summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/image/font/sfnt/postscript.go
blob: b686e60ac6a39c0af75a00eda3efa8e529d9c244 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package sfnt

// Compact Font Format (CFF) fonts are written in PostScript, a stack-based
// programming language.
//
// A fundamental concept is a DICT, or a key-value map, expressed in reverse
// Polish notation. For example, this sequence of operations:
//	- push the number 379
//	- version operator
//	- push the number 392
//	- Notice operator
//	- etc
//	- push the number 100
//	- push the number 0
//	- push the number 500
//	- push the number 800
//	- FontBBox operator
//	- etc
// defines a DICT that maps "version" to the String ID (SID) 379, "Notice" to
// the SID 392, "FontBBox" to the four numbers [100, 0, 500, 800], etc.
//
// The first 391 String IDs (starting at 0) are predefined as per the CFF spec
// Appendix A, in 5176.CFF.pdf referenced below. For example, 379 means
// "001.000". String ID 392 is not predefined, and is mapped by a separate
// structure, the "String INDEX", inside the CFF data. (String ID 391 is also
// not predefined. Specifically for ../testdata/CFFTest.otf, 391 means
// "uni4E2D", as this font contains a glyph for U+4E2D).
//
// The actual glyph vectors are similarly encoded (in PostScript), in a format
// called Type 2 Charstrings. The wire encoding is similar to but not exactly
// the same as CFF's. For example, the byte 0x05 means FontBBox for CFF DICTs,
// but means rlineto (relative line-to) for Type 2 Charstrings. See
// 5176.CFF.pdf Appendix H and 5177.Type2.pdf Appendix A in the PDF files
// referenced below.
//
// CFF is a stand-alone format, but CFF as used in SFNT fonts have further
// restrictions. For example, a stand-alone CFF can contain multiple fonts, but
// https://www.microsoft.com/typography/OTSPEC/cff.htm says that "The Name
// INDEX in the CFF must contain only one entry; that is, there must be only
// one font in the CFF FontSet".
//
// The relevant specifications are:
// 	- http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5176.CFF.pdf
// 	- http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5177.Type2.pdf

import (
	"fmt"
	"math"
	"strconv"

	"golang.org/x/image/math/fixed"
)

const (
	// psArgStackSize is the argument stack size for a PostScript interpreter.
	// 5176.CFF.pdf section 4 "DICT Data" says that "An operator may be
	// preceded by up to a maximum of 48 operands". 5177.Type2.pdf Appendix B
	// "Type 2 Charstring Implementation Limits" says that "Argument stack 48".
	psArgStackSize = 48

	// Similarly, Appendix B says "Subr nesting, stack limit 10".
	psCallStackSize = 10
)

func bigEndian(b []byte) uint32 {
	switch len(b) {
	case 1:
		return uint32(b[0])
	case 2:
		return uint32(b[0])<<8 | uint32(b[1])
	case 3:
		return uint32(b[0])<<16 | uint32(b[1])<<8 | uint32(b[2])
	case 4:
		return uint32(b[0])<<24 | uint32(b[1])<<16 | uint32(b[2])<<8 | uint32(b[3])
	}
	panic("unreachable")
}

// fdSelect holds a CFF font's Font Dict Select data.
type fdSelect struct {
	format    uint8
	numRanges uint16
	offset    int32
}

func (t *fdSelect) lookup(f *Font, b *Buffer, x GlyphIndex) (int, error) {
	switch t.format {
	case 0:
		buf, err := b.view(&f.src, int(t.offset)+int(x), 1)
		if err != nil {
			return 0, err
		}
		return int(buf[0]), nil
	case 3:
		lo, hi := 0, int(t.numRanges)
		for lo < hi {
			i := (lo + hi) / 2
			buf, err := b.view(&f.src, int(t.offset)+3*i, 3+2)
			if err != nil {
				return 0, err
			}
			// buf holds the range [xlo, xhi).
			if xlo := GlyphIndex(u16(buf[0:])); x < xlo {
				hi = i
				continue
			}
			if xhi := GlyphIndex(u16(buf[3:])); xhi <= x {
				lo = i + 1
				continue
			}
			return int(buf[2]), nil
		}
	}
	return 0, ErrNotFound
}

// cffParser parses the CFF table from an SFNT font.
type cffParser struct {
	src    *source
	base   int
	offset int
	end    int
	err    error

	buf    []byte
	locBuf [2]uint32

	psi psInterpreter
}

func (p *cffParser) parse(numGlyphs int32) (ret glyphData, err error) {
	// Parse the header.
	{
		if !p.read(4) {
			return glyphData{}, p.err
		}
		if p.buf[0] != 1 || p.buf[1] != 0 || p.buf[2] != 4 {
			return glyphData{}, errUnsupportedCFFVersion
		}
	}

	// Parse the Name INDEX.
	{
		count, offSize, ok := p.parseIndexHeader()
		if !ok {
			return glyphData{}, p.err
		}
		// https://www.microsoft.com/typography/OTSPEC/cff.htm says that "The
		// Name INDEX in the CFF must contain only one entry".
		if count != 1 {
			return glyphData{}, errInvalidCFFTable
		}
		if !p.parseIndexLocations(p.locBuf[:2], count, offSize) {
			return glyphData{}, p.err
		}
		p.offset = int(p.locBuf[1])
	}

	// Parse the Top DICT INDEX.
	p.psi.topDict.initialize()
	{
		count, offSize, ok := p.parseIndexHeader()
		if !ok {
			return glyphData{}, p.err
		}
		// 5176.CFF.pdf section 8 "Top DICT INDEX" says that the count here
		// should match the count of the Name INDEX, which is 1.
		if count != 1 {
			return glyphData{}, errInvalidCFFTable
		}
		if !p.parseIndexLocations(p.locBuf[:2], count, offSize) {
			return glyphData{}, p.err
		}
		if !p.read(int(p.locBuf[1] - p.locBuf[0])) {
			return glyphData{}, p.err
		}
		if p.err = p.psi.run(psContextTopDict, p.buf, 0, 0); p.err != nil {
			return glyphData{}, p.err
		}
	}

	// Skip the String INDEX.
	{
		count, offSize, ok := p.parseIndexHeader()
		if !ok {
			return glyphData{}, p.err
		}
		if count != 0 {
			// Read the last location. Locations are off by 1 byte. See the
			// comment in parseIndexLocations.
			if !p.skip(int(count * offSize)) {
				return glyphData{}, p.err
			}
			if !p.read(int(offSize)) {
				return glyphData{}, p.err
			}
			loc := bigEndian(p.buf) - 1
			// Check that locations are in bounds.
			if uint32(p.end-p.offset) < loc {
				return glyphData{}, errInvalidCFFTable
			}
			// Skip the index data.
			if !p.skip(int(loc)) {
				return glyphData{}, p.err
			}
		}
	}

	// Parse the Global Subrs [Subroutines] INDEX.
	{
		count, offSize, ok := p.parseIndexHeader()
		if !ok {
			return glyphData{}, p.err
		}
		if count != 0 {
			if count > maxNumSubroutines {
				return glyphData{}, errUnsupportedNumberOfSubroutines
			}
			ret.gsubrs = make([]uint32, count+1)
			if !p.parseIndexLocations(ret.gsubrs, count, offSize) {
				return glyphData{}, p.err
			}
		}
	}

	// Parse the CharStrings INDEX, whose location was found in the Top DICT.
	{
		if !p.seekFromBase(p.psi.topDict.charStringsOffset) {
			return glyphData{}, errInvalidCFFTable
		}
		count, offSize, ok := p.parseIndexHeader()
		if !ok {
			return glyphData{}, p.err
		}
		if count == 0 || int32(count) != numGlyphs {
			return glyphData{}, errInvalidCFFTable
		}
		ret.locations = make([]uint32, count+1)
		if !p.parseIndexLocations(ret.locations, count, offSize) {
			return glyphData{}, p.err
		}
	}

	if !p.psi.topDict.isCIDFont {
		// Parse the Private DICT, whose location was found in the Top DICT.
		ret.singleSubrs, err = p.parsePrivateDICT(
			p.psi.topDict.privateDictOffset,
			p.psi.topDict.privateDictLength,
		)
		if err != nil {
			return glyphData{}, err
		}

	} else {
		// Parse the Font Dict Select data, whose location was found in the Top
		// DICT.
		ret.fdSelect, err = p.parseFDSelect(p.psi.topDict.fdSelect, numGlyphs)
		if err != nil {
			return glyphData{}, err
		}

		// Parse the Font Dicts. Each one contains its own Private DICT.
		if !p.seekFromBase(p.psi.topDict.fdArray) {
			return glyphData{}, errInvalidCFFTable
		}

		count, offSize, ok := p.parseIndexHeader()
		if !ok {
			return glyphData{}, p.err
		}
		if count > maxNumFontDicts {
			return glyphData{}, errUnsupportedNumberOfFontDicts
		}

		fdLocations := make([]uint32, count+1)
		if !p.parseIndexLocations(fdLocations, count, offSize) {
			return glyphData{}, p.err
		}

		privateDicts := make([]struct {
			offset, length int32
		}, count)

		for i := range privateDicts {
			length := fdLocations[i+1] - fdLocations[i]
			if !p.read(int(length)) {
				return glyphData{}, errInvalidCFFTable
			}
			p.psi.topDict.initialize()
			if p.err = p.psi.run(psContextTopDict, p.buf, 0, 0); p.err != nil {
				return glyphData{}, p.err
			}
			privateDicts[i].offset = p.psi.topDict.privateDictOffset
			privateDicts[i].length = p.psi.topDict.privateDictLength
		}

		ret.multiSubrs = make([][]uint32, count)
		for i, pd := range privateDicts {
			ret.multiSubrs[i], err = p.parsePrivateDICT(pd.offset, pd.length)
			if err != nil {
				return glyphData{}, err
			}
		}
	}

	return ret, err
}

// parseFDSelect parses the Font Dict Select data as per 5176.CFF.pdf section
// 19 "FDSelect".
func (p *cffParser) parseFDSelect(offset int32, numGlyphs int32) (ret fdSelect, err error) {
	if !p.seekFromBase(p.psi.topDict.fdSelect) {
		return fdSelect{}, errInvalidCFFTable
	}
	if !p.read(1) {
		return fdSelect{}, p.err
	}
	ret.format = p.buf[0]
	switch ret.format {
	case 0:
		if p.end-p.offset < int(numGlyphs) {
			return fdSelect{}, errInvalidCFFTable
		}
		ret.offset = int32(p.offset)
		return ret, nil
	case 3:
		if !p.read(2) {
			return fdSelect{}, p.err
		}
		ret.numRanges = u16(p.buf)
		if p.end-p.offset < 3*int(ret.numRanges)+2 {
			return fdSelect{}, errInvalidCFFTable
		}
		ret.offset = int32(p.offset)
		return ret, nil
	}
	return fdSelect{}, errUnsupportedCFFFDSelectTable
}

func (p *cffParser) parsePrivateDICT(offset, length int32) (subrs []uint32, err error) {
	p.psi.privateDict.initialize()
	if length != 0 {
		fullLength := int32(p.end - p.base)
		if offset <= 0 || fullLength < offset || fullLength-offset < length || length < 0 {
			return nil, errInvalidCFFTable
		}
		p.offset = p.base + int(offset)
		if !p.read(int(length)) {
			return nil, p.err
		}
		if p.err = p.psi.run(psContextPrivateDict, p.buf, 0, 0); p.err != nil {
			return nil, p.err
		}
	}

	// Parse the Local Subrs [Subroutines] INDEX, whose location was found in
	// the Private DICT.
	if p.psi.privateDict.subrsOffset != 0 {
		if !p.seekFromBase(offset + p.psi.privateDict.subrsOffset) {
			return nil, errInvalidCFFTable
		}
		count, offSize, ok := p.parseIndexHeader()
		if !ok {
			return nil, p.err
		}
		if count != 0 {
			if count > maxNumSubroutines {
				return nil, errUnsupportedNumberOfSubroutines
			}
			subrs = make([]uint32, count+1)
			if !p.parseIndexLocations(subrs, count, offSize) {
				return nil, p.err
			}
		}
	}

	return subrs, err
}

// read sets p.buf to view the n bytes from p.offset to p.offset+n. It also
// advances p.offset by n.
//
// As per the source.view method, the caller should not modify the contents of
// p.buf after read returns, other than by calling read again.
//
// The caller should also avoid modifying the pointer / length / capacity of
// the p.buf slice, not just avoid modifying the slice's contents, in order to
// maximize the opportunity to re-use p.buf's allocated memory when viewing the
// underlying source data for subsequent read calls.
func (p *cffParser) read(n int) (ok bool) {
	if n < 0 || p.end-p.offset < n {
		p.err = errInvalidCFFTable
		return false
	}
	p.buf, p.err = p.src.view(p.buf, p.offset, n)
	// TODO: if p.err == io.EOF, change that to a different error??
	p.offset += n
	return p.err == nil
}

func (p *cffParser) skip(n int) (ok bool) {
	if p.end-p.offset < n {
		p.err = errInvalidCFFTable
		return false
	}
	p.offset += n
	return true
}

func (p *cffParser) seekFromBase(offset int32) (ok bool) {
	if offset < 0 || int32(p.end-p.base) < offset {
		return false
	}
	p.offset = p.base + int(offset)
	return true
}

func (p *cffParser) parseIndexHeader() (count, offSize int32, ok bool) {
	if !p.read(2) {
		return 0, 0, false
	}
	count = int32(u16(p.buf[:2]))
	// 5176.CFF.pdf section 5 "INDEX Data" says that "An empty INDEX is
	// represented by a count field with a 0 value and no additional fields.
	// Thus, the total size of an empty INDEX is 2 bytes".
	if count == 0 {
		return count, 0, true
	}
	if !p.read(1) {
		return 0, 0, false
	}
	offSize = int32(p.buf[0])
	if offSize < 1 || 4 < offSize {
		p.err = errInvalidCFFTable
		return 0, 0, false
	}
	return count, offSize, true
}

func (p *cffParser) parseIndexLocations(dst []uint32, count, offSize int32) (ok bool) {
	if count == 0 {
		return true
	}
	if len(dst) != int(count+1) {
		panic("unreachable")
	}
	if !p.read(len(dst) * int(offSize)) {
		return false
	}

	buf, prev := p.buf, uint32(0)
	for i := range dst {
		loc := bigEndian(buf[:offSize])
		buf = buf[offSize:]

		// Locations are off by 1 byte. 5176.CFF.pdf section 5 "INDEX Data"
		// says that "Offsets in the offset array are relative to the byte that
		// precedes the object data... This ensures that every object has a
		// corresponding offset which is always nonzero".
		if loc == 0 {
			p.err = errInvalidCFFTable
			return false
		}
		loc--

		// In the same paragraph, "Therefore the first element of the offset
		// array is always 1" before correcting for the off-by-1.
		if i == 0 {
			if loc != 0 {
				p.err = errInvalidCFFTable
				break
			}
		} else if loc <= prev { // Check that locations are increasing.
			p.err = errInvalidCFFTable
			break
		}

		// Check that locations are in bounds.
		if uint32(p.end-p.offset) < loc {
			p.err = errInvalidCFFTable
			break
		}

		dst[i] = uint32(p.offset) + loc
		prev = loc
	}
	return p.err == nil
}

type psCallStackEntry struct {
	offset, length uint32
}

type psContext uint32

const (
	psContextTopDict psContext = iota
	psContextPrivateDict
	psContextType2Charstring
)

// psTopDictData contains fields specific to the Top DICT context.
type psTopDictData struct {
	charStringsOffset int32
	fdArray           int32
	fdSelect          int32
	isCIDFont         bool
	privateDictOffset int32
	privateDictLength int32
}

func (d *psTopDictData) initialize() {
	*d = psTopDictData{}
}

// psPrivateDictData contains fields specific to the Private DICT context.
type psPrivateDictData struct {
	subrsOffset int32
}

func (d *psPrivateDictData) initialize() {
	*d = psPrivateDictData{}
}

// psType2CharstringsData contains fields specific to the Type 2 Charstrings
// context.
type psType2CharstringsData struct {
	f          *Font
	b          *Buffer
	x          int32
	y          int32
	firstX     int32
	firstY     int32
	hintBits   int32
	seenWidth  bool
	ended      bool
	glyphIndex GlyphIndex
	// fdSelectIndexPlusOne is the result of the Font Dict Select lookup, plus
	// one. That plus one lets us use the zero value to denote either unused
	// (for CFF fonts with a single Font Dict) or lazily evaluated.
	fdSelectIndexPlusOne int32
}

func (d *psType2CharstringsData) initialize(f *Font, b *Buffer, glyphIndex GlyphIndex) {
	*d = psType2CharstringsData{
		f:          f,
		b:          b,
		glyphIndex: glyphIndex,
	}
}

func (d *psType2CharstringsData) closePath() {
	if d.x != d.firstX || d.y != d.firstY {
		d.b.segments = append(d.b.segments, Segment{
			Op: SegmentOpLineTo,
			Args: [3]fixed.Point26_6{{
				X: fixed.Int26_6(d.firstX),
				Y: fixed.Int26_6(d.firstY),
			}},
		})
	}
}

func (d *psType2CharstringsData) moveTo(dx, dy int32) {
	d.closePath()
	d.x += dx
	d.y += dy
	d.b.segments = append(d.b.segments, Segment{
		Op: SegmentOpMoveTo,
		Args: [3]fixed.Point26_6{{
			X: fixed.Int26_6(d.x),
			Y: fixed.Int26_6(d.y),
		}},
	})
	d.firstX = d.x
	d.firstY = d.y
}

func (d *psType2CharstringsData) lineTo(dx, dy int32) {
	d.x += dx
	d.y += dy
	d.b.segments = append(d.b.segments, Segment{
		Op: SegmentOpLineTo,
		Args: [3]fixed.Point26_6{{
			X: fixed.Int26_6(d.x),
			Y: fixed.Int26_6(d.y),
		}},
	})
}

func (d *psType2CharstringsData) cubeTo(dxa, dya, dxb, dyb, dxc, dyc int32) {
	d.x += dxa
	d.y += dya
	xa := fixed.Int26_6(d.x)
	ya := fixed.Int26_6(d.y)
	d.x += dxb
	d.y += dyb
	xb := fixed.Int26_6(d.x)
	yb := fixed.Int26_6(d.y)
	d.x += dxc
	d.y += dyc
	xc := fixed.Int26_6(d.x)
	yc := fixed.Int26_6(d.y)
	d.b.segments = append(d.b.segments, Segment{
		Op:   SegmentOpCubeTo,
		Args: [3]fixed.Point26_6{{X: xa, Y: ya}, {X: xb, Y: yb}, {X: xc, Y: yc}},
	})
}

// psInterpreter is a PostScript interpreter.
type psInterpreter struct {
	ctx          psContext
	instructions []byte
	instrOffset  uint32
	instrLength  uint32
	argStack     struct {
		a   [psArgStackSize]int32
		top int32
	}
	callStack struct {
		a   [psCallStackSize]psCallStackEntry
		top int32
	}
	parseNumberBuf [maxRealNumberStrLen]byte

	topDict          psTopDictData
	privateDict      psPrivateDictData
	type2Charstrings psType2CharstringsData
}

func (p *psInterpreter) hasMoreInstructions() bool {
	if len(p.instructions) != 0 {
		return true
	}
	for i := int32(0); i < p.callStack.top; i++ {
		if p.callStack.a[i].length != 0 {
			return true
		}
	}
	return false
}

// run runs the instructions in the given PostScript context. For the
// psContextType2Charstring context, offset and length give the location of the
// instructions in p.type2Charstrings.f.src.
func (p *psInterpreter) run(ctx psContext, instructions []byte, offset, length uint32) error {
	p.ctx = ctx
	p.instructions = instructions
	p.instrOffset = offset
	p.instrLength = length
	p.argStack.top = 0
	p.callStack.top = 0

loop:
	for len(p.instructions) > 0 {
		// Push a numeric operand on the stack, if applicable.
		if hasResult, err := p.parseNumber(); hasResult {
			if err != nil {
				return err
			}
			continue
		}

		// Otherwise, execute an operator.
		b := p.instructions[0]
		p.instructions = p.instructions[1:]

		for escaped, ops := false, psOperators[ctx][0]; ; {
			if b == escapeByte && !escaped {
				if len(p.instructions) <= 0 {
					return errInvalidCFFTable
				}
				b = p.instructions[0]
				p.instructions = p.instructions[1:]
				escaped = true
				ops = psOperators[ctx][1]
				continue
			}

			if int(b) < len(ops) {
				if op := ops[b]; op.name != "" {
					if p.argStack.top < op.numPop {
						return errInvalidCFFTable
					}
					if op.run != nil {
						if err := op.run(p); err != nil {
							return err
						}
					}
					if op.numPop < 0 {
						p.argStack.top = 0
					} else {
						p.argStack.top -= op.numPop
					}
					continue loop
				}
			}

			if escaped {
				return fmt.Errorf("sfnt: unrecognized CFF 2-byte operator (12 %d)", b)
			} else {
				return fmt.Errorf("sfnt: unrecognized CFF 1-byte operator (%d)", b)
			}
		}
	}
	return nil
}

// See 5176.CFF.pdf section 4 "DICT Data".
func (p *psInterpreter) parseNumber() (hasResult bool, err error) {
	number := int32(0)
	switch b := p.instructions[0]; {
	case b == 28:
		if len(p.instructions) < 3 {
			return true, errInvalidCFFTable
		}
		number, hasResult = int32(int16(u16(p.instructions[1:]))), true
		p.instructions = p.instructions[3:]

	case b == 29 && p.ctx != psContextType2Charstring:
		if len(p.instructions) < 5 {
			return true, errInvalidCFFTable
		}
		number, hasResult = int32(u32(p.instructions[1:])), true
		p.instructions = p.instructions[5:]

	case b == 30 && p.ctx != psContextType2Charstring:
		// Parse a real number. This isn't listed in 5176.CFF.pdf Table 3
		// "Operand Encoding" but that table lists integer encodings. Further
		// down the page it says "A real number operand is provided in addition
		// to integer operands. This operand begins with a byte value of 30
		// followed by a variable-length sequence of bytes."

		s := p.parseNumberBuf[:0]
		p.instructions = p.instructions[1:]
	loop:
		for {
			if len(p.instructions) == 0 {
				return true, errInvalidCFFTable
			}
			b := p.instructions[0]
			p.instructions = p.instructions[1:]
			// Process b's two nibbles, high then low.
			for i := 0; i < 2; i++ {
				nib := b >> 4
				b = b << 4
				if nib == 0x0f {
					f, err := strconv.ParseFloat(string(s), 32)
					if err != nil {
						return true, errInvalidCFFTable
					}
					number, hasResult = int32(math.Float32bits(float32(f))), true
					break loop
				}
				if nib == 0x0d {
					return true, errInvalidCFFTable
				}
				if len(s)+maxNibbleDefsLength > len(p.parseNumberBuf) {
					return true, errUnsupportedRealNumberEncoding
				}
				s = append(s, nibbleDefs[nib]...)
			}
		}

	case b < 32:
		// No-op.

	case b < 247:
		p.instructions = p.instructions[1:]
		number, hasResult = int32(b)-139, true

	case b < 251:
		if len(p.instructions) < 2 {
			return true, errInvalidCFFTable
		}
		b1 := p.instructions[1]
		p.instructions = p.instructions[2:]
		number, hasResult = +int32(b-247)*256+int32(b1)+108, true

	case b < 255:
		if len(p.instructions) < 2 {
			return true, errInvalidCFFTable
		}
		b1 := p.instructions[1]
		p.instructions = p.instructions[2:]
		number, hasResult = -int32(b-251)*256-int32(b1)-108, true

	case b == 255 && p.ctx == psContextType2Charstring:
		if len(p.instructions) < 5 {
			return true, errInvalidCFFTable
		}
		number, hasResult = int32(u32(p.instructions[1:])), true
		p.instructions = p.instructions[5:]
	}

	if hasResult {
		if p.argStack.top == psArgStackSize {
			return true, errInvalidCFFTable
		}
		p.argStack.a[p.argStack.top] = number
		p.argStack.top++
	}
	return hasResult, nil
}

const maxNibbleDefsLength = len("E-")

// nibbleDefs encodes 5176.CFF.pdf Table 5 "Nibble Definitions".
var nibbleDefs = [16]string{
	0x00: "0",
	0x01: "1",
	0x02: "2",
	0x03: "3",
	0x04: "4",
	0x05: "5",
	0x06: "6",
	0x07: "7",
	0x08: "8",
	0x09: "9",
	0x0a: ".",
	0x0b: "E",
	0x0c: "E-",
	0x0d: "",
	0x0e: "-",
	0x0f: "",
}

type psOperator struct {
	// numPop is the number of stack values to pop. -1 means "array" and -2
	// means "delta" as per 5176.CFF.pdf Table 6 "Operand Types".
	numPop int32
	// name is the operator name. An empty name (i.e. the zero value for the
	// struct overall) means an unrecognized 1-byte operator.
	name string
	// run is the function that implements the operator. Nil means that we
	// ignore the operator, other than popping its arguments off the stack.
	run func(*psInterpreter) error
}

// psOperators holds the 1-byte and 2-byte operators for PostScript interpreter
// contexts.
var psOperators = [...][2][]psOperator{
	// The Top DICT operators are defined by 5176.CFF.pdf Table 9 "Top DICT
	// Operator Entries" and Table 10 "CIDFont Operator Extensions".
	psContextTopDict: {{
		// 1-byte operators.
		0:  {+1, "version", nil},
		1:  {+1, "Notice", nil},
		2:  {+1, "FullName", nil},
		3:  {+1, "FamilyName", nil},
		4:  {+1, "Weight", nil},
		5:  {-1, "FontBBox", nil},
		13: {+1, "UniqueID", nil},
		14: {-1, "XUID", nil},
		15: {+1, "charset", nil},
		16: {+1, "Encoding", nil},
		17: {+1, "CharStrings", func(p *psInterpreter) error {
			p.topDict.charStringsOffset = p.argStack.a[p.argStack.top-1]
			return nil
		}},
		18: {+2, "Private", func(p *psInterpreter) error {
			p.topDict.privateDictLength = p.argStack.a[p.argStack.top-2]
			p.topDict.privateDictOffset = p.argStack.a[p.argStack.top-1]
			return nil
		}},
	}, {
		// 2-byte operators. The first byte is the escape byte.
		0:  {+1, "Copyright", nil},
		1:  {+1, "isFixedPitch", nil},
		2:  {+1, "ItalicAngle", nil},
		3:  {+1, "UnderlinePosition", nil},
		4:  {+1, "UnderlineThickness", nil},
		5:  {+1, "PaintType", nil},
		6:  {+1, "CharstringType", nil},
		7:  {-1, "FontMatrix", nil},
		8:  {+1, "StrokeWidth", nil},
		20: {+1, "SyntheticBase", nil},
		21: {+1, "PostScript", nil},
		22: {+1, "BaseFontName", nil},
		23: {-2, "BaseFontBlend", nil},
		30: {+3, "ROS", func(p *psInterpreter) error {
			p.topDict.isCIDFont = true
			return nil
		}},
		31: {+1, "CIDFontVersion", nil},
		32: {+1, "CIDFontRevision", nil},
		33: {+1, "CIDFontType", nil},
		34: {+1, "CIDCount", nil},
		35: {+1, "UIDBase", nil},
		36: {+1, "FDArray", func(p *psInterpreter) error {
			p.topDict.fdArray = p.argStack.a[p.argStack.top-1]
			return nil
		}},
		37: {+1, "FDSelect", func(p *psInterpreter) error {
			p.topDict.fdSelect = p.argStack.a[p.argStack.top-1]
			return nil
		}},
		38: {+1, "FontName", nil},
	}},

	// The Private DICT operators are defined by 5176.CFF.pdf Table 23 "Private
	// DICT Operators".
	psContextPrivateDict: {{
		// 1-byte operators.
		6:  {-2, "BlueValues", nil},
		7:  {-2, "OtherBlues", nil},
		8:  {-2, "FamilyBlues", nil},
		9:  {-2, "FamilyOtherBlues", nil},
		10: {+1, "StdHW", nil},
		11: {+1, "StdVW", nil},
		19: {+1, "Subrs", func(p *psInterpreter) error {
			p.privateDict.subrsOffset = p.argStack.a[p.argStack.top-1]
			return nil
		}},
		20: {+1, "defaultWidthX", nil},
		21: {+1, "nominalWidthX", nil},
	}, {
		// 2-byte operators. The first byte is the escape byte.
		9:  {+1, "BlueScale", nil},
		10: {+1, "BlueShift", nil},
		11: {+1, "BlueFuzz", nil},
		12: {-2, "StemSnapH", nil},
		13: {-2, "StemSnapV", nil},
		14: {+1, "ForceBold", nil},
		17: {+1, "LanguageGroup", nil},
		18: {+1, "ExpansionFactor", nil},
		19: {+1, "initialRandomSeed", nil},
	}},

	// The Type 2 Charstring operators are defined by 5177.Type2.pdf Appendix A
	// "Type 2 Charstring Command Codes".
	psContextType2Charstring: {{
		// 1-byte operators.
		0:  {}, // Reserved.
		1:  {-1, "hstem", t2CStem},
		2:  {}, // Reserved.
		3:  {-1, "vstem", t2CStem},
		4:  {-1, "vmoveto", t2CVmoveto},
		5:  {-1, "rlineto", t2CRlineto},
		6:  {-1, "hlineto", t2CHlineto},
		7:  {-1, "vlineto", t2CVlineto},
		8:  {-1, "rrcurveto", t2CRrcurveto},
		9:  {}, // Reserved.
		10: {+1, "callsubr", t2CCallsubr},
		11: {+0, "return", t2CReturn},
		12: {}, // escape.
		13: {}, // Reserved.
		14: {-1, "endchar", t2CEndchar},
		15: {}, // Reserved.
		16: {}, // Reserved.
		17: {}, // Reserved.
		18: {-1, "hstemhm", t2CStem},
		19: {-1, "hintmask", t2CMask},
		20: {-1, "cntrmask", t2CMask},
		21: {-1, "rmoveto", t2CRmoveto},
		22: {-1, "hmoveto", t2CHmoveto},
		23: {-1, "vstemhm", t2CStem},
		24: {-1, "rcurveline", t2CRcurveline},
		25: {-1, "rlinecurve", t2CRlinecurve},
		26: {-1, "vvcurveto", t2CVvcurveto},
		27: {-1, "hhcurveto", t2CHhcurveto},
		28: {}, // shortint.
		29: {+1, "callgsubr", t2CCallgsubr},
		30: {-1, "vhcurveto", t2CVhcurveto},
		31: {-1, "hvcurveto", t2CHvcurveto},
	}, {
		// 2-byte operators. The first byte is the escape byte.
		34: {+7, "hflex", t2CHflex},
		36: {+9, "hflex1", t2CHflex1},
		// TODO: more operators.
	}},
}

// 5176.CFF.pdf section 4 "DICT Data" says that "Two-byte operators have an
// initial escape byte of 12".
const escapeByte = 12

// t2CReadWidth reads the optional width adjustment. If present, it is on the
// bottom of the arg stack. nArgs is the expected number of arguments on the
// stack. A negative nArgs means a multiple of 2.
//
// 5177.Type2.pdf page 16 Note 4 says: "The first stack-clearing operator,
// which must be one of hstem, hstemhm, vstem, vstemhm, cntrmask, hintmask,
// hmoveto, vmoveto, rmoveto, or endchar, takes an additional argument — the
// width... which may be expressed as zero or one numeric argument."
func t2CReadWidth(p *psInterpreter, nArgs int32) {
	if p.type2Charstrings.seenWidth {
		return
	}
	p.type2Charstrings.seenWidth = true
	if nArgs >= 0 {
		if p.argStack.top != nArgs+1 {
			return
		}
	} else if p.argStack.top&1 == 0 {
		return
	}
	// When parsing a standalone CFF, we'd save the value of p.argStack.a[0]
	// here as it defines the glyph's width (horizontal advance). Specifically,
	// if present, it is a delta to the font-global nominalWidthX value found
	// in the Private DICT. If absent, the glyph's width is the defaultWidthX
	// value in that dict. See 5176.CFF.pdf section 15 "Private DICT Data".
	//
	// For a CFF embedded in an SFNT font (i.e. an OpenType font), glyph widths
	// are already stored in the hmtx table, separate to the CFF table, and it
	// is simpler to parse that table for all OpenType fonts (PostScript and
	// TrueType). We therefore ignore the width value here, and just remove it
	// from the bottom of the argStack.
	copy(p.argStack.a[:p.argStack.top-1], p.argStack.a[1:p.argStack.top])
	p.argStack.top--
}

func t2CStem(p *psInterpreter) error {
	t2CReadWidth(p, -1)
	if p.argStack.top%2 != 0 {
		return errInvalidCFFTable
	}
	// We update the number of hintBits need to parse hintmask and cntrmask
	// instructions, but this Type 2 Charstring implementation otherwise
	// ignores the stem hints.
	p.type2Charstrings.hintBits += p.argStack.top / 2
	if p.type2Charstrings.hintBits > maxHintBits {
		return errUnsupportedNumberOfHints
	}
	return nil
}

func t2CMask(p *psInterpreter) error {
	// 5176.CFF.pdf section 4.3 "Hint Operators" says that "If hstem and vstem
	// hints are both declared at the beginning of a charstring, and this
	// sequence is followed directly by the hintmask or cntrmask operators, the
	// vstem hint operator need not be included."
	//
	// What we implement here is more permissive (but the same as what the
	// FreeType implementation does, and simpler than tracking the previous
	// operator and other hinting state): if a hintmask is given any arguments
	// (i.e. the argStack is non-empty), we run an implicit vstem operator.
	//
	// Note that the vstem operator consumes from p.argStack, but the hintmask
	// or cntrmask operators consume from p.instructions.
	if p.argStack.top != 0 {
		if err := t2CStem(p); err != nil {
			return err
		}
	} else if !p.type2Charstrings.seenWidth {
		p.type2Charstrings.seenWidth = true
	}

	hintBytes := (p.type2Charstrings.hintBits + 7) / 8
	if len(p.instructions) < int(hintBytes) {
		return errInvalidCFFTable
	}
	p.instructions = p.instructions[hintBytes:]
	return nil
}

func t2CHmoveto(p *psInterpreter) error {
	t2CReadWidth(p, 1)
	if p.argStack.top != 1 {
		return errInvalidCFFTable
	}
	p.type2Charstrings.moveTo(p.argStack.a[0], 0)
	return nil
}

func t2CVmoveto(p *psInterpreter) error {
	t2CReadWidth(p, 1)
	if p.argStack.top != 1 {
		return errInvalidCFFTable
	}
	p.type2Charstrings.moveTo(0, p.argStack.a[0])
	return nil
}

func t2CRmoveto(p *psInterpreter) error {
	t2CReadWidth(p, 2)
	if p.argStack.top != 2 {
		return errInvalidCFFTable
	}
	p.type2Charstrings.moveTo(p.argStack.a[0], p.argStack.a[1])
	return nil
}

func t2CHlineto(p *psInterpreter) error { return t2CLineto(p, false) }
func t2CVlineto(p *psInterpreter) error { return t2CLineto(p, true) }

func t2CLineto(p *psInterpreter, vertical bool) error {
	if !p.type2Charstrings.seenWidth || p.argStack.top < 1 {
		return errInvalidCFFTable
	}
	for i := int32(0); i < p.argStack.top; i, vertical = i+1, !vertical {
		dx, dy := p.argStack.a[i], int32(0)
		if vertical {
			dx, dy = dy, dx
		}
		p.type2Charstrings.lineTo(dx, dy)
	}
	return nil
}

func t2CRlineto(p *psInterpreter) error {
	if !p.type2Charstrings.seenWidth || p.argStack.top < 2 || p.argStack.top%2 != 0 {
		return errInvalidCFFTable
	}
	for i := int32(0); i < p.argStack.top; i += 2 {
		p.type2Charstrings.lineTo(p.argStack.a[i], p.argStack.a[i+1])
	}
	return nil
}

// As per 5177.Type2.pdf section 4.1 "Path Construction Operators",
//
// rcurveline is:
//	- {dxa dya dxb dyb dxc dyc}+ dxd dyd
//
// rlinecurve is:
//	- {dxa dya}+ dxb dyb dxc dyc dxd dyd

func t2CRcurveline(p *psInterpreter) error {
	if !p.type2Charstrings.seenWidth || p.argStack.top < 8 || p.argStack.top%6 != 2 {
		return errInvalidCFFTable
	}
	i := int32(0)
	for iMax := p.argStack.top - 2; i < iMax; i += 6 {
		p.type2Charstrings.cubeTo(
			p.argStack.a[i+0],
			p.argStack.a[i+1],
			p.argStack.a[i+2],
			p.argStack.a[i+3],
			p.argStack.a[i+4],
			p.argStack.a[i+5],
		)
	}
	p.type2Charstrings.lineTo(p.argStack.a[i], p.argStack.a[i+1])
	return nil
}

func t2CRlinecurve(p *psInterpreter) error {
	if !p.type2Charstrings.seenWidth || p.argStack.top < 8 || p.argStack.top%2 != 0 {
		return errInvalidCFFTable
	}
	i := int32(0)
	for iMax := p.argStack.top - 6; i < iMax; i += 2 {
		p.type2Charstrings.lineTo(p.argStack.a[i], p.argStack.a[i+1])
	}
	p.type2Charstrings.cubeTo(
		p.argStack.a[i+0],
		p.argStack.a[i+1],
		p.argStack.a[i+2],
		p.argStack.a[i+3],
		p.argStack.a[i+4],
		p.argStack.a[i+5],
	)
	return nil
}

// As per 5177.Type2.pdf section 4.1 "Path Construction Operators",
//
// hhcurveto is:
//	- dy1 {dxa dxb dyb dxc}+
//
// vvcurveto is:
//	- dx1 {dya dxb dyb dyc}+
//
// hvcurveto is one of:
//	- dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf?
//	- {dxa dxb dyb dyc dyd dxe dye dxf}+ dyf?
//
// vhcurveto is one of:
//	- dy1 dx2 dy2 dx3 {dxa dxb dyb dyc dyd dxe dye dxf}* dyf?
//	- {dya dxb dyb dxc dxd dxe dye dyf}+ dxf?

func t2CHhcurveto(p *psInterpreter) error { return t2CCurveto(p, false, false) }
func t2CVvcurveto(p *psInterpreter) error { return t2CCurveto(p, false, true) }
func t2CHvcurveto(p *psInterpreter) error { return t2CCurveto(p, true, false) }
func t2CVhcurveto(p *psInterpreter) error { return t2CCurveto(p, true, true) }

// t2CCurveto implements the hh / vv / hv / vh xxcurveto operators. N relative
// cubic curve requires 6*N control points, but only 4*N+0 or 4*N+1 are used
// here: all (or all but one) of the piecewise cubic curve's tangents are
// implicitly horizontal or vertical.
//
// swap is whether that implicit horizontal / vertical constraint swaps as you
// move along the piecewise cubic curve. If swap is false, the constraints are
// either all horizontal or all vertical. If swap is true, it alternates.
//
// vertical is whether the first implicit constraint is vertical.
func t2CCurveto(p *psInterpreter, swap, vertical bool) error {
	if !p.type2Charstrings.seenWidth || p.argStack.top < 4 {
		return errInvalidCFFTable
	}

	i := int32(0)
	switch p.argStack.top & 3 {
	case 0:
		// No-op.
	case 1:
		if swap {
			break
		}
		i = 1
		if vertical {
			p.type2Charstrings.x += p.argStack.a[0]
		} else {
			p.type2Charstrings.y += p.argStack.a[0]
		}
	default:
		return errInvalidCFFTable
	}

	for i != p.argStack.top {
		i = t2CCurveto4(p, swap, vertical, i)
		if i < 0 {
			return errInvalidCFFTable
		}
		if swap {
			vertical = !vertical
		}
	}
	return nil
}

func t2CCurveto4(p *psInterpreter, swap bool, vertical bool, i int32) (j int32) {
	if i+4 > p.argStack.top {
		return -1
	}
	dxa := p.argStack.a[i+0]
	dya := int32(0)
	dxb := p.argStack.a[i+1]
	dyb := p.argStack.a[i+2]
	dxc := p.argStack.a[i+3]
	dyc := int32(0)
	i += 4

	if vertical {
		dxa, dya = dya, dxa
	}

	if swap {
		if i+1 == p.argStack.top {
			dyc = p.argStack.a[i]
			i++
		}
	}

	if swap != vertical {
		dxc, dyc = dyc, dxc
	}

	p.type2Charstrings.cubeTo(dxa, dya, dxb, dyb, dxc, dyc)
	return i
}

func t2CRrcurveto(p *psInterpreter) error {
	if !p.type2Charstrings.seenWidth || p.argStack.top < 6 || p.argStack.top%6 != 0 {
		return errInvalidCFFTable
	}
	for i := int32(0); i != p.argStack.top; i += 6 {
		p.type2Charstrings.cubeTo(
			p.argStack.a[i+0],
			p.argStack.a[i+1],
			p.argStack.a[i+2],
			p.argStack.a[i+3],
			p.argStack.a[i+4],
			p.argStack.a[i+5],
		)
	}
	return nil
}

// For the flex operators, we ignore the flex depth and always produce cubic
// segments, not linear segments. It's not obvious why the Type 2 Charstring
// format cares about switching behavior based on a metric in pixels, not in
// ideal font units. The Go vector rasterizer has no problems with almost
// linear cubic segments.

func t2CHflex(p *psInterpreter) error {
	p.type2Charstrings.cubeTo(
		p.argStack.a[0], 0,
		p.argStack.a[1], +p.argStack.a[2],
		p.argStack.a[3], 0,
	)
	p.type2Charstrings.cubeTo(
		p.argStack.a[4], 0,
		p.argStack.a[5], -p.argStack.a[2],
		p.argStack.a[6], 0,
	)
	return nil
}

func t2CHflex1(p *psInterpreter) error {
	dy1 := p.argStack.a[1]
	dy2 := p.argStack.a[3]
	dy5 := p.argStack.a[7]
	dy6 := -dy1 - dy2 - dy5
	p.type2Charstrings.cubeTo(
		p.argStack.a[0], dy1,
		p.argStack.a[2], dy2,
		p.argStack.a[4], 0,
	)
	p.type2Charstrings.cubeTo(
		p.argStack.a[5], 0,
		p.argStack.a[6], dy5,
		p.argStack.a[8], dy6,
	)
	return nil
}

// subrBias returns the subroutine index bias as per 5177.Type2.pdf section 4.7
// "Subroutine Operators".
func subrBias(numSubroutines int) int32 {
	if numSubroutines < 1240 {
		return 107
	}
	if numSubroutines < 33900 {
		return 1131
	}
	return 32768
}

func t2CCallgsubr(p *psInterpreter) error {
	return t2CCall(p, p.type2Charstrings.f.cached.glyphData.gsubrs)
}

func t2CCallsubr(p *psInterpreter) error {
	t := &p.type2Charstrings
	d := &t.f.cached.glyphData
	subrs := d.singleSubrs
	if d.multiSubrs != nil {
		if t.fdSelectIndexPlusOne == 0 {
			index, err := d.fdSelect.lookup(t.f, t.b, t.glyphIndex)
			if err != nil {
				return err
			}
			if index < 0 || len(d.multiSubrs) <= index {
				return errInvalidCFFTable
			}
			t.fdSelectIndexPlusOne = int32(index + 1)
		}
		subrs = d.multiSubrs[t.fdSelectIndexPlusOne-1]
	}
	return t2CCall(p, subrs)
}

func t2CCall(p *psInterpreter, subrs []uint32) error {
	if p.callStack.top == psCallStackSize || len(subrs) == 0 {
		return errInvalidCFFTable
	}
	length := uint32(len(p.instructions))
	p.callStack.a[p.callStack.top] = psCallStackEntry{
		offset: p.instrOffset + p.instrLength - length,
		length: length,
	}
	p.callStack.top++

	subrIndex := p.argStack.a[p.argStack.top-1] + subrBias(len(subrs)-1)
	if subrIndex < 0 || int32(len(subrs)-1) <= subrIndex {
		return errInvalidCFFTable
	}
	i := subrs[subrIndex+0]
	j := subrs[subrIndex+1]
	if j < i {
		return errInvalidCFFTable
	}
	if j-i > maxGlyphDataLength {
		return errUnsupportedGlyphDataLength
	}
	buf, err := p.type2Charstrings.b.view(&p.type2Charstrings.f.src, int(i), int(j-i))
	if err != nil {
		return err
	}

	p.instructions = buf
	p.instrOffset = i
	p.instrLength = j - i
	return nil
}

func t2CReturn(p *psInterpreter) error {
	if p.callStack.top <= 0 {
		return errInvalidCFFTable
	}
	p.callStack.top--
	o := p.callStack.a[p.callStack.top].offset
	n := p.callStack.a[p.callStack.top].length
	buf, err := p.type2Charstrings.b.view(&p.type2Charstrings.f.src, int(o), int(n))
	if err != nil {
		return err
	}

	p.instructions = buf
	p.instrOffset = o
	p.instrLength = n
	return nil
}

func t2CEndchar(p *psInterpreter) error {
	t2CReadWidth(p, 0)
	if p.argStack.top != 0 || p.hasMoreInstructions() {
		if p.argStack.top == 4 {
			// TODO: process the implicit "seac" command as per 5177.Type2.pdf
			// Appendix C "Compatibility and Deprecated Operators".
			return errUnsupportedType2Charstring
		}
		return errInvalidCFFTable
	}
	p.type2Charstrings.closePath()
	p.type2Charstrings.ended = true
	return nil
}