r.cover += int(dy)
+ return
+ }
+ // There are at least two cells. Apart from the first and last cells,
+ // all intermediate cells go through the full width of the cell,
+ // or 256 units in 24.8 fixed point format.
+ var (
+ p, q, edge0, edge1 Fix32
+ xiDelta int
+ )
+ if dx > 0 {
+ p, q = (256-x0f)*dy, dx
+ edge0, edge1, xiDelta = 0, 256, 1
+ } else {
+ p, q = x0f*dy, -dx
+ edge0, edge1, xiDelta = 256, 0, -1
+ }
+ yDelta, yRem := p/q, p%q
+ if yRem < 0 {
+ yDelta -= 1
+ yRem += q
+ }
+ // Do the first cell.
+ xi, y := x0i, y0f
+ r.area += int((x0f + edge1) * yDelta)
+ r.cover += int(yDelta)
+ xi, y = xi+xiDelta, y+yDelta
+ r.setCell(xi, yi)
+ if xi != x1i {
+ // Do all the intermediate cells.
+ p = 256 * (y1f - y + yDelta)
+ fullDelta, fullRem := p/q, p%q
+ if fullRem < 0 {
+ fullDelta -= 1
+ fullRem += q
+ }
+ yRem -= q
+ for xi != x1i {
+ yDelta = fullDelta
+ yRem += fullRem
+ if yRem >= 0 {
+ yDelta += 1
+ yRem -= q
+ }
+ r.area += int(256 * yDelta)
+ r.cover += int(yDelta)
+ xi, y = xi+xiDelta, y+yDelta
+ r.setCell(xi, yi)
+ }
+ }
+ // Do the last cell.
+ yDelta = y1f - y
+ r.area += int((edge0 + x1f) * yDelta)
+ r.cover += int(yDelta)
+}
+
+// Start starts a new curve at the given point.
+func (r *Rasterizer) Start(a Point) {
+ r.setCell(int(a.X/256), int(a.Y/256))
+ r.a = a
+}
+
+// Add1 adds a linear segment to the current curve.
+func (r *Rasterizer) Add1(b Point) {
+ x0, y0 := r.a.X, r.a.Y
+ x1, y1 := b.X, b.Y
+ dx, dy := x1-x0, y1-y0
+ // Break the 24.8 fixed point Y co-ordinates into integral and fractional parts.
+ y0i := int(y0) / 256
+ y0f := y0 - Fix32(256*y0i)
+ y1i := int(y1) / 256
+ y1f := y1 - Fix32(256*y1i)
+
+ if y0i == y1i {
+ // There is only one scanline.
+ r.scan(y0i, x0, y0f, x1, y1f)
+
+ } else if dx == 0 {
+ // This is a vertical line segment. We avoid calling r.scan and instead
+ // manipulate r.area and r.cover directly.
+ var (
+ edge0, edge1 Fix32
+ yiDelta int
+ )
+ if dy > 0 {
+ edge0, edge1, yiDelta = 0, 256, 1
+ } else {
+ edge0, edge1, yiDelta = 256, 0, -1
+ }
+ x0i, yi := int(x0)/256, y0i
+ x0fTimes2 := (int(x0) - (256 * x0i)) * 2
+ // Do the first pixel.
+ dcover := int(edge1 - y0f)
+ darea := int(x0fTimes2 * dcover)
+ r.area += darea
+ r.cover += dcover
+ yi += yiDelta
+ r.setCell(x0i, yi)
+ // Do all the intermediate pixels.
+ dcover = int(edge1 - edge0)
+ darea = int(x0fTimes2 * dcover)
+ for yi != y1i {
+ r.area += darea
+ r.cover += dcover
+ yi += yiDelta
+ r.setCell(x0i, yi)
+ }
+ // Do the last pixel.
+ dcover = int(y1f - edge0)
+ darea = int(x0fTimes2 * dcover)
+ r.area += darea
+ r.cover += dcover
+
+ } else {
+ // There are at least two scanlines. Apart from the first and last scanlines,
+ // all intermediate scanlines go through the full height of the row, or 256
+ // units in 24.8 fixed point format.
+ var (
+ p, q, edge0, edge1 Fix32
+ yiDelta int
+ )
+ if dy > 0 {
+ p, q = (256-y0f)*dx, dy
+ edge0, edge1, yiDelta = 0, 256, 1
+ } else {
+ p, q = y0f*dx, -dy
+ edge0, edge1, yiDelta = 256, 0, -1
+ }
+ xDelta, xRem := p/q, p%q
+ if xRem < 0 {
+ xDelta -= 1
+ xRem += q
+ }
+ // Do the first scanline.
+ x, yi := x0, y0i
+ r.scan(yi, x, y0f, x+xDelta, edge1)
+ x, yi = x+xDelta, yi+yiDelta
+ r.setCell(int(x)/256, yi)
+ if yi != y1i {
+ // Do all the intermediate scanlines.
+ p = 256 * dx
+ fullDelta, fullRem := p/q, p%q
+ if fullRem < 0 {
+ fullDelta -= 1
+ fullRem += q
+ }
+ xRem -= q
+ for yi != y1i {
+ xDelta = fullDelta
+ xRem += fullRem
+ if xRem >= 0 {
+ xDelta += 1
+ xRem -= q
+ }
+ r.scan(yi, x, edge0, x+xDelta, edge1)
+ x, yi = x+xDelta, yi+yiDelta
+ r.setCell(int(x)/256, yi)
+ }
+ }
+ // Do the last scanline.
+ r.scan(yi, x, edge0, x1, y1f)
+ }
+ // The next lineTo starts from b.
+ r.a = b
+}
+
+// Add2 adds a quadratic segment to the current curve.
+func (r *Rasterizer) Add2(b, c Point) {
+ // Calculate nSplit (the number of recursive decompositions) based on how `curvy' it is.
+ // Specifically, how much the middle point b deviates from (a+c)/2.
+ dev := maxAbs(r.a.X-2*b.X+c.X, r.a.Y-2*b.Y+c.Y) / Fix32(r.splitScale2)
+ nsplit := 0
+ for dev > 0 {
+ dev /= 4
+ nsplit++
+ }
+ // dev is 32-bit, and nsplit++ every time we shift off 2 bits, so maxNsplit is 16.
+ const maxNsplit = 16
+ if nsplit > maxNsplit {
+ panic("freetype/raster: Add2 nsplit too large: " + strconv.Itoa(nsplit))
+ }
+ // Recursively decompose the curve nSplit levels deep.
+ var (
+ pStack [2*maxNsplit + 3]Point
+ sStack [maxNsplit + 1]int
+ i int
+ )
+ sStack[0] = nsplit
+ pStack[0] = c
+ pStack[1] = b
+ pStack[2] = r.a
+ for i >= 0 {
+ s := sStack[i]
+ p := pStack[2*i:]
+ if s > 0 {
+ // Split the quadratic curve p[:3] into an equivalent set of two shorter curves:
+ // p[:3] and p[2:5]. The new p[4] is the old p[2], and p[0] is unchanged.
+ mx := p[1].X
+ p[4].X = p[2].X
+ p[3].X = (p[4].X + mx) / 2
+ p[1].X = (p[0].X + mx) / 2
+ p[2].X = (p[1].X + p[3].X) / 2
+ my := p[1].Y
+ p[4].Y = p[2].Y
+ p[3].Y = (p[4].Y + my) / 2
+ p[1].Y = (p[0].Y + my) / 2
+ p[2].Y = (p[1].Y + p[3].Y) / 2
+ // The two shorter curves have one less split to do.
+ sStack[i] = s - 1
+ sStack[i+1] = s - 1
+ i++
+ } else {
+ // Replace the level-0 quadratic with a two-linear-piece approximation.
+ midx := (p[0].X + 2*p[1].X + p[2].X) / 4
+ midy := (p[0].Y + 2*p[1].Y + p[2].Y) / 4
+ r.Add1(Point{midx, midy})
+ r.Add1(p[0])
+ i--
+ }
+ }
+}
+
+// Add3 adds a cubic segment to the current curve.
+func (r *Rasterizer) Add3(b, c, d Point) {
+ // Calculate nSplit (the number of recursive decompositions) based on how `curvy' it is.
+ dev2 := maxAbs(r.a.X-3*(b.X+c.X)+d.X, r.a.Y-3*(b.Y+c.Y)+d.Y) / Fix32(r.splitScale2)
+ dev3 := maxAbs(r.a.X-2*b.X+d.X, r.a.Y-2*b.Y+d.Y) / Fix32(r.splitScale3)
+ nsplit := 0
+ for dev2 > 0 || dev3 > 0 {
+ dev2 /= 8
+ dev3 /= 4
+ nsplit++
+ }
+ // devN is 32-bit, and nsplit++ every time we shift off 2 bits, so maxNsplit is 16.
+ const maxNsplit = 16
+ if nsplit > maxNsplit {
+ panic("freetype/raster: Add3 nsplit too large: " + strconv.Itoa(nsplit))
+ }
+ // Recursively decompose the curve nSplit levels deep.
+ var (
+ pStack [3*maxNsplit + 4]Point
+ sStack [maxNsplit + 1]int
+ i int
+ )
+ sStack[0] = nsplit
+ pStack[0] = d
+ pStack[1] = c
+ pStack[2] = b
+ pStack[3] = r.a
+ for i >= 0 {
+ s := sStack[i]
+ p := pStack[3*i:]
+ if s > 0 {
+ // Split the cubic curve p[:4] into an equivalent set of two shorter curves:
+ // p[:4] and p[3:7]. The new p[6] is the old p[3], and p[0] is unchanged.
+ m01x := (p[0].X + p[1].X) / 2
+ m12x := (p[1].X + p[2].X) / 2
+ m23x := (p[2].X + p[3].X) / 2
+ p[6].X = p[3].X
+ p[5].X = m23x
+ p[1].X = m01x
+ p[2].X = (m01x + m12x) / 2
+ p[4].X = (m12x + m23x) / 2
+ p[3].X = (p[2].X + p[4].X) / 2
+ m01y := (p[0].Y + p[1].Y) / 2
+ m12y := (p[1].Y + p[2].Y) / 2
+ m23y := (p[2].Y + p[3].Y) / 2
+ p[6].Y = p[3].Y
+ p[5].Y = m23y
+ p[1].Y = m01y
+ p[2].Y = (m01y + m12y) / 2
+ p[4].Y = (m12y + m23y) / 2
+ p[3].Y = (p[2].Y + p[4].Y) / 2
+ // The two shorter curves have one less split to do.
+ sStack[i] = s - 1
+ sStack[i+1] = s - 1
+ i++
+ } else {
+ // Replace the level-0 cubic with a two-linear-piece approximation.
+ midx := (p[0].X + 3*(p[1].X+p[2].X) + p[3].X) / 8
+ midy := (p[0].Y + 3*(p[1].Y+p[2].Y) + p[3].Y) / 8
+ r.Add1(Point{midx, midy})
+ r.Add1(p[0])
+ i--
+ }
+ }
+}
+
+// AddPath adds the given Path.
+func (r *Rasterizer) AddPath(p Path) {
+ for i := 0; i < len(p); {
+ switch p[i] {
+ case 0:
+ r.Start(Point{p[i+1], p[i+2]})
+ i += 4
+ case 1:
+ r.Add1(Point{p[i+1], p[i+2]})
+ i += 4
+ case 2:
+ r.Add2(Point{p[i+1], p[i+2]}, Point{p[i+3], p[i+4]})
+ i += 6
+ case 3:
+ r.Add3(Point{p[i+1], p[i+2]}, Point{p[i+3], p[i+4]}, Point{p[i+5], p[i+6]})
+ i += 8
+ default:
+ panic("freetype/raster: bad path")
+ }
+ }
+}
+
+// AddStroke adds a stroked Path.
+func (r *Rasterizer) AddStroke(q Path, width Fix32, cr Capper, jr Joiner) {
+ Stroke(r, q, width, cr, jr)
+}
+
+// Converts an area value to a uint32 alpha value. A completely filled pixel
+// corresponds to an area of 256*256*2, and an alpha of 1<<32-1. The
+// conversion of area values greater than this depends on the winding rule:
+// even-odd or non-zero.
+func (r *Rasterizer) areaToAlpha(area int) uint32 {
+ // The C Freetype implementation (version 2.3.12) does "alpha := area>>1" without
+ // the +1. Round-to-nearest gives a more symmetric result than round-down.
+ // The C implementation also returns 8-bit alpha, not 32-bit alpha.
+ a := (area + 1) >> 1
+ if a < 0 {
+ a = -a
+ }
+ alpha := uint32(a)
+ if r.UseNonZeroWinding {
+ if alpha > 0xffff {
+ alpha = 0xffff
+ }
+ } else {
+ alpha &= 0x1ffff
+ if alpha > 0x10000 {
+ alpha = 0x20000 - alpha
+ } else if alpha == 0x10000 {
+ alpha = 0x0ffff
+ }
+ }
+ alpha |= alpha << 16
+ return alpha
+}
+
+// Rasterize converts r's accumulated curves into Spans for p. The Spans
+// passed to p are non-overlapping, and sorted by Y and then X. They all
+// have non-zero width (and 0 <= X0 < X1 <= r.width) and non-zero A, except
+// for the final Span, which has Y, X0, X1 and A all equal to zero.
+func (r *Rasterizer) Rasterize(p Painter) {
+ r.saveCell()
+ s := 0
+ for yi := 0; yi < len(r.cellIndex); yi++ {
+ xi, cover := 0, 0
+ for c := r.cellIndex[yi]; c != -1; c = r.cell[c].next {
+ if cover != 0 && r.cell[c].xi > xi {
+ alpha := r.areaToAlpha(cover * 256 * 2)
+ if alpha != 0 {
+ xi0, xi1 := xi, r.cell[c].xi
+ if xi0 < 0 {
+ xi0 = 0
+ }
+ if xi1 >= r.width {
+ xi1 = r.width
+ }
+ if xi0 < xi1 {
+ r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
+ s++
+ }
+ }
+ }
+ cover += r.cell[c].cover
+ alpha := r.areaToAlpha(cover*256*2 - r.cell[c].area)
+ xi = r.cell[c].xi + 1
+ if alpha != 0 {
+ xi0, xi1 := r.cell[c].xi, xi
+ if xi0 < 0 {
+ xi0 = 0
+ }
+ if xi1 >= r.width {
+ xi1 = r.width
+ }
+ if xi0 < xi1 {
+ r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
+ s++
+ }
+ }
+ if s > len(r.spanBuf)-2 {
+ p.Paint(r.spanBuf[:s], false)
+ s = 0
+ }
+ }
+ }
+ p.Paint(r.spanBuf[:s], true)
+}
+
+// Clear cancels any previous calls to r.Start or r.AddXxx.
+func (r *Rasterizer) Clear() {
+ r.a = Point{}
+ r.xi = 0
+ r.yi = 0
+ r.area = 0
+ r.cover = 0
+ r.cell = r.cell[:0]
+ for i := 0; i < len(r.cellIndex); i++ {
+ r.cellIndex[i] = -1
+ }
+}
+
+// SetBounds sets the maximum width and height of the rasterized image and
+// calls Clear. The width and height are in pixels, not Fix32 units.
+func (r *Rasterizer) SetBounds(width, height int) {
+ if width < 0 {
+ width = 0
+ }
+ if height < 0 {
+ height = 0
+ }
+ // Use the same ssN heuristic as the C Freetype implementation.
+ // The C implementation uses the values 32, 16, but those are in
+ // 26.6 fixed point units, and we use 24.8 fixed point everywhere.
+ ss2, ss3 := 128, 64
+ if width > 24 || height > 24 {
+ ss2, ss3 = 2*ss2, 2*ss3
+ if width > 120 || height > 120 {
+ ss2, ss3 = 2*ss2, 2*ss3
+ }
+ }
+ r.width = width
+ r.splitScale2 = ss2
+ r.splitScale3 = ss3
+ r.cell = r.cellBuf[:0]
+ if height > len(r.cellIndexBuf) {
+ r.cellIndex = make([]int, height)
+ } else {
+ r.cellIndex = r.cellIndexBuf[:height]
+ }
+ r.Clear()
+}
+
+// NewRasterizer creates a new Rasterizer with the given bounds.
+func NewRasterizer(width, height int) *Rasterizer {
+ r := new(Rasterizer)
+ r.SetBounds(width, height)
+ return r
+}
diff --git a/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/stroke.go b/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/stroke.go
new file mode 100644
index 000000000..d49b1cee9
--- /dev/null
+++ b/Godeps/_workspace/src/code.google.com/p/freetype-go/freetype/raster/stroke.go
@@ -0,0 +1,466 @@
+// Copyright 2010 The Freetype-Go Authors. All rights reserved.
+// Use of this source code is governed by your choice of either the
+// FreeType License or the GNU General Public License version 2 (or
+// any later version), both of which can be found in the LICENSE file.
+
+package raster
+
+// Two points are considered practically equal if the square of the distance
+// between them is less than one quarter (i.e. 16384 / 65536 in Fix64).
+const epsilon = 16384
+
+// A Capper signifies how to begin or end a stroked path.
+type Capper interface {
+ // Cap adds a cap to p given a pivot point and the normal vector of a
+ // terminal segment. The normal's length is half of the stroke width.
+ Cap(p Adder, halfWidth Fix32, pivot, n1 Point)
+}
+
+// The CapperFunc type adapts an ordinary function to be a Capper.
+type CapperFunc func(Adder, Fix32, Point, Point)
+
+func (f CapperFunc) Cap(p Adder, halfWidth Fix32, pivot, n1 Point) {
+ f(p, halfWidth, pivot, n1)
+}
+
+// A Joiner signifies how to join interior nodes of a stroked path.
+type Joiner interface {
+ // Join adds a join to the two sides of a stroked path given a pivot
+ // point and the normal vectors of the trailing and leading segments.
+ // Both normals have length equal to half of the stroke width.
+ Join(lhs, rhs Adder, halfWidth Fix32, pivot, n0, n1 Point)
+}
+
+// The JoinerFunc type adapts an ordinary function to be a Joiner.
+type JoinerFunc func(lhs, rhs Adder, halfWidth Fix32, pivot, n0, n1 Point)
+
+func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth Fix32, pivot, n0, n1 Point) {
+ f(lhs, rhs, halfWidth, pivot, n0, n1)
+}
+
+// RoundCapper adds round caps to a stroked path.
+var RoundCapper Capper = CapperFunc(roundCapper)
+
+func roundCapper(p Adder, halfWidth Fix32, pivot, n1 Point) {
+ // The cubic Bézier approximation to a circle involves the magic number
+ // (√2 - 1) * 4/3, which is approximately 141/256.
+ const k = 141
+ e := n1.Rot90CCW()
+ side := pivot.Add(e)
+ start, end := pivot.Sub(n1), pivot.Add(n1)
+ d, e := n1.Mul(k), e.Mul(k)
+ p.Add3(start.Add(e), side.Sub(d), side)
+ p.Add3(side.Add(d), end.Add(e), end)
+}
+
+// ButtCapper adds butt caps to a stroked path.
+var ButtCapper Capper = CapperFunc(buttCapper)
+
+func buttCapper(p Adder, halfWidth Fix32, pivot, n1 Point) {
+ p.Add1(pivot.Add(n1))
+}
+
+// SquareCapper adds square caps to a stroked path.
+var SquareCapper Capper = CapperFunc(squareCapper)
+
+func squareCapper(p Adder, halfWidth Fix32, pivot, n1 Point) {
+ e := n1.Rot90CCW()
+ side := pivot.Add(e)
+ p.Add1(side.Sub(n1))
+ p.Add1(side.Add(n1))
+ p.Add1(pivot.Add(n1))
+}
+
+// RoundJoiner adds round joins to a stroked path.
+var RoundJoiner Joiner = JoinerFunc(roundJoiner)
+
+func roundJoiner(lhs, rhs Adder, haflWidth Fix32, pivot, n0, n1 Point) {
+ dot := n0.Rot90CW().Dot(n1)
+ if dot >= 0 {
+ addArc(lhs, pivot, n0, n1)
+ rhs.Add1(pivot.Sub(n1))
+ } else {
+ lhs.Add1(pivot.Add(n1))
+ addArc(rhs, pivot, n0.Neg(), n1.Neg())
+ }
+}
+
+// BevelJoiner adds bevel joins to a stroked path.
+var BevelJoiner Joiner = JoinerFunc(bevelJoiner)
+
+func bevelJoiner(lhs, rhs Adder, haflWidth Fix32, pivot, n0, n1 Point) {
+ lhs.Add1(pivot.Add(n1))
+ rhs.Add1(pivot.Sub(n1))
+}
+
+// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
+// the two possible arcs is taken, i.e. the one spanning <= 180 degrees.
+// The two vectors n0 and n1 must be of equal length.
+func addArc(p Adder, pivot, n0, n1 Point) {
+ // r2 is the square of the length of n0.
+ r2 := n0.Dot(n0)
+ if r2 < epsilon {
+ // The arc radius is so small that we collapse to a straight line.
+ p.Add1(pivot.Add(n1))
+ return
+ }
+ // We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
+ // a final quadratic segment from s to n1. Each 45-degree segment has control
+ // points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled, rotated and
+ // translated. tan(π/8) is approximately 106/256.
+ const tpo8 = 106
+ var s Point
+ // We determine which octant the angle between n0 and n1 is in via three dot products.
+ // m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135 degrees.
+ m0 := n0.Rot45CW()
+ m1 := n0.Rot90CW()
+ m2 := m0.Rot90CW()
+ if m1.Dot(n1) >= 0 {
+ if n0.Dot(n1) >= 0 {
+ if m2.Dot(n1) <= 0 {
+ // n1 is between 0 and 45 degrees clockwise of n0.
+ s = n0
+ } else {
+ // n1 is between 45 and 90 degrees clockwise of n0.
+ p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
+ s = m0
+ }
+ } else {
+ pm1, n0t := pivot.Add(m1), n0.Mul(tpo8)
+ p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
+ p.Add2(pm1.Add(n0t), pm1)
+ if m0.Dot(n1) >= 0 {
+ // n1 is between 90 and 135 degrees clockwise of n0.
+ s = m1
+ } else {
+ // n1 is between 135 and 180 degrees clockwise of n0.
+ p.Add2(pm1.Sub(n0t), pivot.Add(m2))
+ s = m2
+ }
+ }
+ } else {
+ if n0.Dot(n1) >= 0 {
+ if m0.Dot(n1) >= 0 {
+ // n1 is between 0 and 45 degrees counter-clockwise of n0.
+ s = n0
+ } else {
+ // n1 is between 45 and 90 degrees counter-clockwise of n0.
+ p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
+ s = m2.Neg()
+ }
+ } else {
+ pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8)
+ p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
+ p.Add2(pm1.Add(n0t), pm1)
+ if m2.Dot(n1) <= 0 {
+ // n1 is between 90 and 135 degrees counter-clockwise of n0.
+ s = m1.Neg()
+ } else {
+ // n1 is between 135 and 180 degrees counter-clockwise of n0.
+ p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
+ s = m0.Neg()
+ }
+ }
+ }
+ // The final quadratic segment has two endpoints s and n1 and the middle
+ // control point is a multiple of s.Add(n1), i.e. it is on the angle bisector
+ // of those two points. The multiple ranges between 128/256 and 150/256 as
+ // the angle between s and n1 ranges between 0 and 45 degrees.
+ // When the angle is 0 degrees (i.e. s and n1 are coincident) then s.Add(n1)
+ // is twice s and so the middle control point of the degenerate quadratic
+ // segment should be half s.Add(n1), and half = 128/256.
+ // When the angle is 45 degrees then 150/256 is the ratio of the lengths of
+ // the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
+ // d is the normalized dot product between s and n1. Since the angle ranges
+ // between 0 and 45 degrees then d ranges between 256/256 and 181/256.
+ d := 256 * s.Dot(n1) / r2
+ multiple := Fix32(150 - 22*(d-181)/(256-181))
+ p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
+}
+
+// midpoint returns the midpoint of two Points.
+func midpoint(a, b Point) Point {
+ return Point{(a.X + b.X) / 2, (a.Y + b.Y) / 2}
+}
+
+// angleGreaterThan45 returns whether the angle between two vectors is more
+// than 45 degrees.
+func angleGreaterThan45(v0, v1 Point) bool {
+ v := v0.Rot45CCW()
+ return v.Dot(v1) < 0 || v.Rot90CW().Dot(v1) < 0
+}
+
+// interpolate returns the point (1-t)*a + t*b.
+func interpolate(a, b Point, t Fix64) Point {
+ s := 65536 - t
+ x := s*Fix64(a.X) + t*Fix64(b.X)
+ y := s*Fix64(a.Y) + t*Fix64(b.Y)
+ return Point{Fix32(x >> 16), Fix32(y >> 16)}
+}
+
+// curviest2 returns the value of t for which the quadratic parametric curve
+// (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature.
+//
+// The curvature of the parametric curve f(t) = (x(t), y(t)) is
+// |x′y″-y′x″| / (x′²+y′²)^(3/2).
+//
+// Let d = b-a and e = c-2*b+a, so that f′(t) = 2*d+2*e*t and f″(t) = 2*e.
+// The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex),
+// which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t.
+//
+// Thus, curvature is extreme where the denominator is extreme, i.e. where
+// (x′²+y′²) is extreme. The first order condition is that
+// 2*x′*x″+2*y′*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0.
+// Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey).
+func curviest2(a, b, c Point) Fix64 {
+ dx := int64(b.X - a.X)
+ dy := int64(b.Y - a.Y)
+ ex := int64(c.X - 2*b.X + a.X)
+ ey := int64(c.Y - 2*b.Y + a.Y)
+ if ex == 0 && ey == 0 {
+ return 32768
+ }
+ return Fix64(-65536 * (dx*ex + dy*ey) / (ex*ex + ey*ey))
+}
+
+// A stroker holds state for stroking a path.
+type stroker struct {
+ // p is the destination that records the stroked path.
+ p Adder
+ // u is the half-width of the stroke.
+ u Fix32
+ // cr and jr specify how to end and connect path segments.
+ cr Capper
+ jr Joiner
+ // r is the reverse path. Stroking a path involves constructing two
+ // parallel paths 2*u apart. The first path is added immediately to p,
+ // the second path is accumulated in r and eventually added in reverse.
+ r Path
+ // a is the most recent segment point. anorm is the segment normal of
+ // length u at that point.
+ a, anorm Point
+}
+
+// addNonCurvy2 adds a quadratic segment to the stroker, where the segment
+// defined by (k.a, b, c) achieves maximum curvature at either k.a or c.
+func (k *stroker) addNonCurvy2(b, c Point) {
+ // We repeatedly divide the segment at its middle until it is straight
+ // enough to approximate the stroke by just translating the control points.
+ // ds and ps are stacks of depths and points. t is the top of the stack.
+ const maxDepth = 5
+ var (
+ ds [maxDepth + 1]int
+ ps [2*maxDepth + 3]Point
+ t int
+ )
+ // Initially the ps stack has one quadratic segment of depth zero.
+ ds[0] = 0
+ ps[2] = k.a
+ ps[1] = b
+ ps[0] = c
+ anorm := k.anorm
+ var cnorm Point
+
+ for {
+ depth := ds[t]
+ a := ps[2*t+2]
+ b := ps[2*t+1]
+ c := ps[2*t+0]
+ ab := b.Sub(a)
+ bc := c.Sub(b)
+ abIsSmall := ab.Dot(ab) < Fix64(1<<16)
+ bcIsSmall := bc.Dot(bc) < Fix64(1<<16)
+ if abIsSmall && bcIsSmall {
+ // Approximate the segment by a circular arc.
+ cnorm = bc.Norm(k.u).Rot90CCW()
+ mac := midpoint(a, c)
+ addArc(k.p, mac, anorm, cnorm)
+ addArc(&k.r, mac, anorm.Neg(), cnorm.Neg())
+ } else if depth < maxDepth && angleGreaterThan45(ab, bc) {
+ // Divide the segment in two and push both halves on the stack.
+ mab := midpoint(a, b)
+ mbc := midpoint(b, c)
+ t++
+ ds[t+0] = depth + 1
+ ds[t-1] = depth + 1
+ ps[2*t+2] = a
+ ps[2*t+1] = mab
+ ps[2*t+0] = midpoint(mab, mbc)
+ ps[2*t-1] = mbc
+ continue
+ } else {
+ // Translate the control points.
+ bnorm := c.Sub(a).Norm(k.u).Rot90CCW()
+ cnorm = bc.Norm(k.u).Rot90CCW()
+ k.p.Add2(b.Add(bnorm), c.Add(cnorm))
+ k.r.Add2(b.Sub(bnorm), c.Sub(cnorm))
+ }
+ if t == 0 {
+ k.a, k.anorm = c, cnorm
+ return
+ }
+ t--
+ anorm = cnorm
+ }
+ panic("unreachable")
+}
+
+// Add1 adds a linear segment to the stroker.
+func (k *stroker) Add1(b Point) {
+ bnorm := b.Sub(k.a).Norm(k.u).Rot90CCW()
+ if len(k.r) == 0 {
+ k.p.Start(k.a.Add(bnorm))
+ k.r.Start(k.a.Sub(bnorm))
+ } else {
+ k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm)
+ }
+ k.p.Add1(b.Add(bnorm))
+ k.r.Add1(b.Sub(bnorm))
+ k.a, k.anorm = b, bnorm
+}
+
+// Add2 adds a quadratic segment to the stroker.
+func (k *stroker) Add2(b, c Point) {
+ ab := b.Sub(k.a)
+ bc := c.Sub(b)
+ abnorm := ab.Norm(k.u).Rot90CCW()
+ if len(k.r) == 0 {
+ k.p.Start(k.a.Add(abnorm))
+ k.r.Start(k.a.Sub(abnorm))
+ } else {
+ k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm)
+ }
+
+ // Approximate nearly-degenerate quadratics by linear segments.
+ abIsSmall := ab.Dot(ab) < epsilon
+ bcIsSmall := bc.Dot(bc) < epsilon
+ if abIsSmall || bcIsSmall {
+ acnorm := c.Sub(k.a).Norm(k.u).Rot90CCW()
+ k.p.Add1(c.Add(acnorm))
+ k.r.Add1(c.Sub(acnorm))
+ k.a, k.anorm = c, acnorm
+ return
+ }
+
+ // The quadratic segment (k.a, b, c) has a point of maximum curvature.
+ // If this occurs at an end point, we process the segment as a whole.
+ t := curviest2(k.a, b, c)
+ if t <= 0 || t >= 65536 {
+ k.addNonCurvy2(b, c)
+ return
+ }
+
+ // Otherwise, we perform a de Casteljau decomposition at the point of
+ // maximum curvature and process the two straighter parts.
+ mab := interpolate(k.a, b, t)
+ mbc := interpolate(b, c, t)
+ mabc := interpolate(mab, mbc, t)
+
+ // If the vectors ab and bc are close to being in opposite directions,
+ // then the decomposition can become unstable, so we approximate the
+ // quadratic segment by two linear segments joined by an arc.
+ bcnorm := bc.Norm(k.u).Rot90CCW()
+ if abnorm.Dot(bcnorm) < -Fix64(k.u)*Fix64(k.u)*2047/2048 {
+ pArc := abnorm.Dot(bc) < 0
+
+ k.p.Add1(mabc.Add(abnorm))
+ if pArc {
+ z := abnorm.Rot90CW()
+ addArc(k.p, mabc, abnorm, z)
+ addArc(k.p, mabc, z, bcnorm)
+ }
+ k.p.Add1(mabc.Add(bcnorm))
+ k.p.Add1(c.Add(bcnorm))
+
+ k.r.Add1(mabc.Sub(abnorm))
+ if !pArc {
+ z := abnorm.Rot90CW()
+ addArc(&k.r, mabc, abnorm.Neg(), z)
+ addArc(&k.r, mabc, z, bcnorm.Neg())
+ }
+ k.r.Add1(mabc.Sub(bcnorm))
+ k.r.Add1(c.Sub(bcnorm))
+
+ k.a, k.anorm = c, bcnorm
+ return
+ }
+
+ // Process the decomposed parts.
+ k.addNonCurvy2(mab, mabc)
+ k.addNonCurvy2(mbc, c)
+}
+
+// Add3 adds a cubic segment to the stroker.
+func (k *stroker) Add3(b, c, d Point) {
+ panic("freetype/raster: stroke unimplemented for cubic segments")
+}
+
+// stroke adds the stroked Path q to p, where q consists of exactly one curve.
+func (k *stroker) stroke(q Path) {
+ // Stroking is implemented by deriving two paths each k.u apart from q.
+ // The left-hand-side path is added immediately to k.p; the right-hand-side
+ // path is accumulated in k.r. Once we've finished adding the LHS to k.p,
+ // we add the RHS in reverse order.
+ k.r = make(Path, 0, len(q))
+ k.a = Point{q[1], q[2]}
+ for i := 4; i < len(q); {
+ switch q[i] {
+ case 1:
+ k.Add1(Point{q[i+1], q[i+2]})
+ i += 4
+ case 2:
+ k.Add2(Point{q[i+1], q[i+2]}, Point{q[i+3], q[i+4]})
+ i += 6
+ case 3:
+ k.Add3(Point{q[i+1], q[i+2]}, Point{q[i+3], q[i+4]}, Point{q[i+5], q[i+6]})
+ i += 8
+ default:
+ panic("freetype/raster: bad path")
+ }
+ }
+ if len(k.r) == 0 {
+ return
+ }
+ // TODO(nigeltao): if q is a closed curve then we should join the first and
+ // last segments instead of capping them.
+ k.cr.Cap(k.p, k.u, q.lastPoint(), k.anorm.Neg())
+ addPathReversed(k.p, k.r)
+ pivot := q.firstPoint()
+ k.cr.Cap(k.p, k.u, pivot, pivot.Sub(Point{k.r[1], k.r[2]}))
+}
+
+// Stroke adds q stroked with the given width to p. The result is typically
+// self-intersecting and should be rasterized with UseNonZeroWinding.
+// cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner.
+func Stroke(p Adder, q Path, width Fix32, cr Capper, jr Joiner) {
+ if len(q) == 0 {
+ return
+ }
+ if cr == nil {
+ cr = RoundCapper
+ }
+ if jr == nil {
+ jr = RoundJoiner
+ }
+ if q[0] != 0 {
+ panic("freetype/raster: bad path")
+ }
+ s := stroker{p: p, u: width / 2, cr: cr, jr: jr}
+ i := 0
+ for j := 4; j < len(q); {
+ switch q[j] {
+ case 0:
+ s.stroke(q[i:j])
+ i, j = j, j+4
+ case 1:
+ j += 4
+ case 2:
+ j += 6
+ case 3:
+ j += 8
+ default:
+ panic("freetype/raster: bad path")
+ }
+ }
+ s.stroke(q[i:])
+}