summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/text/internal/number/decimal.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/text/internal/number/decimal.go')
-rw-r--r--vendor/golang.org/x/text/internal/number/decimal.go430
1 files changed, 430 insertions, 0 deletions
diff --git a/vendor/golang.org/x/text/internal/number/decimal.go b/vendor/golang.org/x/text/internal/number/decimal.go
new file mode 100644
index 000000000..4e42ec785
--- /dev/null
+++ b/vendor/golang.org/x/text/internal/number/decimal.go
@@ -0,0 +1,430 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:generate stringer -type RoundingMode
+
+package number
+
+import (
+ "math"
+ "strconv"
+)
+
+// RoundingMode determines how a number is rounded to the desired precision.
+type RoundingMode byte
+
+const (
+ ToNearestEven RoundingMode = iota // towards the nearest integer, or towards an even number if equidistant.
+ ToNearestZero // towards the nearest integer, or towards zero if equidistant.
+ ToNearestAway // towards the nearest integer, or away from zero if equidistant.
+ ToPositiveInf // towards infinity
+ ToNegativeInf // towards negative infinity
+ ToZero // towards zero
+ AwayFromZero // away from zero
+ numModes
+)
+
+// A RoundingContext indicates how a number should be converted to digits.
+type RoundingContext struct {
+ Mode RoundingMode
+ Increment int32 // if > 0, round to Increment * 10^-Scale
+
+ Precision int32 // maximum number of significant digits.
+ Scale int32 // maximum number of decimals after the dot.
+}
+
+// A Decimal represents floating point number represented in digits of the base
+// in which a number is to be displayed. Digits represents a number [0, 1.0),
+// and the absolute value represented by Decimal is Digits * 10^Exp.
+// Leading and trailing zeros may be omitted and Exp may point outside a valid
+// position in Digits.
+//
+// Examples:
+// Number Decimal
+// 12345 Digits: [1, 2, 3, 4, 5], Exp: 5
+// 12.345 Digits: [1, 2, 3, 4, 5], Exp: 2
+// 12000 Digits: [1, 2], Exp: 5
+// 0.00123 Digits: [1, 2, 3], Exp: -2
+type Decimal struct {
+ Digits []byte // mantissa digits, big-endian
+ Exp int32 // exponent
+ Neg bool
+ Inf bool // Takes precedence over Digits and Exp.
+ NaN bool // Takes precedence over Inf.
+
+ buf [10]byte
+}
+
+// normalize retuns a new Decimal with leading and trailing zeros removed.
+func (d *Decimal) normalize() (n Decimal) {
+ n = *d
+ b := n.Digits
+ // Strip leading zeros. Resulting number of digits is significant digits.
+ for len(b) > 0 && b[0] == 0 {
+ b = b[1:]
+ n.Exp--
+ }
+ // Strip trailing zeros
+ for len(b) > 0 && b[len(b)-1] == 0 {
+ b = b[:len(b)-1]
+ }
+ if len(b) == 0 {
+ n.Exp = 0
+ }
+ n.Digits = b
+ return n
+}
+
+func (d *Decimal) clear() {
+ b := d.Digits
+ if b == nil {
+ b = d.buf[:0]
+ }
+ *d = Decimal{}
+ d.Digits = b[:0]
+}
+
+func (x *Decimal) String() string {
+ if x.NaN {
+ return "NaN"
+ }
+ var buf []byte
+ if x.Neg {
+ buf = append(buf, '-')
+ }
+ if x.Inf {
+ buf = append(buf, "Inf"...)
+ return string(buf)
+ }
+ if len(x.Digits) == 0 {
+ return "0"
+ }
+ switch {
+ case x.Exp <= 0:
+ // 0.00ddd
+ buf = append(buf, "0."...)
+ buf = appendZeros(buf, -int(x.Exp))
+ buf = appendDigits(buf, x.Digits)
+
+ case /* 0 < */ int(x.Exp) < len(x.Digits):
+ // dd.ddd
+ buf = appendDigits(buf, x.Digits[:x.Exp])
+ buf = append(buf, '.')
+ buf = appendDigits(buf, x.Digits[x.Exp:])
+
+ default: // len(x.Digits) <= x.Exp
+ // ddd00
+ buf = appendDigits(buf, x.Digits)
+ buf = appendZeros(buf, int(x.Exp)-len(x.Digits))
+ }
+ return string(buf)
+}
+
+func appendDigits(buf []byte, digits []byte) []byte {
+ for _, c := range digits {
+ buf = append(buf, c+'0')
+ }
+ return buf
+}
+
+// appendZeros appends n 0 digits to buf and returns buf.
+func appendZeros(buf []byte, n int) []byte {
+ for ; n > 0; n-- {
+ buf = append(buf, '0')
+ }
+ return buf
+}
+
+func (d *Decimal) round(mode RoundingMode, n int) {
+ if n >= len(d.Digits) {
+ return
+ }
+ // Make rounding decision: The result mantissa is truncated ("rounded down")
+ // by default. Decide if we need to increment, or "round up", the (unsigned)
+ // mantissa.
+ inc := false
+ switch mode {
+ case ToNegativeInf:
+ inc = d.Neg
+ case ToPositiveInf:
+ inc = !d.Neg
+ case ToZero:
+ // nothing to do
+ case AwayFromZero:
+ inc = true
+ case ToNearestEven:
+ inc = d.Digits[n] > 5 || d.Digits[n] == 5 &&
+ (len(d.Digits) > n+1 || n == 0 || d.Digits[n-1]&1 != 0)
+ case ToNearestAway:
+ inc = d.Digits[n] >= 5
+ case ToNearestZero:
+ inc = d.Digits[n] > 5 || d.Digits[n] == 5 && len(d.Digits) > n+1
+ default:
+ panic("unreachable")
+ }
+ if inc {
+ d.roundUp(n)
+ } else {
+ d.roundDown(n)
+ }
+}
+
+// roundFloat rounds a floating point number.
+func (r RoundingMode) roundFloat(x float64) float64 {
+ // Make rounding decision: The result mantissa is truncated ("rounded down")
+ // by default. Decide if we need to increment, or "round up", the (unsigned)
+ // mantissa.
+ abs := x
+ if x < 0 {
+ abs = -x
+ }
+ i, f := math.Modf(abs)
+ if f == 0.0 {
+ return x
+ }
+ inc := false
+ switch r {
+ case ToNegativeInf:
+ inc = x < 0
+ case ToPositiveInf:
+ inc = x >= 0
+ case ToZero:
+ // nothing to do
+ case AwayFromZero:
+ inc = true
+ case ToNearestEven:
+ // TODO: check overflow
+ inc = f > 0.5 || f == 0.5 && int64(i)&1 != 0
+ case ToNearestAway:
+ inc = f >= 0.5
+ case ToNearestZero:
+ inc = f > 0.5
+ default:
+ panic("unreachable")
+ }
+ if inc {
+ i += 1
+ }
+ if abs != x {
+ i = -i
+ }
+ return i
+}
+
+func (x *Decimal) roundUp(n int) {
+ if n < 0 || n >= len(x.Digits) {
+ return // nothing to do
+ }
+ // find first digit < 9
+ for n > 0 && x.Digits[n-1] >= 9 {
+ n--
+ }
+
+ if n == 0 {
+ // all digits are 9s => round up to 1 and update exponent
+ x.Digits[0] = 1 // ok since len(x.Digits) > n
+ x.Digits = x.Digits[:1]
+ x.Exp++
+ return
+ }
+ x.Digits[n-1]++
+ x.Digits = x.Digits[:n]
+ // x already trimmed
+}
+
+func (x *Decimal) roundDown(n int) {
+ if n < 0 || n >= len(x.Digits) {
+ return // nothing to do
+ }
+ x.Digits = x.Digits[:n]
+ trim(x)
+}
+
+// trim cuts off any trailing zeros from x's mantissa;
+// they are meaningless for the value of x.
+func trim(x *Decimal) {
+ i := len(x.Digits)
+ for i > 0 && x.Digits[i-1] == 0 {
+ i--
+ }
+ x.Digits = x.Digits[:i]
+ if i == 0 {
+ x.Exp = 0
+ }
+}
+
+// A Converter converts a number into decimals according to the given rounding
+// criteria.
+type Converter interface {
+ Convert(d *Decimal, r *RoundingContext)
+}
+
+const (
+ signed = true
+ unsigned = false
+)
+
+// Convert converts the given number to the decimal representation using the
+// supplied RoundingContext.
+func (d *Decimal) Convert(r *RoundingContext, number interface{}) {
+ switch f := number.(type) {
+ case Converter:
+ d.clear()
+ f.Convert(d, r)
+ case float32:
+ d.convertFloat64(r, float64(f), 32)
+ case float64:
+ d.convertFloat64(r, f, 64)
+ case int:
+ d.convertInt(r, signed, uint64(f))
+ case int8:
+ d.convertInt(r, signed, uint64(f))
+ case int16:
+ d.convertInt(r, signed, uint64(f))
+ case int32:
+ d.convertInt(r, signed, uint64(f))
+ case int64:
+ d.convertInt(r, signed, uint64(f))
+ case uint:
+ d.convertInt(r, unsigned, uint64(f))
+ case uint8:
+ d.convertInt(r, unsigned, uint64(f))
+ case uint16:
+ d.convertInt(r, unsigned, uint64(f))
+ case uint32:
+ d.convertInt(r, unsigned, uint64(f))
+ case uint64:
+ d.convertInt(r, unsigned, f)
+
+ // TODO:
+ // case string: if produced by strconv, allows for easy arbitrary pos.
+ // case reflect.Value:
+ // case big.Float
+ // case big.Int
+ // case big.Rat?
+ // catch underlyings using reflect or will this already be done by the
+ // message package?
+ }
+}
+
+func (d *Decimal) convertInt(r *RoundingContext, signed bool, x uint64) {
+ if r.Increment > 0 {
+ // TODO: if uint64 is too large, fall back to float64
+ if signed {
+ d.convertFloat64(r, float64(int64(x)), 64)
+ } else {
+ d.convertFloat64(r, float64(x), 64)
+ }
+ return
+ }
+ d.clear()
+ if signed && int64(x) < 0 {
+ x = uint64(-int64(x))
+ d.Neg = true
+ }
+ d.fillIntDigits(x)
+ d.Exp = int32(len(d.Digits))
+}
+
+func (d *Decimal) convertFloat64(r *RoundingContext, x float64, size int) {
+ d.clear()
+ if math.IsNaN(x) {
+ d.NaN = true
+ return
+ }
+ abs := x
+ if x < 0 {
+ d.Neg = true
+ abs = -x
+ }
+ if math.IsInf(abs, 1) {
+ d.Inf = true
+ return
+ }
+ // Simple case: decimal notation
+ if r.Scale > 0 || r.Increment > 0 && r.Scale == 0 {
+ if int(r.Scale) > len(scales) {
+ x *= math.Pow(10, float64(r.Scale))
+ } else {
+ x *= scales[r.Scale]
+ }
+ if r.Increment > 0 {
+ inc := float64(r.Increment)
+ x /= float64(inc)
+ x = r.Mode.roundFloat(x)
+ x *= inc
+ } else {
+ x = r.Mode.roundFloat(x)
+ }
+ d.fillIntDigits(uint64(math.Abs(x)))
+ d.Exp = int32(len(d.Digits)) - r.Scale
+ return
+ }
+
+ // Nasty case (for non-decimal notation).
+ // Asides from being inefficient, this result is also wrong as it will
+ // apply ToNearestEven rounding regardless of the user setting.
+ // TODO: expose functionality in strconv so we can avoid this hack.
+ // Something like this would work:
+ // AppendDigits(dst []byte, x float64, base, size, prec int) (digits []byte, exp, accuracy int)
+
+ prec := int(r.Precision)
+ if prec > 0 {
+ prec--
+ }
+ b := strconv.AppendFloat(d.Digits, abs, 'e', prec, size)
+ i := 0
+ k := 0
+ // No need to check i < len(b) as we always have an 'e'.
+ for {
+ if c := b[i]; '0' <= c && c <= '9' {
+ b[k] = c - '0'
+ k++
+ } else if c != '.' {
+ break
+ }
+ i++
+ }
+ d.Digits = b[:k]
+ i += len("e")
+ pSign := i
+ exp := 0
+ for i++; i < len(b); i++ {
+ exp *= 10
+ exp += int(b[i] - '0')
+ }
+ if b[pSign] == '-' {
+ exp = -exp
+ }
+ d.Exp = int32(exp) + 1
+}
+
+func (d *Decimal) fillIntDigits(x uint64) {
+ const maxUintDigits = 10
+ if cap(d.Digits) < maxUintDigits {
+ d.Digits = d.buf[:]
+ } else {
+ d.Digits = d.buf[:maxUintDigits]
+ }
+ i := 0
+ for ; x > 0; x /= 10 {
+ d.Digits[i] = byte(x % 10)
+ i++
+ }
+ d.Digits = d.Digits[:i]
+ for p := 0; p < i; p++ {
+ i--
+ d.Digits[p], d.Digits[i] = d.Digits[i], d.Digits[p]
+ }
+}
+
+var scales [70]float64
+
+func init() {
+ x := 1.0
+ for i := range scales {
+ scales[i] = x
+ x *= 10
+ }
+}