summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/rsc/letsencrypt/vendor/github.com/miekg/dns/dnssec_keygen.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/rsc/letsencrypt/vendor/github.com/miekg/dns/dnssec_keygen.go')
-rw-r--r--vendor/github.com/rsc/letsencrypt/vendor/github.com/miekg/dns/dnssec_keygen.go156
1 files changed, 156 insertions, 0 deletions
diff --git a/vendor/github.com/rsc/letsencrypt/vendor/github.com/miekg/dns/dnssec_keygen.go b/vendor/github.com/rsc/letsencrypt/vendor/github.com/miekg/dns/dnssec_keygen.go
new file mode 100644
index 000000000..5e4b7741a
--- /dev/null
+++ b/vendor/github.com/rsc/letsencrypt/vendor/github.com/miekg/dns/dnssec_keygen.go
@@ -0,0 +1,156 @@
+package dns
+
+import (
+ "crypto"
+ "crypto/dsa"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rand"
+ "crypto/rsa"
+ "math/big"
+)
+
+// Generate generates a DNSKEY of the given bit size.
+// The public part is put inside the DNSKEY record.
+// The Algorithm in the key must be set as this will define
+// what kind of DNSKEY will be generated.
+// The ECDSA algorithms imply a fixed keysize, in that case
+// bits should be set to the size of the algorithm.
+func (k *DNSKEY) Generate(bits int) (crypto.PrivateKey, error) {
+ switch k.Algorithm {
+ case DSA, DSANSEC3SHA1:
+ if bits != 1024 {
+ return nil, ErrKeySize
+ }
+ case RSAMD5, RSASHA1, RSASHA256, RSASHA1NSEC3SHA1:
+ if bits < 512 || bits > 4096 {
+ return nil, ErrKeySize
+ }
+ case RSASHA512:
+ if bits < 1024 || bits > 4096 {
+ return nil, ErrKeySize
+ }
+ case ECDSAP256SHA256:
+ if bits != 256 {
+ return nil, ErrKeySize
+ }
+ case ECDSAP384SHA384:
+ if bits != 384 {
+ return nil, ErrKeySize
+ }
+ }
+
+ switch k.Algorithm {
+ case DSA, DSANSEC3SHA1:
+ params := new(dsa.Parameters)
+ if err := dsa.GenerateParameters(params, rand.Reader, dsa.L1024N160); err != nil {
+ return nil, err
+ }
+ priv := new(dsa.PrivateKey)
+ priv.PublicKey.Parameters = *params
+ err := dsa.GenerateKey(priv, rand.Reader)
+ if err != nil {
+ return nil, err
+ }
+ k.setPublicKeyDSA(params.Q, params.P, params.G, priv.PublicKey.Y)
+ return priv, nil
+ case RSAMD5, RSASHA1, RSASHA256, RSASHA512, RSASHA1NSEC3SHA1:
+ priv, err := rsa.GenerateKey(rand.Reader, bits)
+ if err != nil {
+ return nil, err
+ }
+ k.setPublicKeyRSA(priv.PublicKey.E, priv.PublicKey.N)
+ return priv, nil
+ case ECDSAP256SHA256, ECDSAP384SHA384:
+ var c elliptic.Curve
+ switch k.Algorithm {
+ case ECDSAP256SHA256:
+ c = elliptic.P256()
+ case ECDSAP384SHA384:
+ c = elliptic.P384()
+ }
+ priv, err := ecdsa.GenerateKey(c, rand.Reader)
+ if err != nil {
+ return nil, err
+ }
+ k.setPublicKeyECDSA(priv.PublicKey.X, priv.PublicKey.Y)
+ return priv, nil
+ default:
+ return nil, ErrAlg
+ }
+}
+
+// Set the public key (the value E and N)
+func (k *DNSKEY) setPublicKeyRSA(_E int, _N *big.Int) bool {
+ if _E == 0 || _N == nil {
+ return false
+ }
+ buf := exponentToBuf(_E)
+ buf = append(buf, _N.Bytes()...)
+ k.PublicKey = toBase64(buf)
+ return true
+}
+
+// Set the public key for Elliptic Curves
+func (k *DNSKEY) setPublicKeyECDSA(_X, _Y *big.Int) bool {
+ if _X == nil || _Y == nil {
+ return false
+ }
+ var intlen int
+ switch k.Algorithm {
+ case ECDSAP256SHA256:
+ intlen = 32
+ case ECDSAP384SHA384:
+ intlen = 48
+ }
+ k.PublicKey = toBase64(curveToBuf(_X, _Y, intlen))
+ return true
+}
+
+// Set the public key for DSA
+func (k *DNSKEY) setPublicKeyDSA(_Q, _P, _G, _Y *big.Int) bool {
+ if _Q == nil || _P == nil || _G == nil || _Y == nil {
+ return false
+ }
+ buf := dsaToBuf(_Q, _P, _G, _Y)
+ k.PublicKey = toBase64(buf)
+ return true
+}
+
+// Set the public key (the values E and N) for RSA
+// RFC 3110: Section 2. RSA Public KEY Resource Records
+func exponentToBuf(_E int) []byte {
+ var buf []byte
+ i := big.NewInt(int64(_E)).Bytes()
+ if len(i) < 256 {
+ buf = make([]byte, 1, 1+len(i))
+ buf[0] = uint8(len(i))
+ } else {
+ buf = make([]byte, 3, 3+len(i))
+ buf[0] = 0
+ buf[1] = uint8(len(i) >> 8)
+ buf[2] = uint8(len(i))
+ }
+ buf = append(buf, i...)
+ return buf
+}
+
+// Set the public key for X and Y for Curve. The two
+// values are just concatenated.
+func curveToBuf(_X, _Y *big.Int, intlen int) []byte {
+ buf := intToBytes(_X, intlen)
+ buf = append(buf, intToBytes(_Y, intlen)...)
+ return buf
+}
+
+// Set the public key for X and Y for Curve. The two
+// values are just concatenated.
+func dsaToBuf(_Q, _P, _G, _Y *big.Int) []byte {
+ t := divRoundUp(divRoundUp(_G.BitLen(), 8)-64, 8)
+ buf := []byte{byte(t)}
+ buf = append(buf, intToBytes(_Q, 20)...)
+ buf = append(buf, intToBytes(_P, 64+t*8)...)
+ buf = append(buf, intToBytes(_G, 64+t*8)...)
+ buf = append(buf, intToBytes(_Y, 64+t*8)...)
+ return buf
+}